Lambda calculus & Functional programming

Matthew Might University of Utah matt.might.net

Why learn FP?

Advantages

- Less code
- Reasonable code
- Correct code
- Great for compilers!

Functional?

- Functions as first-class values
- Lexically scoped closures
- Immutable data structures
- Pure functions (no side effects)
- Equational reasoning

Functional++

- Strong type systems
- Type-inference (Hindley-Milner)
- Algebraic data types
- Pattern-matching
- Catamorphic programming
- Monadic programming
- Continuations

Origins

Two guys named Al

Two guys named Al

Alonzo Church

Alan Turing

History

- 1928: Alonzo Church publishes λ -calculus.
- 1935: Alan Turing publishes Turing Machine.
- 1936: λ -calculus equals Turing Machine.
- 1958: John McCarthy creates first Lisp.

λ -calculus

Math

- Numbers
- Sets
- Functions
- Variables

- Operators
- Relations
- Sequences
- Tuples

Math

- Functions
- Variables

C Renations

Math

- Functions
- Variables

+ Anonymous functions

Three simple forms

- e₁(e₂)
- λ*v*.e

Notation

f(x)= f x= (f x)= (f)(x)= f.x= fx

By example

- $f(x) = x^2$
- $f = \lambda x \cdot x^2$
- *f*(3) = 9
- $(\lambda x.x^2)(3) = 9$

Evaluating expressions

 $(\lambda v.body)$ arg = body, where v = arg

More examples

- $(\lambda x.x + 10)(3) = 13$
- $(\lambda f.f(x))(g) = g(x)$
- $(\lambda f.\lambda x.f(x))(g)(3) = g(3)$

More examples

• $(\lambda f.\lambda x.f(x))(\lambda x.x + 10)(3) = 13$

Regular calculus

$$(\lambda x.e)' = \lambda x.\frac{d}{dx}(e)$$

Lisp, Scheme, Racket

• $\mathbf{v} \equiv \mathbf{v}$

• $\lambda v.e = (lambda (v) e)$

• f(e) = (f e)

Turing-complete!

But, how!?

Sugar λ into language.

Menu

- Multiple arguments
- Void value
- Lists
- Conditionals
- Numbers
- Recursion

Multiple arguments

 $f: X \times Y \to Z$

 $f^C: X \to Y \to Z$

 $f^C = \lambda x.\lambda y.f(x,y)$

Multiple arguments

f(x,y) => ((f x) y)

Void

void = $\lambda_{-.}$

Church's trick

Encode data according to how it's used.

Conditionals

true $\equiv \lambda c. \lambda a. c(\text{void})$

false $\equiv \lambda c. \lambda a. a(\text{void})$

if e_b then e_t else $e_f \equiv e_b (\lambda().e_t) (\lambda().e_f)$

Numerals

$$n^C = \lambda f. \lambda z. f^n(z).$$

 $\mathbf{zero} \equiv \lambda f. \lambda z. z.$

 $e_n + 1 \equiv \lambda f \cdot \lambda z \cdot f(e_n f z).$

$$e_n + e_m \equiv \lambda f \cdot \lambda z \cdot (e_m f (e_n f z)).$$

$$e_m \times e_n \equiv \lambda f \cdot \lambda z \cdot (e_m (e_n f) z).$$

Lists

 $\mathbf{nil} \equiv \lambda e.\lambda l.e(\mathbf{void}).$

 $\mathbf{cons} \equiv \lambda a. \lambda b. \lambda e. \lambda l. (l \ a \ b).$

$$\mathbf{match} (e) \begin{cases} \mathbf{nil} & \mapsto e_e \\ \mathbf{cons} \ a \ b & \mapsto e_l \end{cases} \equiv e (\lambda().e_e) (\lambda a.\lambda b.e_l).$$

 $\langle e_1, e_2, \ldots, e_n \rangle \equiv \mathbf{cons} \ e_1 \ (\mathbf{cons} \ e_2 \ (\ldots (\mathbf{cons} \ e_n \ \mathbf{nil}) \ldots)).$

Recursion

Non-termination

What happens when we evaluate?

$\Omega = (\lambda h.(h h))(\lambda h.(h h))$

Recursion

Self-reference is the essence of recursion.

U Combinator

$\mathbf{U} = \lambda h.(h\ h)$

 $\Omega = \mathbf{U}(\mathbf{U})$

Factorial

 $fact_{\mathbf{U}} = \mathbf{U}(\lambda h.\lambda n.\mathbf{if} \ (n \le 0) \mathbf{then} \ 1 \mathbf{else} \ n \times (h \ h)(n-1))$

A little more elegance

Fixed points

If x = f(x), then the point x is a **fixed point** of the function f.

Algebra

- $x = x^2 1$ is a recursive definition of x
- If $f(v) = v^2 1$, then x = f(x).
- Solutions are the fixed points of *f*.

 $fact(n) = if (n \le 0) then 1 else n \times fact(n-1)$

 $fact(n) = if (n \le 0) then 1 else n \times fact(n-1)$

 $fact = \lambda n.$ if $(n \le 0)$ then 1 else $n \times fact(n-1)$

 $fact(n) = if (n \le 0) then 1 else n \times fact(n-1)$

 $fact = \lambda n.$ if $(n \le 0)$ then 1 else $n \times fact(n-1)$

fact = F(fact)

 $fact(n) = \mathbf{if} \ (n \le 0) \mathbf{then} \ 1 \mathbf{else} \ n \times fact(n-1)$ $fact = \lambda n.\mathbf{if} \ (n \le 0) \mathbf{then} \ 1 \mathbf{else} \ n \times fact(n-1)$ fact = F(fact)

 $F(f) = \lambda n.$ if $(n \le 0)$ then 1 else $n \times f(n-1)$

Fixed-point finder

- We want function Y that finds fixed points
- Technically, Y(F) = x, such that F(x) = x.
- Start off derivation with Y(F) = F(Y(F)).

Y(F) = F(Y(F))

Y(F) = F(Y(F)) $Y = \lambda F.F(Y(F))$

Y(F) = F(Y(F)) $Y = \lambda F.F(Y(F))$ $Y = \mathbf{U}(\lambda h.\lambda F.F((h h)(F)))$

Y(F) = F(Y(F)) $Y = \lambda F.F(Y(F))$ $Y = \mathbf{U}(\lambda h.\lambda F.F((h h)(F)))$

Does this work?

Y(F) = F(Y(F))

Y(F) = F(Y(F)) $Y = \lambda F.F(Y(F))$

Y(F) = F(Y(F)) $Y = \lambda F.F(Y(F))$ $Y = \lambda F.F(\lambda x.(Y(F)(x)))$

Y(F) = F(Y(F)) $Y = \lambda F.F(Y(F))$ $Y = \lambda F.F(\lambda x.(Y(F)(x)))$ $Y = \mathbf{U}(\lambda h.\lambda F.F(\lambda x.((h h)(F)(x))))$

Y

$\mathbf{Y} = (\lambda h.\lambda F.F(\lambda x.((h h)(F)(x))))(\lambda h.\lambda F.F(\lambda x.((h h)(F)(x))))$

fact = F(fact)

 $F(f) = \lambda n.$ if $(n \le 0)$ then 1 else $n \times f(n-1)$

fact = F(fact)

 $F(f) = \lambda n.$ if $(n \le 0)$ then 1 else $n \times f(n-1)$

 $fact = \mathbf{Y}(F)$

fact = F(fact)

 $F(f) = \lambda n.$ if $(n \le 0)$ then 1 else $n \times f(n-1)$ fact = $\mathbf{Y}(F)$

 $fact = \mathbf{Y}(\lambda f.\lambda n.\mathbf{if} \ (n \le 0) \mathbf{then} \ 1 \mathbf{else} \ n \times f(n-1))$