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JavaScript is Lisp in C’s clothing.

JavaScript has more in common 
with functional languages like Lisp
or Scheme than with C or Java. 

  Doug Crockford



The lure for Brendan Eich was that he would be 
able to base JavaScript on Scheme.

“JavaScript, How It All Began”
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“You merely 
adopted the 
darkness...

...I was born in it.”



(Jones, 1981)



(Shivers, 1991)



What is control-flow analysis?



What is f?



(f o)



o.f()



What is o?



What is pointer analysis?



What control-flow analysis is not.





Control-Flow Points-To





(f list)



(apply f list)



f.apply(o,list)
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(λ v e)



e1(e2)



λv.eb ∈ FlowsTo[e1]  and  val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]
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We don’t add flow-sensitivity



We take away flow-sensitivity



We don’t add path-sensitivity



We take away path-sensitivity



How do we analyze control-flow?
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What is f, here?



What is f, here?



...



interpreter.Build an



interpreter.Build an abstract



Make it finite.



Make it finite.

(Might, SAS 2010) (Van Horn and Might, ICFP 2010)
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Control

(λ (v1 ... vn) e)e ::= 
   |  
   | 

(e0 e1 ... en)
v



Control

(λ (v1 ... vn) e)

 e ::=
    |
    |
ae ::= 
    |
ce ::= (e0 e1 ... en)

v

ae
ce
(let ([v ce]) e)

(Flanagan et al., 1993)



CE SK



Environment

Address!Variable



Store

ValueAddress !



Value
Closure

=

S tore



Closure

=

S tore

Lambda⇥ Env



Closure

=

S tore

Lambda⇥ Env

Object = Class⇥ Struct



Closure

=

S tore

Lambda⇥ Env

Object = Class⇥ Struct

Value = Code⇥Data



CE SK



Kontinuation

Frame⇤



Kontinuation

Frame =
Var ⇥ Exp⇥ Env



CE SK



C E S K



Exp Env
Store

Kont

⇥ ⇥ ⇥



Exp Env
Store

Kont

⇥ ⇥ ⇥⌃ =⌃



Exp Env
Store

Kont

⇥ ⇥ ⇥⌃ =

Env Var Addr!=

Store

Value= Addr !
Value=

Clo

Clo

= Lambda ⇥ Env

Kont

=

Var⇥ ⇥
Exp Env

Frame

Frame=

⇤

⌃



⌃)( ) ⌃✓ ⇥



([[(f æ)]], ⇢̂, �̂, â) ) (e, ⇢̂

00
, �̂

0
, â

0
), where

kontp(â) 2 ˆA(f, ⇢̂, �̂)

letk(v, e, ⇢̂

0
, â

0
) 2 �̂(â)

⇢̂

00
= ⇢̂

0
[v 7! â

0
]

�̂

0
= �̂ t [â

0 7! ˆA(æ, ⇢̂, �̂)]

â

0
=

[
alloc(v, . . .)

5.5 Pushdown analysis

5.5.1 Concrete semantics

& 2 ⌃ = Exp⇥ Env ⇥ Store ⇥Kont [configurations]

⇢ 2 Env = Var * Addr [environments]

� 2 Store = Addr * Clo [stores]

clo 2 Clo = Lam⇥ Env [closures]

 2 Kont = Frame

⇤
[continuations]

� 2 Frame = Var ⇥ Exp⇥ Env [stack frames]

a 2 Addr is an infinite set [addresses]

5.5.2 Transition rules
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5.2.1 Transition rules

([[(f æ1 . . .æn)]], ⇢,�, a) ) (e, ⇢

00
,�

0
, a), where

([[(� (v1 . . . vn) e)]], ⇢0) = A(f, ⇢,�)

⇢

00
= ⇢

0
[vi 7! ai]

�

0
= �[ai 7! A(æi, ⇢,�)]

ai = alloc(vi, . . .)

(æ, ⇢,�, a) ) (e, ⇢

00
,�

0
, a

0
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0
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0
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([[(let ((v ce)) e)]], ⇢,�, a) ) (ce, ⇢,�

0
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0
), where

�
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0
 7! letk(v, e, ⇢, a)]

a

0
 = alloc(. . .)

5.3 Abstract semantics: \CESK
?

&̂ 2 ˆ

⌃ = Exp⇥ d

Env ⇥ [
Store ⇥ [

Addr [states]

⇢̂ 2 d

Env = Var *

[
Addr [environments]

�̂ 2 [
Store =

[
Addr ! ˆ

D [stores]

d

Val =

d

Clo +

[
Kont

ˆ

d 2 ˆ

D = P(

d

Val)

c

clo 2 d

Clo = Lam⇥ d

Env [closures]

̂ 2 [
Kont ::= letk(v, e, ⇢̂, â) [continuations]

| halt

â 2 [
Addr is a finite set [addresses]

5.3.1 Transition rules
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00
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0
), where

�̂

0
= � t [â
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(define `λ (λ 'love 'I 'you)) 
((λ λ λ) 
  `(λ (⊙ λ ∪) λ) 
  `(λ (λ ⊙ ∪) λ)
  `(λ (∪ ⊙ λ) λ))
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Abstract garbage collection

(Might and Shivers, 2006)
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Problem?



Finite heap.



Solution?



Toss garbage.





�



�e, ⇢̂, �̂, ̂



�e, ⇢̂, �̂, ̂



�e, ⇢̂, �̂, ̂



�e, ⇢̂, �̂, ̂



�′e, ⇢̂, �̂, ̂



�



�



�



�



� � �

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

� �

�
�

�

�
�

�

�
�

�

�

�

�

�

�
�
�

�

�

� �

�

�

�
�

�

��
�

�

�

� � � �

�

�
�

�
�
�

�
�

�
�

�
�

�
�



�
� �����������������������
������������������������� �������������������������



Connections



Featherweight Java



Resolving and Exploiting the k-CFA Paradox

Illuminating Functional vs. Object-Oriented Program Analysis

Matthew Might
University of Utah
might@cs.utah.edu

Yannis Smaragdakis
University of Massachusetts

yannis@cs.umass.edu

David Van Horn
Northeastern University
dvanhorn@ccs.neu.edu

Abstract

Low-level program analysis is a fundamental problem, taking the
shape of “flow analysis” in functional languages and “points-to”
analysis in imperative and object-oriented languages. Despite the
similarities, the vocabulary and results in the two communities
remain largely distinct, with limited cross-understanding. One of
the few links is Shivers’s k-CFA work, which has advanced the
concept of “context-sensitive analysis” and is widely known in both
communities.

Recent results indicate that the relationship between the func-
tional and object-oriented incarnations of k-CFA is not as well
understood as thought. Van Horn and Mairson proved k-CFA for
k � 1 to be EXPTIME-complete; hence, no polynomial-time al-
gorithm can exist. Yet, there are several polynomial-time formula-
tions of context-sensitive points-to analyses in object-oriented lan-
guages. Thus, it seems that functional k-CFA may actually be a pro-
foundly different analysis from object-oriented k-CFA. We resolve
this paradox by showing that the exact same specification of k-CFA
is polynomial-time for object-oriented languages yet exponential-
time for functional ones: objects and closures are subtly different,
in a way that interacts crucially with context-sensitivity and com-
plexity. This illumination leads to an immediate payoff: by pro-
jecting the object-oriented treatment of objects onto closures, we
derive a polynomial-time hierarchy of context-sensitive CFAs for
functional programs.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Algorithms, Languages, Theory

Keywords static analysis, control-flow analysis, pointer analysis,
functional, object-oriented, k-CFA, m-CFA

1. Introduction

One of the most fundamental problems in program analysis is
determining the entities to which an expression may refer at run-
time. In imperative and object-oriented (OO) languages, this is
commonly phrased as a points-to (or pointer) analysis: to which
objects can a variable point? In functional languages, the problem
is called flow analysis [11]: to which expressions can a value flow?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c� 2010 ACM 978-1-4503-0019-3/10/06. . . $10.00

Both points-to and flow analysis acquire a degree of complexity
for higher-order languages: functional languages have first-class
functions and object-oriented languages have dynamic dispatch;
these features conspire to make call-target resolution depend on the
flow of values, even as the flow of values depends on what targets
are possible for a call. That is, data-flow depends on control-flow,
yet control-flow depends on data-flow. Appropriately, this problem
is commonly called control-flow analysis (CFA).

Shivers’s k-CFA [17] is a well-known family of control-flow
analysis algorithms, widely recognized in both the functional and
the object-oriented world. k-CFA popularized the idea of context-
sensitive flow analysis.1 Nevertheless, there have always been an-
noying discrepancies between the experiences in the application of
k-CFA in the functional and the OO world. Shivers himself notes
in his “Best of PLDI” retrospective that “the basic analysis, for any
k > 0 [is] intractably slow for large programs” [16]. This contra-
dicts common experience in the OO setting, where a 1- and 2-CFA
analysis is considered heavy but certainly possible [2, 10].

To make matters formally worse, Van Horn and Mairson [19]
recently proved k-CFA for k � 1 to be EXPTIME-complete, i.e.,
non-polynomial. Yet the OO formulations of k-CFA have provably
polynomial complexity (e.g., Bravenboer and Smaragdakis [2] ex-
press the algorithm in Datalog, which is a language that can only
express polynomial-time algorithms). This paradox seems hard to
resolve. Is k-CFA misunderstood? Has inaccuracy crept into the
transition from functional to OO?

In this paper we resolve the paradox and illuminate the deep
differences between functional and OO context-sensitive program
analyses. We show that the exact same formulation of k-CFA is
exponential-time for functional programs yet polynomial-time for
OO programs. To ensure fidelity, our proof appeals directly to
Shivers’s original definition of k-CFA and applies it to the most
common formal model of Java, Featherweight Java.

As might be expected, our finding hinges on the fundamental
difference between typical functional and OO languages: the for-
mer create implicit closures when lambda expressions are created,
while the latter require the programmer to explicitly “close” (i.e.,
pass to a constructor) the data that a newly created object can ref-
erence. At an intuitive level, this difference also explains why the

1 Although the k-CFA work is often used as a synonym for “k-context-
sensitive” in the OO world, k-CFA is more correctly an algorithm that
packages context-sensitivity together with several other design decisions. In
the terminology of OO points-to analysis, k-CFA is a k-call-site-sensitive,
field-sensitive points-to analysis algorithm with a context-sensitive heap
and with on-the-fly call-graph construction. (Lhoták [9] and Lhoták and
Hendren [10] are good references for the classification of points-to analysis
algorithms.) In this paper we use the term “k-CFA” with this more precise
meaning, as is common in the functional programming world, and not just
as a synonym for “k-context-sensitive”. Although this classification is more
precise, it still allows for a range of algorithms, as we discuss later.
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Figure 6. Concrete semantics for A-Normal Featherweight Java.
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â

00
j

= [
alloc(v000

j

, t̂

0) �̂

0 = [[[this]] 7! �̂(v0)]

�̂

00 = �̂

0[v00
i

7! â
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hnop :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i
hmove-object(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(rs, fp)],i

hreturn-void :: ~stmt
0
, fp0

,�, fnk( ~stmt , fp,)i 7�! h ~stmt , fp,�,i
hreturn-object(r) :: ~stmt

0
, fp0

,�, fnk( ~stmt , fp,)i 7�! h ~stmt , fp,�[(ret, fp) 7! �(n, fp0)],i
hconst(r, c) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! c],i
hthrow`(r) :: ~stmt , fp,�,i 7�! hS(`0), fp0

,�[(exn, fp0) 7! �(r, fp)],0i
where (`0, fp0

,

0) = H(`, fp,)

hgoto(`) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i
hnew-instance(r, ⌧) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! o],i

where o = new(&)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i if �(r, fp) = �(r0, fp)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i if �(r, fp) 6= �(r0, fp)

higet(rd, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(a)],i
where �(rs, fp) = o and o.field = a

hiput(rv, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[a 7! �(rv, fp)],i
where �(rs, fp) = o and o.field = a

hinvoke-direct(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hM(id), fp0
,�

0
, fnk( ~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hinvoke-virtual(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hV(id ,�(r0, fp)), fp0
,�

0
, fnk( ~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hunop(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(unop,�(rs, fp))

hbinop(rd, r1, r2) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(binop,�(r1, fp),�(r2, fp))

Figure 1: Dalvik semantics
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hnop :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂, ̂, t̂i
hmove-object(rd, rs) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! �̂(rs, f̂p)], ̂, t̂i

hreturn-void :: ~stmt
0
, f̂p

0
, �̂, fnk( ~stmt , f̂p, â)i 7�! h ~stmt , f̂p, �̂, ̂i if ̂ 2 �̂(â)

hreturn-object(r) :: ~stmt
0
, f̂p

0
, �̂, fnk( ~stmt , f̂p, â)i 7�! h ~stmt , f̂p, �̂ t [(ret, f̂p) 7! �̂(n, f̂p

0
)], ̂i if ̂ 2 �̂(â)

hconst(r, c) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(r, f̂p) 7! c], ̂, t̂i
hthrow`(r) :: ~stmt , f̂p, �̂, ̂i 7�! hS(`0), fp0

, �̂ t [(exn, f̂p
0
) 7! �̂(r, f̂p)], ̂0i

where (`0, f̂p
0
, ̂

0) 2 bH�̂(`, f̂p, ̂)

hgoto(`) :: ~stmt
0
, f̂p, �̂, ̂, t̂i 7�! hS(`), f̂p, �̂, ̂, t̂i

hnew-instance(r, ⌧) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(r, f̂p) 7! o], ̂, t̂i
where o = dnew(&)

hif-eq(r, r0, `) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hS(`), f̂p, �̂, ̂, t̂i
if 9v1 2 �̂(r, f̂p), 9v2 2 �̂(r0, f̂p).v1 = v2

hif-eq(r, r0, `) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂, ̂, t̂i
if 9v1 2 �̂(r, f̂p), 9v2 2 �̂(r0, f̂p).v1 6= v2

higet(rd, rs,field) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! �̂(a)], ̂, t̂i
where �̂(rs, fp) 3 o and o.field = a

hiput(rv, rs,field) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [a 7! �̂(rv, f̂p)], ̂, t̂i
where �̂(rs, f̂p) 3 o and o.field = a

hinvoke-direct(r0, . . . , rn, id) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hM(id), f̂p
0
, �̂

00
, fnk( ~stmt , f̂p, â), t̂

0i
where �̂

00 = �̂

0 t [(0, f̂p
0
) 7! �(r0, f̂p), . . . , (n, f̂p

0
) 7! �(rn, f̂p)]

�̂

0 = �̂ t [â 7! ̂]

f̂p
0
= [alloc(&̂)

â = \allock(&̂)

t̂

0 = dtick(t̂)

hinvoke-virtual(r0, . . . , rn, id) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hV(id , v), f̂p0
, �̂

00
, fnk( ~stmt , f̂p, ̂), t̂0i if v 2 �̂(r0, f̂p)

where �̂

00 = �̂

0 t [(0, fp0) 7! �̂(r0, f̂p), . . . , (n, f̂p
0
) 7! �(rn, f̂p)]

�̂

0 = �̂ t [â 7! ̂]

f̂p
0
= [alloc(&̂)

â = \allock(&̂)

t̂

0 = dtick(t̂)

hunop(rd, rs) :: ~stmt , f̂p, �̂, ̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! v], ̂i
where v 2 �̂(unop,�(rs, fp))

hbinop(rd, r1, r2) :: ~stmt , fp,�,i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! v], ̂i
where v 2 �̂(binop, �̂(r1, f̂p), �̂(r2, f̂p))

Figure 2: Dalvik abstract semantics
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Abstract. We design a family of program analyses for JavaScript that
make no approximation in matching calls with returns, exceptions with
handlers, and breaks with labels. We do so by starting from an estab-
lished reduction semantics for JavaScript and systematically deriving its
intensional abstract interpretation. Our first step is to transform the se-
mantics into an equivalent low-level abstract machine: the JavaScript
Abstract Machine (JAM). We then give an infinite-state yet decidable
pushdown machine whose stack precisely models the structure of the con-
crete program stack. The precise model of stack structure in turn confers
precise control-flow analysis even in the presence of control effects, such
as exceptions and finally blocks. We give pushdown generalizations of
traditional forms of analysis such as k-CFA, and prove the pushdown
framework for abstract interpretation is sound and computable.

1 Introduction

JavaScript is the dominant language of the web, making it the most ubiquitous
programming language in use today. Beyond the browser, it is increasingly im-
portant as a general-purpose language, as a server-side scripting language, and
as an embedded scripting language—notably, Java 6 includes support for script-
ing applications via the javax.script package, and the JDK ships with the
Mozilla Rhino JavaScript engine. Due to its ubiquity, JavaScript has become the
target language for an array of compilers for languages such as C#, Java, Ruby,
and others, making JavaScript a widely used “assembly language.” As JavaScript
cements its foundational role, the importance of robust static reasoning tools for
that foundation grows.

Motivated by the desire to handle non-local control effects such as exceptions
and finally precisely, we will depart from standard practice in higher-order
program analysis to derive an infinite-state yet decidable pushdown abstraction
from our original abstract machine. The stack of the pushdown abstract inter-
preter exactly models the stack of the original abstract machine with no loss of
structure—approximation is inflicted on only the control states. This pushdown
framework offers a degree of precision in reasoning about control inaccessible to
previous analyzers.

Pushdown analysis is an alternative paradigm for the analysis of higher-
order programs in which the run-time program stack is precisely modeled with
the stack of a pushdown system [40, 14]. Consequently, a pushdown analysis can



full JavaScript can be desugared into λJS . The semantics accounts for all of
JavaScript’s features with the exception of eval. Only some of JavaScript quirks
are modeled directly, while other aspects are treated traditionally. For example,
lexical scope is modeled with substitution. The desugarer is modeled formally
and also available as a standalone Haskell program.

We choose to adopt the λJS model since its small size results in a tractably
sized abstract machine.

The remainder of this paper focuses on machines and abstract interpretation
for λJS . We refer the reader to Guha, et al., for details on desugaring JavaScript
to λJS and rational for the design decisions made.

2.1 Syntax

The syntax of λρJS is given in figure 1. Syntactic constants include strings, num-
bers, addresses, booleans, the undefined value, and the null value. Addresses are
first-class values used to model mutable references. Heap allocation and derefer-
ence is made explicit through desugaring to λJS . Syntactic values include con-
stants, function terms, and records. Records are keyed by strings and operations
on records are modeled by functional update, extension, and deletion. Expres-
sions include variables, syntactic values, and syntax for let binding, function ap-
plication, record dereference, record update, record deletion, assignment, alloca-
tion, dereference, conditionals, sequencing, while loops, labels, breaks, exception
handlers, finalizers, exception raising, and application of primitive operations. A
program is a closed expression.

s ∈ String
n ∈ Number
a ∈ Address
x ∈ Variable

e, f, g ::= x | s | n | a | true | false | undef | null
| fun(x) { e } | {s:e} | let (x = e) e | e(e) | e[e]
| e[e] = e | del e[e] | e = e | ref e | deref e
| if(e){e}{e} | e;e | while(e){e}
| !:{ e } | break ! e | try {e} catch (x){e}
| try {e} finally {e} | throw e | op(e)

t, u, v ::= s | n | a | true | false | undef | null | (fun(x) { e }, ρ) | {s:v}
c, d ::= (e, ρ) | {s:c} | let (x = c) c | c(c) | c[c]

| c[c] = c | del c[c] | c = c | ref c | deref c
| if(c){c}{c} | c;c | while(c){c}
| !:{ c } | break ! c | try {c} catch (x){c}
| try {c} finally {c} | throw c | op(c)

Fig. 1: Syntax of λJS



〈σ, (x, ρ), E〉ap . .. 〈σ, v, E〉co if v ∈ get(σ, a)
〈σ, let (x = v) c, E〉ap . .. 〈put(σ, a, v), (e, ρ[x $→ a]), E〉ev

where a = alloc(ς)
〈σ, (fun(x) { e }, ρ)(v), E〉ap . .. 〈put(σ, a, v), (e, ρ[x $→ a]), E〉ev

if |x| = |v|, where a = alloc(ς)
〈σ, {s:v, si:v, s:v′}[si], E〉ap . .. 〈σ, v, E〉co
〈σ, {s:v}[sx], E〉ap . .. 〈σ, undef, E〉co if sx /∈ s
〈σ, {s:v, si:vi, s:v′}[si] = v,E〉ap . .. 〈σ, {s:v, si:v, s:v′}, E〉co
〈σ, del {s:v, si:vi, s:v′}[si], E〉ap . .. 〈σ, {s:v, s:v′}, E〉co
〈σ, del {s:v}[sx], E〉ap . .. 〈σ, {s:v}, E〉co if sx /∈ s
〈σ, if(true){c}{d}, E〉ap . .. 〈σ, c, E〉ev
〈σ, if(false){c}{d}, E〉ap . .. 〈σ, d, E〉ev
〈σ, opn(v1, . . . , vn), E〉co . .. 〈σ, v, E〉co if δ(opn, v1, . . . , vn) = v
〈σ, ref v,E〉ap . .. 〈put(σ, a, v), a, E〉co

where a = alloc(ς)
〈σ, deref a,E〉ap . .. 〈σ, v, E〉co if v ∈ get(σ, a)
〈σ, a = v,E〉ap . .. 〈put(σ, a, v), v, E〉co
〈σ, throw v,nil〉 . .. 〈err v,σ〉
〈σ, throw v, try {•} catch (x){(e, ρ)} :: E〉ap . .. 〈put(σ, a, v), (e, ρ[x $→ a]), E〉ev

where a = alloc(ς)
〈σ, throw v, try {•} finally {c} :: E〉ap . .. 〈σ, c;throw v,E〉ev
〈σ, throw v, %:{ • } :: E〉ap . .. 〈σ, throw v,E〉ap
〈σ, throw v, C :: E〉ap . .. 〈σ, throw v,E〉ap
〈σ, break % v, try {x} catch (•){c} :: E〉ap . .. 〈σ, break % v,E〉ev
〈σ, break % v, try {•} finally {c} :: E〉ap . .. 〈σ, c;break % v,E〉ev
〈σ, break % v, %:{ • } :: E〉ap . .. 〈σ, v, E〉co
〈σ, break % v, %′:{ • } :: E〉ap . .. 〈σ, v, E〉co if % &= %′

〈σ, break % v, C :: E〉ap . .. 〈σ, break % v,E〉ap

Fig. 6: Application transitions

One of the lessons of our abstract machine-based approach to analysis is
that many problems in program analysis can be solved at the semantic level
and then imported systematically to the analytic side. So for example, abstract
garbage collection [27] can be expressed as concrete garbage collection with the
pointer refinement and store abstraction applied [39]. Similarly, the exponential
complexity of k-CFA can be avoided by concretely changing the representation
of closures and then abstracting in an unremarkable way [29].

We likewise solve our two-stack problem by a reformulation at the level of
the reduction semantics for λρJS and then repeat the refocusing construction to
derive a one-stack variant of the JAM.

The basic reason for maintaining the control and local stack is to allow jumps
over the local context whenever a control operator is invoked. This is seen in the
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