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Disclaimer



“simple, fun idea”



“simple, fun idea”

“works well in practice,”



“simple, fun idea”

“works well in practice,”

“but theory says it will not.”



An old problem

An older solution

A big impact



An old problem



“CFA is slow!”



An older solution





functional
monotonic

perfect

compact
dynamic

incremental

Gödel hashing

Inspired by a true theorem.



Word-level parallelism!



Great cache behavior!



A big impact



Minutes of work
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Motivation



(f x)



f(x)



What is   ?f



Why not run the program?
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What is f, here?
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Problem
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v&̂1 &̂2



&̂1= (e, ⇢̂, �̂, ̂)�̂



&̂1

expression

environment

store

stack

= (e, ⇢̂, �̂, ̂)�̂



&̂1

expression

environment

store

stack

= (e, ⇢̂, �̂, ̂)�̂



�̂ : [Addr ! P(\Value)[Addr ! P(\Value)[Addr ! P(\Value)



[ Ad
dr

!
P
(\ V

al
u
e
)

[Addr ! P(\Value)







[Addr ! P(\Value)[Addr ! P(\Value)





















First: Hash sets



Prime decomposition







Primes

p1

p2

p3

p4



Primes
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p3 p4



p3 p4⇥
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AB[[ ]] [[ ]]
mod

= 0



A B\



A B[[ ]][[ ]]( , )gcd



A B[[ ]][[ ]]lcm( , )
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A B[[ ]][[ ]]( , )gcdA /[[ ]]
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prime basis



n = p1 p2 p3
m1 m2 m3 . . .
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[[ ]][[ ]]( , )gcd x y



But, does it work for CFA?



�̂ : [Addr ! P(\Value)[Addr ! P(\Value)[Addr ! P(\Value)
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[Addr ! P(\Value)
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has a prime basis.L1

L2 has a prime basis.



has a prime basis.L1 L2 has a prime basis.⇥



has a prime basis.L1 L2 has a prime basis.⇥



has a prime basis.L2 has a prime basis.X !



What else?
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Wait a minute...



gcd is O(n2)



is O(n2)
mod



How is this more efficient?







are sparse.Flow sets



99% of flow sets: < 5 values



Median flow set: 2 values



Primes are dense.
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1,000,000 abstract values?



23 bit prime



Most flow sets fit in a word.Most



Most of the time,           .Most n = 1



If not, great locality.



4-6%
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100x



Programming

is about
making choices.



E3 ‘sEE



Elegance

Efficacy

Efficiency

E

E
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Pick any two

Programmers:

two



Functional

Programmers:

Pick any twothree



Questions?



Algebraic data types?



deriving (Hashable)
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p4 p5



p1 p2 p3 p4 p5






