
Lambda calculus &
Functional programming

Matthew Might
University of Utah

matt.might.net

Why learn FP?

Advantages

• Less code

• Reasonable code

• Correct code

• Great for compilers!

Functional?

• Functions as first-class values

• Lexically scoped closures

• Immutable data structures

• Pure functions (no side effects)

• Equational reasoning

Functional++
• Strong type systems

• Type-inference (Hindley-Milner)

• Algebraic data types

• Pattern-matching

• Catamorphic programming

• Monadic programming

• Continuations

Origins

Two guys named Al

Al Al

Two guys named Al

Alonzo Church Alan Turing

History

• 1928: Alonzo Church publishes λ-calculus.

• 1935: Alan Turing publishes Turing Machine.

• 1936: λ-calculus equals Turing Machine.

• 1958: John McCarthy creates first Lisp.

λ-calculus

Math

• Numbers

• Sets

• Functions

• Variables

• Operators

• Relations

• Sequences

• Tuples

Math

• Numbers

• Sets

• Functions

• Variables

• Operators

• Relations

• Sequences

• Tuples

Math

• Numbers

• Sets

• Functions

• Variables

• Operators

• Relations

• Sequences

• Tuples

+ Anonymous functions

Three simple forms

• v

• e1(e2)

• λv.e

Notation

f(x)

= f x

= (f x)

= (f)(x)

= f.x

= fx

By example

• f(x) = x2

• f = λx.x2

• f(3) = 9

• (λx.x2)(3) = 9

Evaluating expressions

(λv.body) arg = body, where v = arg

More examples

• (λx.x + 10)(3) = 13

• (λf.f(x))(g) = g(x)

• (λf.λx.f(x))(g)(3) = g(3)

More examples

• (λf.λx.f(x))(λx.x + 10)(3) = 13

Regular calculus

(λx.e)� = λx.
d

dx
(e)

Lisp, Scheme, Racket

• v ≡ v

• λv.e ≡ (lambda (v) e)

• f(e) ≡ (f e)

Turing-complete!

But, how!?

Sugar λ into language.

Menu

• Multiple arguments

• Void value

• Lists

• Conditionals

• Numbers

• Recursion

Multiple arguments

f : X × Y → Z

fC : X → Y → Z

fC = λx.λy.f(x, y)

Multiple arguments

f(x,y) => ((f x) y)

Void

void = λ .

Church’s trick

Encode data according to how it’s used.

Conditionals

2.5.2 A void value and 0-arity functions

It is sometimes useful to have a value which is never used for anything, similar to the void
type in C. In functional languages, the unit value, often written (), is a member of the type
which contains only the unit value. For the λ-calculus, any λ-term will work as a void or
unit, but the identity function is conveniently small:

void ≡ () ≡ λx.x

In the lazy λ-calculus, one could use an unbound variable for the void value, since void values
are only passed to functions that never evaluate them.

Void values are mostly commonly passed to thunks. A thunk is a function which takes
no arguments, a 0-arity function. In a strict λ-calculus, thunks are useful for suspending
a computation which may not terminate and which may not be needed. A thunk over
expression e is written as a λ-term which takes no arguments:

λ.e ≡ λ().e ≡ λ .e ≡ λv.e,

where the variable v is not free the body e.

Applying a thunk to the void (or any) value produces the value it captured (or it diverges).
Thunks are useful for encoding conditional-like constructs in the strict λ-calculus. Functional
programmers also regularly take advantage of thunks to suspend and delay computations.

2.5.3 Encoding Booleans

The Church-encoding philosophy. The core mental twist to encoding data structures
into the λ-calculus is always the same: stop thinking about what a structure represents, and
instead, and start thinking about how that construct is used. !

Booleans values represent true or false, but they are used in conditionals to determine which
branch to evaluate: the consequent or the alternate. So, the Church encoding of true is a
function that takes a consequent and an alternate, and then invokes the consequent:

true ≡ λc.λa.c(void).

For similar reasons, false is a function that takes a consequent and an alternate, and then
invokes the alternate:

false ≡ λc.λa.a(void).

2.5.4 Encoding conditionals

The encoding of Booleans makes it straightforward to encode an if-then-else conditional
construct. All the conditional has to do is invoke the condition with λ-terms wrapped

29

2.5.2 A void value and 0-arity functions

It is sometimes useful to have a value which is never used for anything, similar to the void
type in C. In functional languages, the unit value, often written (), is a member of the type
which contains only the unit value. For the λ-calculus, any λ-term will work as a void or
unit, but the identity function is conveniently small:

void ≡ () ≡ λx.x

In the lazy λ-calculus, one could use an unbound variable for the void value, since void values
are only passed to functions that never evaluate them.

Void values are mostly commonly passed to thunks. A thunk is a function which takes
no arguments, a 0-arity function. In a strict λ-calculus, thunks are useful for suspending
a computation which may not terminate and which may not be needed. A thunk over
expression e is written as a λ-term which takes no arguments:

λ.e ≡ λ().e ≡ λ .e ≡ λv.e,

where the variable v is not free the body e.

Applying a thunk to the void (or any) value produces the value it captured (or it diverges).
Thunks are useful for encoding conditional-like constructs in the strict λ-calculus. Functional
programmers also regularly take advantage of thunks to suspend and delay computations.

2.5.3 Encoding Booleans

The Church-encoding philosophy. The core mental twist to encoding data structures
into the λ-calculus is always the same: stop thinking about what a structure represents, and
instead, and start thinking about how that construct is used. !

Booleans values represent true or false, but they are used in conditionals to determine which
branch to evaluate: the consequent or the alternate. So, the Church encoding of true is a
function that takes a consequent and an alternate, and then invokes the consequent:

true ≡ λc.λa.c(void).

For similar reasons, false is a function that takes a consequent and an alternate, and then
invokes the alternate:

false ≡ λc.λa.a(void).

2.5.4 Encoding conditionals

The encoding of Booleans makes it straightforward to encode an if-then-else conditional
construct. All the conditional has to do is invoke the condition with λ-terms wrapped

29

around the consequent and the alternate:

if eb then et else ef ≡ eb (λ().et) (λ().ef).

For those more familiar with C-style programming, this means that the λ-calculus condi-
tional behaves like the ternary operator [[eb ? et : ef]] instead of the imperative statement
[[if eb then et else ef]].

2.5.5 Encoding lists

There are two forms for a list: an empty list, and a list with a head and a tail. Following
the Church-encoding philosophy, lists are then encoded as a function of two arguments:
the first argument is to be invoked if the list is empty; and the second argument is to be
invoked with the head and the tail if the list is non-empty. The encoding of the empty list
is straightforward:

nil ≡ λe.λl.e(void).

The encoding of the list-constructor is only slightly more complex:

cons ≡ λa.λb.λe.λl.(l a b).

Using lists in the λ calculus is easier with the help of syntactic sugar for a list-matching
construct:

match (e)

{
nil "→ ee
cons a b "→ el

≡ e (λ().ee) (λa.λb.el).

It is convenient to write down lists using an angled-bracket notation:

〈e1, e2, . . . , en〉 ≡ cons e1 (cons e2 (. . . (cons en nil) . . .)).

Example 2.7. Functional programmers routinely make use of a function map that applies
a function f to every element of a list:

map f 〈x1, . . . , xn〉 = 〈f(x1), . . . , f(xn)〉.

Later, once a mechanism for handling recursion is defined, map can be defined in the λ-
calculus:

map = λf.λl.match (l)

{
nil "→ nil

cons a b "→ cons (f a) (map f b).

!

30

Numerals

4.5.6 Encoding natural numbers and arithmetic

There are many ways to encode the natural numbers in the λ-calculus. Depending on one’s

purposes, one formulation is often more convenient than another.

A common Church-encoding defines a numeral for n as the function which iteratively applies

its first argument to its second argument n times:

nC
= λf.λz.fn

(z).

In this encoding, zero just returns the second argument:

zero ≡ λf.λz.z.

And, the increment operation applies the function one more time:

en + 1 ≡ λf.λz.f(en f z).

This generalizes to addition:

en + em ≡ λf.λz.(em f (en f z)).

Multiplication of naturals m and n applies the function fn a total of m times.

em × en ≡ λf.λz.(em (en f) z).

4.5.7 Let-binding forms

It is convenient to give names to intermediate values that arise during computation. Every

major language has a form for binding a name to a value; in functional languages, this is

let-binding:

let v = ev in eb ≡ (λv.eb) ev.

Let-binding extends to a special form for functions:

let vf (v1, . . . , vn) = ev in eb ≡ (λvf .eb) (λv1, . . . , vn.ev).

4.5.8 Engineering recursion

Only one major programming construct remains in order to achieve universality: recursion.

Before looking into recursion, it’s simple to demonstrate that not all λ-calculus expressions

terminate during evaluation. For instance, consider the expression Ω:

Ω ≡ (λh.(h h)) (λh.(h h)).

55

Lists

around the consequent and the alternate:

if eb then et else ef ≡ eb (λ().et) (λ().ef).

For those more familiar with C-style programming, this means that the λ-calculus condi-
tional behaves like the ternary operator [[eb ? et : ef]] instead of the imperative statement
[[if eb then et else ef]].

4.5.5 Encoding lists

There are two forms for a list: an empty list, and a list with a head and a tail. Following
the Church-encoding philosophy, lists are then encoded as a function of two arguments:
the first argument is to be invoked if the list is empty; and the second argument is to be
invoked with the head and the tail if the list is non-empty. The encoding of the empty list
is straightforward:

nil ≡ λe.λl.e(void).

The encoding of the list-constructor is only slightly more complex:

cons ≡ λa.λb.λe.λl.(l a b).

Using lists in the λ calculus is easier with the help of syntactic sugar for a list-matching
construct:

match (e)

�
nil �→ ee

cons a b �→ el

≡ e (λ().ee) (λa.λb.el).

It is convenient to write down lists using an angled-bracket notation:

�e1, e2, . . . , en� ≡ cons e1 (cons e2 (. . . (cons en nil) . . .)).

Example 4.7. Functional programmers routinely make use of a function map that applies
a function f to every element of a list:

map f �x1, . . . , xn� = �f(x1), . . . , f(xn)�.

Later, once a mechanism for handling recursion is defined, map can be defined in the λ-
calculus:

map = λf.λl.match (l)

�
nil �→ nil

cons a b �→ cons (f a) (map f b).

✷

54

Recursion

Non-termination

What happens when we evaluate?

Ω =(λh.(h h))(λh.(h h))

Recursion

Self-reference is the essence of recursion.

U Combinator

U = λh.(h h)

Ω = U(U)

Factorial

factU = U(λh.λn.if (n ≤ 0) then 1 else n× (h h)(n− 1))

A little more elegance

Fixed points

If x = f(x), then the point x is
 a fixed point of the function f.

Algebra

• x = x2 - 1 is a recursive definition of x

• If f(v) = v2 - 1, then x = f(x).

• Solutions are the fixed points of f.

0

f(x)

x

0

f(x)

x

f(x) = x2 -1

0

f(x)

x

fixed line

f(x) = x2 -1

Factorial again

Factorial again

fact(n) = if (n ≤ 0) then 1 else n× fact(n− 1)

Factorial again

fact(n) = if (n ≤ 0) then 1 else n× fact(n− 1)

fact = λn.if (n ≤ 0) then 1 else n× fact(n− 1)

Factorial again

fact(n) = if (n ≤ 0) then 1 else n× fact(n− 1)

fact = λn.if (n ≤ 0) then 1 else n× fact(n− 1)

fact = F (fact)

Factorial again

fact(n) = if (n ≤ 0) then 1 else n× fact(n− 1)

fact = λn.if (n ≤ 0) then 1 else n× fact(n− 1)

F (f) = λn.if (n ≤ 0) then 1 else n× f (n− 1)

fact = F (fact)

Fixed-point finder

• We want function Y that finds fixed points

• Technically, Y(F) = x, such that F(x) = x.

• Start off derivation with Y(F) = F(Y(F)).

Solving for Y

Y (F) = F (Y (F))

Solving for Y

Y (F) = F (Y (F))

Y = λF.F (Y (F))

Solving for Y

Y (F) = F (Y (F))

Y = λF.F (Y (F))

Y = U(λh.λF.F ((h h)(F)))

Solving for Y

Y (F) = F (Y (F))

Y = λF.F (Y (F))

Y = U(λh.λF.F ((h h)(F)))

Does this work?

Solving for Y

Y (F) = F (Y (F))

Solving for Y

Y (F) = F (Y (F))

Y = λF.F (Y (F))

Solving for Y

Y (F) = F (Y (F))

Y = λF.F (Y (F))

Y = λF.F (λx.(Y (F)(x)))

Solving for Y

Y (F) = F (Y (F))

Y = λF.F (Y (F))

Y = λF.F (λx.(Y (F)(x)))

Y = U(λh.λF.F (λx.((h h)(F)(x))))

Y

Y = (λh.λF.F (λx.((h h)(F)(x))))(λh.λF.F (λx.((h h)(F)(x))))

Factorial again

Factorial again

F (f) = λn.if (n ≤ 0) then 1 else n× f (n− 1)

fact = F (fact)

Factorial again

F (f) = λn.if (n ≤ 0) then 1 else n× f (n− 1)

fact = F (fact)

fact = Y(F)

Factorial again

F (f) = λn.if (n ≤ 0) then 1 else n× f (n− 1)

fact = F (fact)

fact = Y(F)

fact = Y(λf.λn.if (n ≤ 0) then 1 else n× f (n− 1))

