
Gödel
Hashing
matt.might.net
@mattmight

Disclaimer

“simple, fun idea”

“simple, fun idea”

“works well in practice,”

“simple, fun idea”

“works well in practice,”

“but theory says it will not.”

An old problem

An older solution

A big impact

An old problem

“CFA is slow!”

An older solution

functional
monotonic

perfect

compact
dynamic

incremental

Gödel hashing

Inspired by a true theorem.

Word-level parallelism!

Great cache behavior!

A big impact

Minutes of work

2x

2x

5x

2x

5x

8x

2x

5x
8x

100x

Motivation

(f x)

f(x)

What is ?f

Why not run the program?

e

e

e

e

What is f, here?

e

What is f, here?

...

e

...

e

AA
M

e

...

e

e

Problem

&̂1 � � �

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

� �

�
�

�

�
�

�

�
�

�

�

�

�

�

�
�
�

�

�

� �

�

�

�
�

�

��
�

�

�

� � � �

�

�
�

�
�
�

�
�

�
�

�
�

�
�

� � �

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

� �

�
�

�

�
�

�

�
�

�

�

�

�

�

�
�
�

�

�

� �

�

�

�
�

�

��
�

�

�

� � � �

�

�
�

�
�
�

�
�

�
�

�
�

�
�

� � �

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

� �

�
�

�

�
�

�

�
�

�

�

�

�

�

�
�
�

�

�

� �

�

�

�
�

�

��
�

�

�

� � � �

�

�
�

�
�
�

�
�

�
�

�
�

�
�

v

v

v&̂1 &̂2

&̂1= (e, ⇢̂, �̂, ̂)�̂

&̂1

expression

environment

store

stack

= (e, ⇢̂, �̂, ̂)�̂

&̂1

expression

environment

store

stack

= (e, ⇢̂, �̂, ̂)�̂

�̂ : [Addr ! P(\Value)[Addr ! P(\Value)[Addr ! P(\Value)

[Ad
dr

!
P
(\ V

al
u
e
)

[Addr ! P(\Value)

[Addr ! P(\Value)[Addr ! P(\Value)

First: Hash sets

Prime decomposition

Primes

p1

p2

p3

p4

Primes

p1

p2

p3

p4

p3

p4

p3 p4

p3 p4⇥

{ },

{ },

✓A B

AB[[]] [[]]
mod

= 0

A B\

A B[[]][[]](,)gcd

A B[[]][[]]lcm(,)

A B[

A B[A

A B�A

A B[[]][[]](,)gcdA /[[]]

✓

>

?

>

?

prime basis

n = p1 p2 p3
m1 m2 m3 . . .

n = { }, ,
G

?

?

?

?

?

?

?

p1

p3

p4

p1

p3

p4

tx

y

[[]][[]]lcm(,)
x

y

vx

y

[[]] [[]]
mod

= 0xy

u
x y

[[]][[]](,)gcd x y

But, does it work for CFA?

�̂ : [Addr ! P(\Value)[Addr ! P(\Value)[Addr ! P(\Value)

[Addr ! P(\Value)

[Addr ! P(\Value)

{ }

{ }

â1 â2,

,v̂1 v̂2

â1 â2

v̂1 v̂2

{ }

{ }

{
}

{ }

â1

â2

v̂1

v̂2

â1

â2

v̂1

v̂2

{

}
{

}[

[

[

[

]

]

]

]7!
7!
7!

7!

has a prime basis.L1

L2 has a prime basis.

has a prime basis.L1 L2 has a prime basis.⇥

has a prime basis.L1 L2 has a prime basis.⇥

has a prime basis.L2 has a prime basis.X !

What else?

{[[]]}a b,
n m[[]]

[[]]a bn m[[]]

✓A B

AB[[]] [[]]
mod

= 0

A B[

A B[[]][[]]⇥

h i[[[[]]]]a b c, ,[[]]

a b c[[]] [[]] [[]]
p1 p2 p3

Wait a minute...

gcd is O(n2)

is O(n2)
mod

How is this more efficient?

are sparse.Flow sets

99% of flow sets: < 5 values

Median flow set: 2 values

Primes are dense.

U

U lnU

1,000,000 abstract values?

23 bit prime

Most flow sets fit in a word.Most

Most of the time, .Most n = 1

If not, great locality.

4-6%

2x

5x
8x

100x

Programming

is about
making choices.

E3 ‘sEE

Elegance

Efficacy

Efficiency

E

E

E

Pick any two

Programmers:

two

Functional

Programmers:

Pick any twothree

Questions?

Algebraic data types?

deriving (Hashable)

p1

p2 p3

p4 p5

p1 p2 p3 p4 p5

