What is static analysis?

Matt Might
matt.might.net
University of Utah
Omattmight

Interpreter

abstract interpreter

static analyzer

Too slow.

Too buggy.

Too insecure.

Ve can’t engineer.

Software engineering?

Software engineering?

HOW DO THEY KNOW THE
LOAD LIMIT ON BQ‘DL{S

THC DRIVE BIGGER AND
oatR TQ'\I\.'\\) ONER '\-lc
BleL UNTIL (T BREAS

TUEN THEY WEIGH THE
LAST TRUCK AND
F\‘-R”llLD “lt BR"'D\D‘:

OHd. 1

SHOULDVE

GUESSED

7 DEAR. IF YOU
DYONT KNOW
| THE ANSHER

We can’t engineer.

We can’t predict.

Because Alan Turing said so!

“Thou shalt not write an
algorithm which determines
whether a program halts.”

“the loop hole”

P (x)

Interesting question!

Interesting question!

Undecidable.

VVhy we need
software engineering

A problem has been detected and windows has been shut down to prevent damage

e your COMDUT &,
he problen seems 10 be caused by the following file: SPOMDCON, 5YS
e _FAULT _IN_NONPAGED_AREA
15 the first time you

mputer, If this

tware 1s properly installed.
installation, ask your hardware or software manufacturer
indows updates you might need.

irue, disable or remove any newly installed hardware
able D105 nem 'y wrions ! as ~'|'r._; or

f you need to use Safe Mode to remove or disable
press F8 to select Advanced startup

Ox00000050 (OxFRIOMCZ, Ox00000001 , OxFIe

Ay SPOMDCON 5 Address

class MyActivity {

public MyActivity() {
activateMic();

}

There’s a loop hole...

There’s a loop hole...

...in the loop hole.

static analysis = reasoning

Example: Sign analysis

What is the sign of -3 x 2!

w=3-2-1012 3 ..

w=3-2-1012 3 ..

Let’s build it!

= <1nt>
<exp> * <exp>
<exp> <exp>
<exp> + <exp>

<exp~> :

S1

ple-eval

exp -> 1nteger

S1

ple-eval”

exp -> abstract-integer

S1

ple-eval

exp -> 1nteger

o : 1lnteger -> abstract-integer

S1

ple-eval”

exp -> abstract-integer

Example: Turing machines

4
? 4

How to approximate!

Make it finite!

2
-
- = -
‘—

2
&
4

Let’s do it for RTL.

What is static program analysis?

[article index] [email me] [@mattmight] [+mattmight] [rss]

The halting problem asks whether the execution of a specific program for a
given input will terminate.

The halting problem is famous for being undecidable.
That is, no algorithm can solve it for all programs and all inputs.

This complicates any attempt to predict program behavior: we can make
predicting almost any program behavior equivalent to predicting the
termination of a nearly identical program.

Static analyses are algorithms that do their best to defy the undecidability of
the halting problem: they attempt to predict program behavior.

Predicting program behavior enables program optimization, security audits,
automatic parallelization and, if accurate enough, correctness verification.

<prog>

<stmt>

<exp>

: 1= <exp>
<exp>
<exp>
<int>
<var>

<stmt>

+
*

<label> :

goto <label> ;
<var>
if <exp> goto <label>

:= <exp>

<exp>
<exp>
<exp>

4

’

<prog> ::= <stmt>

<stmt> = (label <label>)

(goto <label>)

(= <var> <exp>)

(1f <exp> goto <label>)
<exp> ::= (t+ <exp> <exp>)

(* <exp> <exp>)
(= <exp> <exp>)
<int>
<var>

(struct state {stmts env})

stmts

env =

= st

var

T *

> 1nteger

inject : prog -> state

step : state -> state

;, stmt-map : label => stmtx*
(define stmt-map (make-hasheq))

preprocess : prog -> void

(define (preprocess st
(match stmts

ts)

[(cons "~ (label ,label) rest)

(hash-set! stmt-

ap label st

(preprocess rest)]

[(cons _ rest)

(preprocess rest)]

[O)
(void)]1))

ts)

Make it finite!

(struct state” { stmts” env™})

stmts”™

env

ST

var

T *

> abstract-integer

inject™ : prog -> state”

step™ : state”™ -> state”

Questions?

matt.might.net
Omattmight

