
Developing
Reasonable
Programs

Matt Might
University of Utah
matt.might.net

The future of...

The future of...

...programs

The future of...

...programs

...languages

The future of...

...programs

...languages

...compilers

WARNING

Performance Correctness Security

1946

201X

Performance Correctness Security

201X

DSLs

Static
Analysis

DSLs

Static
Analysis

</shortversion>

R = 2v2cos(�)sin(�)/g

35 divisions per second.

2.9 divisions per second.

Performance mattered.

Performance still matters.

Correctness matters.

Correctness really matters.

Security matters.

What makes software
slow, buggy and insecure?

We can’t predict it.

We can’t reason.

We can’t engineer.

Software “engineering”

PowerPoint

A fatal exception 0E has occurred at 0137:BFFA21C9. The current
application will be terminated.

* Press any key to terminate the current application.
* Press CTRL+ALT+DEL again to restart your computer. You will

lose any unsaved information in all applications.

Press any key to continue _

We need engineering.

We need reasonable programs.

We need prediction.

So, why can’t we predict
what software will do?

So, why can’t we predict
what software will do?

Because Alan Turing said we can’t.

Halt!

“Thou shalt not write a
program which determines
whether a program halts.”

while P(x)

Interesting question?

Undecidable.
Interesting question?

But,

there’s a loop hole...

there’s a loop hole...

...in the loop hole.

Yes
No

Yes
No?

The static analysis game

The static analysis game

The static analysis game

*0

*a++ = MAX++

The static analysis game

*0

*a++ = MAX++

The static analysis game

*0

*a++ = MAX++

Another way?

Don’t use Turing machines.

Static analysis

Sub-Turing languages

How do you play
the static analysis game?

q1
q2

q3

q1
q2

q3(0,1,R)

(1,0,L) (0,1
,R)

q1
q2

q3(0,1,R)

(1,0,L) (0,1
,R)

1 0 0 0 0

q1
q2

q3(0,1,R)

(1,0,L) (0,1
,R)

1 0 0 0 0

How to approximate?

Make it finite!

q1
q2

q3(0,1,R)

(1,0,L) (0,1
,R)

1 0 0 0 0

q1
q2

q3(0,1,R)

(1,0,L) (0,1
,R)

1 0 0 0 0 {0,1}

q1
q2

q3(0,1,R)

(1,0,L) (0,1
,R)

{0,1}

q1
q2

(0,1,R)

(1,0,L) (0,1
,R)

{0,1}

q3

Why is static analysis hard?

What happens here?

animal.eat(food);

What happens here?

animal.eat(food);

What is animal?

What is food?

What happens here?

animal.eat(food);

void process (Animal animal) {
food = world.gather() ;

}

What happens here?

animal.eat(food);

void process (Animal animal) {
food = world.gather() ;

}

Who calls process?

What is world?

Control-flow
Data-flow

Why so entangled?

Value = Object

Value = Object
 = Class + Record

Value = Object
 = Class + Record

⊆ Code + Data

Old idea:
Untie code & data.

(In ten minutes)

What language
exemplifies code + data?

λ-calculus.

λ-calculus (Church, 1928)

λ-calculus (Church, 1928)

• Minimalist, universal language
Alonzo Church

λ-calculus (Church, 1928)

• Minimalist, universal language

• Three expression types:

v [variable]

e1(e2) [function application]

λv.e [anonymous function]

Alonzo Church

λ-calculus (Church, 1928)

• Minimalist, universal language

• Three expression types:

v [variable]

e1(e2) [function application]

λv.e [anonymous function]

Alonzo Church

λ-calculus (Church, 1928)

• Minimalist, universal language

• Three expression types:

v [variable]

e1(e2) [function application]

λv.e [anonymous function]

Alonzo Church

(�x.x2)(3) = 9

Lisp and Scheme

• v ≡ v

• f(e) ≡ (f e)

• λv.e ≡ (lambda (v) e)

Python

• v ≡ v

• f(e) ≡ f(e)

• λv.e ≡ lambda v: e

Ruby

• v ≡ v

• f(e) ≡ f(e)

• λv.e ≡ lambda { |v| return e }

JavaScript

• v ≡ v

• f(e) ≡ f(e)

• λv.e ≡ function (v) { return e ; }

Java

• v ≡ v

• f(e) ≡ f.call(e)

• λv.e ≡ new Value () { public Value
call (Value v) { return
e ; } } ;

λ-fortified

• Lisp

• SML

• Haskell

• Scala

• Java

• C#

• C++

• Python

• Ruby

• Smalltalk

• JavaScript

• PHP(!)

Value = Closure

Value = Closure
 = Lambda + Env

Value = Closure
 = Lambda + Env

⊆ Code + Data

Assertion:
If we can do λ’s,

we can do objects.

How to bound control?

Control-flow question

Given a call site f(x), what could f be?

f(x)

f(x)
let f = λz.z

in

f(x)λf.

Classical approach

The approximation

• Value = Code x Data

• Closure = Lambda x Env

• Object = Class x Record

The approximation

• Value = Code

• Closure = Lambda

• Object = Class

How do λ’s flow?

e1(e2)

e1(e2)

λv.eb

e1(e2)

val

λv.eb

e1(e2)

val

λv.eb

e1(e2)

val

λv.eb

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[e2]
val ∈ FlowsTo[v]

e1(e2)

λv.eb

val

e1(e2)

λv.eb

val

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

e1(e2)

λv.eb

val

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[e2]
val ∈ FlowsTo[v]

λv.eb ∈ FlowsTo[λv.eb]

0CFA (Shivers, 1988)

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]

0CFA (Shivers, 1988)

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]

0CFA (Shivers, 1988)

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]

+ Constraint Solver

= Control-flow analysis

But...

It’s slow.

It’s weak.

It’s imprecise.

Problem: Cross-flow

map f list

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

No attention to order.

Monotonic.

A different approach:
Small-step analysis

(Joint work with David Van Horn)

Easier to understand.

Simpler to derive.

Faster to compute.

A program is an
infinite state machine.

An analysis is a
finite state machine.

Small-step machine

Small-step machine
• Convert program e into machine state s0

Small-step machine
• Convert program e into machine state s0

• Transition from state sn to state sn+1

e

s0 s1 s2 s3 s4 ...

Analysis machine

e

s0 s1 s2 s3 s4 ...

Analysis machine
e

s0 s1 s2 s3 s4 ...

Analysis machine
e

s0 s1 s2 s3 s4 ...

ŝ0

Analysis machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3
ŝ3.1

Analysis machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

Analysis machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

Analysis machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

Theorem: The analysis simulates the machine.

“Concrete” “Abstract”

s1

s3

s2
ŝ1

ŝ2

α

α

α

“Concrete” “Abstract”

Infinite state-space

Small-step analysis...

Infinite state-space

Small-step analysis...

Finite state-space

α

...is bounded graph search.

...is bounded graph search.

Finite state-space

Example:
Small steps for CPS

Continuation-passing style

v � Var

f, e � Exp = Var + Lam

lam � Lam ::= (� (v1 . . . vn) call)
call � Call ::= (f e1 . . . en)

+ App

Continuation-passing style

v � Var

f, e � Exp = Var + Lam

lam � Lam ::= (� (v1 . . . vn) call)
call � Call ::= (f e1 . . . en)

Continuation-passing style

v � Var

f, e � Exp = Var + Lam

lam � Lam ::= (� (v1 . . . vn) call)
call � Call ::= (f e1 . . . en)

Continuation-passing style

v � Var

f, e � Exp = Var + Lam

lam � Lam ::= (� (v1 . . . vn) call)
call � Call ::= (f e1 . . . en)

No call returns

Callers pass callbacks

Still Turing-complete

Concrete state-space

⇥ ⇥ � = Call� Env
� ⇥ Env = Var ⇤ Clo

clo ⇥ Clo = Lam� Env

Concrete state-space

⇥ ⇥ � = Call� Env
� ⇥ Env = Var ⇤ Clo

clo ⇥ Clo = Lam� Env

Concrete state-space

⇥ ⇥ � = Call� Env
� ⇥ Env = Var ⇤ Clo

clo ⇥ Clo = Lam� Env

Concrete semantics

(⇤) ⇥ �� �

E : Exp� Env � Clo

Concrete semantics

(⇤) ⇥ �� �

E : Exp� Env � Clo

E : Exp� Env ⇥ Clo

E(lam, �) = (lam, �)
E(v, �) = �(v)

(⌅) ⇥ �� �

([[(f e1 . . . en)]], �)⌅ (call , ���), where

([[(� (v1 . . . vn) call)]], ��) = E(f, �)
cloi = E(ei, �)
��� = ��[vi ⇧⇤ cloi]

(⌅) ⇥ �� �

([[(f e1 . . . en)]], �)⌅ (call , ���), where

([[(� (v1 . . . vn) call)]], ��) = E(f, �)
cloi = E(ei, �)
��� = ��[vi ⇧⇤ cloi]

(⌅) ⇥ �� �

([[(f e1 . . . en)]], �)⌅ (call , ���), where

([[(� (v1 . . . vn) call)]], ��) = E(f, �)
cloi = E(ei, �)
��� = ��[vi ⇧⇤ cloi]

(⌅) ⇥ �� �

([[(f e1 . . . en)]], �)⌅ (call , ���), where

([[(� (v1 . . . vn) call)]], ��) = E(f, �)
cloi = E(ei, �)
��� = ��[vi ⇧⇤ cloi]

To analyze?

Make it finite!

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

Abstract state-space

⇥̂ ⇥ �̂ = Call� ⌅Env

�̂ ⇥ ⌅Env = Var ⇤ P
�
⌅Clo

⇥

⇤clo ⇥ ⌅Clo = Lam

�(lam, ⇤) = lam

�(call , ⇤) = (call , �(⇤))
�(⇤) = ⇥v.

�
�(⇤�(v)) : ⇤� is reachable in ⇤

⇥

�(lam, ⇤) = lam

�(call , ⇤) = (call , �(⇤))
�(⇤) = ⇥v.

�
�(⇤�(v)) : ⇤� is reachable in ⇤

⇥

�(lam, ⇤) = lam

�(call , ⇤) = (call , �(⇤))
�(⇤) = ⇥v.

�
�(⇤�(v)) : ⇤� is reachable in ⇤

⇥

Abstract semantics

(�) ⇥ �̂� �̂

Ê : Exp� ⇤Env ⇤ P
�
⇤Clo

⇥

Abstract semantics

(�) ⇥ �̂� �̂

Ê : Exp� ⇤Env ⇤ P
�
⇤Clo

⇥

Abstract semantics

(�) ⇥ �̂� �̂

Ê : Exp� ⇤Env ⇤ P
�
⇤Clo

⇥

Ê : Exp� ⇤Env ⇥ P
�
⇤Clo

⇥

Ê(lam, �̂) = {lam}
Ê(v, �̂) = �̂(v)

Ê : Exp� ⇤Env ⇥ P
�
⇤Clo

⇥

Ê(lam, �̂) = {lam}
Ê(v, �̂) = �̂(v)

Ê : Exp� ⇤Env ⇥ P
�
⇤Clo

⇥

Ê(lam, �̂) = {lam}
Ê(v, �̂) = �̂(v)

(�) ⇥ �̂� �̂

([[(f e1 . . . en)]], �̂) � (call , �̂�), where

[[(� (v1 . . . vn) call)]] ⌅ Ê(f, �̂)

Ĉi = Ê(ei, �̂)

�̂� = �̂ ⌥ [vi ⇧⇤ Ĉi]

(�) ⇥ �̂� �̂

([[(f e1 . . . en)]], �̂) � (call , �̂�), where

[[(� (v1 . . . vn) call)]] ⌅ Ê(f, �̂)

Ĉi = Ê(ei, �̂)

�̂� = �̂ ⌥ [vi ⇧⇤ Ĉi]

(�) ⇥ �̂� �̂

([[(f e1 . . . en)]], �̂) � (call , �̂�), where

[[(� (v1 . . . vn) call)]] ⌅ Ê(f, �̂)

Ĉi = Ê(ei, �̂)

�̂� = �̂ ⌥ [vi ⇧⇤ Ĉi]

(�) ⇥ �̂� �̂

([[(f e1 . . . en)]], �̂) � (call , �̂�), where

[[(� (v1 . . . vn) call)]] ⌅ Ê(f, �̂)

Ĉi = Ê(ei, �̂)

�̂� = �̂ ⌥ [vi ⇧⇤ Ĉi]

(�) ⇥ �̂� �̂

([[(f e1 . . . en)]], �̂) � (call , �̂�), where

[[(� (v1 . . . vn) call)]] ⌅ Ê(f, �̂)

Ĉi = Ê(ei, �̂)

�̂� = �̂ ⌥ [vi ⇧⇤ Ĉi]

(⌅) ⇥ �� �

([[(f e1 . . . en)]], �)⌅ (call , ���), where

([[(� (v1 . . . vn) call)]], ��) = E(f, �)
cloi = E(ei, �)
��� = ��[vi ⇧⇤ cloi]

(�) ⇥ �̂� �̂

([[(f e1 . . . en)]], �̂) � (call , �̂�), where

[[(� (v1 . . . vn) call)]] ⌅ Ê(f, �̂)

Ĉi = Ê(ei, �̂)

�̂� = �̂ ⌥ [vi ⇧⇤ Ĉi]

Soundness
� � ⇥⇥

�

��

� ⇥

�

��

⇤
��

⇤
��

�̂ � ⇥⇥ �̂ ⇥

Theorem: If the concrete takes a step,
 then the abstract can take a matching step.

Running 0CFA

Running 0CFA�̂

�̂

Running 0CFA

call (call ,�)

Running 0CFA

call �̂

�̂

�̂

�̂

�̂

�̂ �̂(call ,�)

Order between states is preserved.

Monotonic growth not required.

How about the next level?

ANF

f,æ 2 AExp = Var + Lam

e 2 Exp ::= (let ((v call)) e0)

| call

| æ

call 2 Call ::= (f æ1 . . .æn)

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ Clo

Kont = Var � Exp� Env �Kont + {halt}
Addr is an infinite set of addresses

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ Clo

Kont = Var � Exp� Env �Kont + {halt}
Addr is an infinite set of addresses

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ Clo

Kont = Var � Exp� Env �Kont + {halt}
Addr is an infinite set of addresses

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ P (Clo +Kont)

Kont = Var � Exp� Env � Addr + {halt}
Addr is an finite set of addressesin

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ P (Clo +Kont)

Kont = Var � Exp� Env � Addr + {halt}
Addr is an finite set of addresses

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ P (Clo +Kont)

Kont = Var � Exp� Env � Addr + {halt}
Addr is an finite set of addressesin

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ P (Clo +Kont)

Kont = Var � Exp� Env � Addr + {halt}
Addr is an finite set of addressesin

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ P (Clo +Kont)

Kont = Var � Exp� Env � Addr + {halt}
Addr is an finite set of addresses

� = Exp� Env � Store�Kont

Env = Var � Addr

Store = Addr ⇥ P (Clo +Kont)

Kont = Var � Exp� Env � Addr + {halt}
Addr is an finite set of addresses

And, other machines?

tions. We then demonstrate that the time-stamped machine ab-
stracts directly into a parameterized, sound and computable static
analysis.

In Section 3, we replay this process (slightly abbreviated) with
a lazy variant of Krivine’s machine to arrive at a static analysis of
by-need programs.

In Section 4, we incorporate conditionals, side effects, excep-
tions, first-class continuations, and garbage collection.

In Section 6, we abstract the CM (continuation-marks) machine
to produce an abstract interpretation of stack inspection.

In Section 7, we widen the abstract interpretations with a single-
threaded “global” store to accelerate convergence. For some of our
analyzers, this widening results in polynomial-time algorithms and
connects them back to known analyses.

2. From CEK to the abstract CESK?

In this section, we start with a traditional machine for a program-
ming language based on the call-by-value ⇤-calculus, and gradu-
ally derive an abstract interpretation of this machine. The outline
followed in this section covers the basic steps for systematically
deriving abstract interpreters that we follow throughout the rest of
the paper.

To begin, consider the following language of expressions:2

e ⌅ Exp ::= x | (ee) | (�x.e)
x ⌅ Var a set of identifiers.

A standard machine for evaluating this language is the CEK ma-
chine of Felleisen and Friedman [12], and it is from this machine
we derive the abstract semantics—a computable approximation of
the machine’s behavior. Most of the steps in this derivation corre-
spond to well-known machine transformations and real-world im-
plementation techniques—and most of these steps are concerned
only with the concrete machine; a very simple abstraction is em-
ployed only at the very end.

The remainder of this section is outlined as follows: we present
the CEK machine, to which we add a store, and use it to allo-
cate variable bindings. This machine is just the CESK machine of
Felleisen and Friedman [13]. From here, we further exploit the store
to allocate continuations, which corresponds to a well-known im-
plementation technique used in functional language compilers [27].
We then abstract only the store to obtain a framework for the sound,
computable analysis of programs.

2.1 The CEK machine
A standard approach to evaluating programs is to rely on a Curry-
Feys-style Standardization Theorem, which says roughly: if an
expression e reduces to e� in, e.g., the call-by-value ⇤-calculus,
then e reduces to e� in a canonical manner. This canonical manner
thus determines a state machine for evaluating programs: a standard
reduction machine.

To define such a machine for our language, we define a grammar
of evaluation contexts and notions of reduction (e.g., �v). An eval-

2 Fine print on syntax: As is often the case in program analysis where se-
mantic values are approximated using syntactic phrases of the program un-
der analysis, we would like to be able to distinguish different syntactic oc-
currences of otherwise identical expressions within a program. Informally,
this means we want to track the source location of expressions. Formally,
this is achieved by labeling expressions and assuming all labels within a
program are distinct:

e � Exp ::= x

⇥ | (ee)⇥ | (�x.e)⇥
` � Lab an infinite set of labels.

However, we judiciously omit labels whenever they are irrelevant and doing
so improves the clarity of the presentation. Consequently, they appear only
in Sections 2.7 and 7, which are concerned with k-CFA.

⇧ ⇧�⇤CEK ⇧ �

⌥x, ⌅,⇥� ⌥v, ⌅�,⇥� where ⌅(x) = (v, ⌅�)

⌥(e0e1), ⌅,⇥� ⌥e0, ⌅,ar(e1, ⌅,⇥)�
⌥v, ⌅, ar(e, ⌅�,⇥)� ⌥e, ⌅�, fn(v, ⌅,⇥)�
⌥v, ⌅, fn((�x.e), ⌅�,⇥)� ⌥e, ⌅�[x ⇧⇤ (v, ⌅)],⇥�

Figure 1. The CEK machine.

uation context is an expression with a “hole” in it. For left-to-right
evaluation order, we define evaluation contexts E as:

E ::= [] | (Ee) | (vE).

An expression is either a value or uniquely decomposable into an
evaluation context and redex. The standard reduction machine is:

E[e] ⇧�⇤�v E[e�], if e �v e
�.

However, this machine does not shed much light on a realistic
implementation. At each step, the machine traverses the entire
source of the program looking for a redex. When found, the redex
is reduced and the contractum is plugged back in the hole, then the
process is repeated.

Abstract machines such as the CEK machine, which are deriv-
able from standard reduction machines, offer an extensionally
equivalent but more realistic model of evaluation that is amenable
to efficient implementation. The CEK is environment-based; it uses
environments and closures to model substitution. It represents eval-
uation contexts as continuations, an inductive data structure that
models contexts in an inside-out manner. The key idea of machines
such as the CEK is that the whole program need not be traversed
to find the next redex, consequently the machine integrates the pro-
cess of plugging a contractum into a context and finding the next
redex.

States of the CEK machine [12] consist of a control string (an
expression), an environment that closes the control string, and a
continuation:

⇧ ⌅ � = Exp ⇥ Env ⇥Kont
v ⌅ Val ::= (�x.e)
⌅ ⌅ Env = Var ⇤fin Val ⇥ Env
⇥ ⌅ Kont ::= mt | ar(e, ⌅,⇥) | fn(v, ⌅,⇥).

States are identified up to consistent renamings of bound variables.
Environments are finite maps from variables to closures. Envi-

ronment extension is written ⌅[x ⇧⇤ (v, ⌅�)].
Evaluation contexts E are represented (inside-out) by continua-

tions as follows: [] is represented by mt; E[([]e)] is represented
by ar(e�, ⌅,⇥) where ⌅ closes e� to represent e and ⇥ represents
E; E[(v[])] is represented by fn(v�, ⌅,⇥) where ⌅ closes v� to
represent v and ⇥ represents E.

The transition function for the CEK machine is defined in Fig-
ure 1 (we follow the textbook treatment of the CEK machine [11,
page 102]). The initial machine state for a closed expression e is
given by the inj function:

injCEK (e) = ⌥e, ⌃,mt�.
Typically, an evaluation function is defined as a partial function
from closed expressions to answers:

eval �CEK (e) = (v, ⌅) if inj (e) ⇧�⇤⇤CEK ⌥v, ⌅,mt�.
This gives an extensional view of the machine, which is useful, e.g.,
to prove correctness with respect to a canonical evaluation function
such as one defined by standard reduction or compositional valu-
ation. However for the purposes of program analysis, we are con-

CEK (F&F, 1986)

Time = (Lab + •)⇥ Contour

Addr = (Lab + Var)⇥ Contour

t0 = (•, ⇥)
tick↵x, , , , t� = t

tick↵(e0e1)⇥, , , , (, �)� = (↵, �)

tick↵v, ,⇧, a, (↵, �)� =
�
(↵, �), if ⇧(a) = ar(, ,)

(•, ↵�), if ⇧(a) = fn(, ,)

alloc(↵(e⇥0e1), , , , (, �)�) = (↵, �)

alloc(↵v, ,⇧, a, (, �)�) = (↵, �) if ⇧(a) = ar(e⇥, ,)

alloc(↵v, ,⇧, a, (, �)�) = (x, �) if ⇧(a) = fn((�x.e), ,)

⇥tick(↵x, , , , t�,⇤) = t

⇥tick(↵(e0e1)⇥, , , , (, �)�,⇤) = (↵, �)

⇥tick(↵v, , ⇧̂, a, (↵, �)�,⇤) =
�
(↵, �), if ⇤ = ar(, ,)

(•, ↵�⌦k), if ⇤ = fn(, ,)

�alloc(↵(e⇥0e1), , , , (, �)�,⇤) = (↵, �)

�alloc(↵v, , ⇧̂, a, (, �)�,⇤) = (↵, �) if ⇤ = ar(e⇥, ,)

�alloc(↵v, , ⇧̂, a, (, �)�,⇤) = (x, �) if ⇤ = fn((�x.e), ,)

Figure 7. Instantiation for k-CFA machine.

higher-precision approach: it forks the machine for each ar-
gument value, rather than merging them immediately.

4. k-CFA does not recover explicit information about stack struc-
ture; our machine contains an explicit model of the stack for
every machine state.

3. Analyzing by-need with Krivine’s machine
Even though the abstract machines of the prior section have advan-
tages over traditional CFAs, the approach we took (store-allocated
continuations) yields more novel results when applied in a different
context: a lazy variant of Krivine’s machine. That is, we can con-
struct an abstract interpreter that both analyzes and exploits lazi-
ness. Specifically, we present an abstract analog to a lazy and prop-
erly tail-recursive variant of Krivine’s machine [19, 20] derived by
Ager, Danvy, and Midtgaard [1]. The derivation from Ager et al.’s
machine to the abstract interpreter follows the same outline as that
of Section 2: we apply a pointer refinement by store-allocating con-
tinuations and carry out approximation by bounding the store.

The by-need variant of Krivine’s machine considered here uses
the common implementation technique of store-allocating thunks
and forced values. When an application is evaluated, a thunk is
created that will compute the value of the argument when forced.
When a variable occurrence is evaluated, if it is bound to a thunk,
the thunk is forced (evaluated) and the store is updated to the result.
Otherwise if a variable occurrence is evaluated and bound to a
forced value, that value is returned.

Storable values include delayed computations (thunks) d(e, ⌅),
and computed values c(v, ⌅), which are just tagged closures. There
are two continuation constructors: c1(a,⇤) is induced by a variable
occurrence whose binding has not yet been forced to a value.
The address a is where we want to write the given value when
this continuation is invoked. The other: c2(a,⇤) is induced by an

⌃ ��⌅LK ⌃ �

↵x, ⌅,⇧,⇤�
if ⇧(⌅(x)) = d(e, ⌅�) ↵e, ⌅�,⇧, c1(⌅(x),⇤)�
if ⇧(⌅(x)) = c(v, ⌅�) ↵v, ⌅�,⇧,⇤�
↵(e0e1), ⌅,⇧,⇤� ↵e0, ⌅,⇧[a �⌅ d(e1, ⌅)], c2(a,⇤)�

where a /⌃ dom(⇧)

↵v, ⌅,⇧, c1(a,⇤)� ↵v, ⌅,⇧[a �⌅ c(v, ⌅)],⇤�
↵(�x.e), ⌅,⇧, c2(a,⇤)� ↵e, ⌅[x �⌅ a],⇧,⇤�

Figure 8. The LK machine.

⌃̂ ��⌅�LK?
t
⌃̂ �, where ⇤ ⌃ ⇧̂(a), b = �alloc(⌃̂,⇤), u = ⇥tick(⌃̂,⇤)

↵x, ⌅, ⇧̂, a, t� ↵e, ⌅�, ⇧̂ � [b �⌅ c1(⌅(x), a)], b, u�
if ⇧̂(⌅(x)) ⌥ d(e, ⌅�)

↵x, ⌅, ⇧̂, a, t� ↵v, ⌅�, ⇧̂, a, u�
if ⇧̂(⌅(x)) ⌥ c(v, ⌅�)

↵(e0e1), ⌅, ⇧̂, a, t� ↵e0, ⌅, ⇧̂�, b, u�
where c = �alloc(⌃̂,⇤),

⇧̂� = ⇧̂ � [c �⌅ d(e1, ⌅), b �⌅ c2(c, a)]

↵v, ⌅, ⇧̂, a, t� ↵v, ⌅�, ⇧̂ � [a� �⌅ c(v, ⌅)], c, u�
if ⇤ = c1(a

�, c)

↵(�x.e), ⌅, ⇧̂, a, t� ↵e, ⌅�[x �⌅ a�], ⇧̂, c, u�
if ⇤ = c2(a

�, c)

Figure 9. The abstract LK� machine.

application expression, which forces the operator expression to a
value. The address a is the address of the argument.

The concrete state-space is defined as follows and the transition
relation is defined in Figure 8:

⌃ ⌃ � = Exp ⇥ Env ⇥ Store ⇥Kont
s ⌃ Storable ::= d(e, ⌅) | c(v, ⌅)
⇤ ⌃ Kont ::= mt | c1(a,⇤) | c2(a,⇤)

When the control component is a variable, the machine looks up
its stored value, which is either computed or delayed. If delayed,
a c1 continuation is pushed and the frozen expression is put in
control. If computed, the value is simply returned. When a value
is returned to a c1 continuation, the store is updated to reflect the
computed value. When a value is returned to a c2 continuation, its
body is put in control and the formal parameter is bound to the
address of the argument.

We now refactor the machine to use store-allocated continua-
tions; storable values are extended to include continuations:

⌃ ⌃ � = Exp ⇥ Env ⇥ Store ⇥ Addr
s ⌃ Storable ::= d(e, ⌅) | c(v, ⌅) | ⇤
⇤ ⌃ Kont ::= mt | c1(a, a) | c2(a, a).

It is straightforward to perform a pointer-refinement of the LK ma-
chine to store-allocate continuations as done for the CESK machine
in Section 2.3 and observe the lazy variant of Krivine’s machine and
its pointer-refined counterpart (not shown) operate in lock-step:

Lemma 4. evalLK (e) ⇧ evalLK?(e).

After threading time-stamps through the machine as done in
Section 2.4 and defining ⇥tick and �alloc analogously to the defi-

Krivine (ICFP 2010)

CM (ICFP 2010)

⇧ �⌅CM ⇧ ⇥

◆fail, ⇤,⌅,⇥ ◆fail, ⇤,⌅,mt⌅
◆(frame R e), ⇤,⌅,⇥ ◆e, ⇤,⌅,⇥[R ⌅ deny]
◆(grant R e), ⇤,⌅,⇥ ◆e, ⇤,⌅,⇥[R ⌅ grant]

◆(test R e0 e1), ⇤,⌅,⇥
⌅
◆e0, ⇤,⌅,⇥ if OK(R,⇥),

◆e1, ⇤,⌅,⇥ otherwise

OK(⌦,⇥)
OK(R,mtm) ⇧⌃ (R ✏m�1(deny) = ⌦)

OK(R, fnm(v, ⇤,⇥))
OK(R,arm(e, ⇤,⇥))

⇤
⇧⌃ (R ✏m�1(deny) = ⌦) ⇣

OK(R \m�1(grant),⇥)

Figure 17. The CM machine and OK predicate.

6.2 The CM machine
The CM (continuation-marks) machine of Clements and Felleisen
is a properly tail-recursive extended CESK machine for interpreting
higher-order languages with stack-inspection [3].

In the CM machine, continuations are annotated with marks [4],
which, for the purposes of stack-inspection, are finite maps from
permissions to {deny, grant}:

⇥ ::= mtm | arm(e, ⇤,⇥) | fnm(v, ⇤,⇥).

We write ⇥[R ⌅ c] to mean update the marks on ⇥ to m[R ⌅ c].
The CM machine is defined in Figure 17 (transitions that are

straightforward adaptations of the corresponding CESK⇤ transi-
tions to incorporate continuation marks are omitted). It relies on
the OK predicate to determine whether the permissions in R are
enabled. The OK predicate performs the traversal of the context
(represented as a continuation) using marks to determine which
permissions have been granted or denied.

The semantics of a program is given by the set of reachable
states from an initial machine configuration:

injCM (e) = ◆e, ⌦, [a0 ⌅ mt⌅], a0.

6.3 The abstract CM⇤ machine
Store-allocating continuations, time-stamping, and bounding the
store yields the transition system given in Figure 18. The notation
⌅̂(a)[R ⌅ c] is used to mean [R ⌅ c] should update some
continuation in ⌅̂(a), i.e.,

⌅̂(a)[R ⌅ c] = ⌅̂[a ⌅ ⌅̂(a) \ {⇥} � {⇥[R ⌅ c]}],
for some ⇥ ⌥ ⌅̂(a). It is worth noting that continuation marks are
updated, not joined, in the abstract transition system.

The �OK⇤ predicate (Figure 18) approximates the pointer refine-
ment of its concrete counterpart OK, which can be understood as
tracing a path through the store corresponding to traversing the con-
tinuation. The abstract predicate holds whenever there exists such a
path in the abstract store that would satisfy the concrete predicate:
Consequently, in analyzing (test R e0 e1), e0 is reachable only
when the analysis can prove the OK⇤ predicate holds on some path
through the abstract store.

It is straightforward to define a structural abstraction map and
verify the abstract CM⇤ machine is a sound approximation of its
concrete counterpart:

Theorem 4 (Soundness of the Abstract CM⇤ Machine).
If ⇧ �⌅CM ⇧ ⇥ and �(⇧) ⇠ ⇧̂ , then there exists an abstract state ⇧̂ ⇥,
such that ⇧̂ �⌅�CM?

t
⇧̂ ⇥ and �(⇧ ⇥) ⇠ ⇧̂ ⇥.

⇧̂ �⌅�CM? ⇧̂ ⇥

◆fail, ⇤, ⌅̂, a ◆fail, ⇤, ⌅̂, amt
◆(frame R e), ⇤, ⌅̂, a ◆e, ⇤, ⌅̂(a)[R ⌅ deny], a
◆(grant R e), ⇤, ⌅̂, a ◆e, ⇤, ⌅̂(a)[R ⌅ grant], a

◆(test R e0 e1), ⇤, ⌅̂, a
⌅
◆e0, ⇤, ⌅̂, a if �OK⇤(R, ⌅̂, a),

◆e1, ⇤, ⌅̂, a otherwise.

�OK⇤(⌦, ⌅̂, a)
�OK⇤(R, ⌅̂, a) ⇧⌃ (R ✏m�1(deny) = ⌦)

if ⌅̂(a) � mtm

�OK⇤(R, ⌅̂, a) ⇧⌃ (R ✏m�1(deny) = ⌦) ⇣
if ⌅̂(a) � fnm(v, ⇤, b) �OK⇤(R \m�1(grant), ⌅̂, b)
or ⌅̂(a) � arm(e, ⇤, b)

Figure 18. The abstract CM⇤ machine.

7. Widening to improve complexity
If implemented naı̈vely, it takes time exponential in the size of the
input program to compute the reachable states of the abstracted
machines. Consider the size of the state-space for the abstract time-
stamped CESK⇤ machine:

|Exp ⇥ Env ⇥⇥Store ⇥ Addr ⇥ Time|
= |Exp|⇥ |Addr ||Var| ⇥ |Storable||Addr| ⇥ |Addr |⇥ |Time|.

Without simplifying any further, we clearly have an exponential
number of abstract states.

To reduce complexity, we can employ widening in the form of
Shivers’s single-threaded store [29]. To use a single threaded store,
we have to reconsider the abstract evaluation function itself. Instead
of seeing it as a function that returns the set of reachable states, it
is a function that returns a set of partial states plus a single globally
approximating store, i.e., aval : Exp ⌅ System , where:

System = P (Exp ⇥ Env ⇥ Addr ⇥ Time)⇥⇥Store .

We compute this as a fixed point of a monotonic function, f :

f : System ⌅ System

f(C, ⌅̂) = (C⇥, ⌅̂⇥⇥) where
Q⇥ =

�
(c⇥, ⌅̂⇥) : c ⌥ C and (c, ⌅̂) �⌅ (c⇥, ⌅̂⇥)

⇥

(c0, ⌅̂0) ⇤= inj (e)

C⇥ = C �
�
c⇥ : (c⇥,) ⌥ Q⇥⇥ � {c0}

⌅̂⇥⇥ = ⌅̂ ⌫
⇧

(,�̂0)⇤Q0

⌅̂⇥,

so that aval(e) = lfp(f). The maximum number of iterations of
the function f times the cost of each iteration bounds the complex-
ity of the analysis.

Polynomial complexity for monovariance: It is straightforward
to compute the cost of a monovariant (in our framework, a “0CFA-
like”) analysis with this widening. In a monovariant analysis, envi-
ronments disappear; a monovariant system-space simplifies to:

System0

= P (Exp ⇥ Lab ⇥ Lab⇧)

⇥ (

addresses⌃ � ⌥
(Var + Lab) ⌅

fn conts⌃ � ⌥
(Exp ⇥ Lab)+

ar conts⌃ � ⌥
(Exp ⇥ Lab)+Lam).

Java (PLDI 2010)

⌅ ⇧ � = Stmt⇥ BEnv ⇥ Store ⇥KontPtr ⇥ Time

� ⇧ BEnv = Var ⇧ Addr

⇤ ⇧ Store = Addr ⇧ D

d ⇧ D = Val

val ⇧ Val = Obj +Kont

o ⇧ Obj = ClassName⇥ BEnv

⇥ ⇧ Kont = Var ⇥ Stmt⇥ BEnv ⇥KontPtr

a ⇧ Addr is a set of addresses

p
�
⇧ KontPtr ⇤ Addr

t ⇧ Time is a set of time-stamps.

Figure 4. Concrete state-space for A-Normal Featherweight Java.

bounds the maximum number of times we may have to apply the
abstract transfer function. For k = 0, the height of the lattice is
quadratic in the size of the program (with the cost of applying the
transfer function linear in the size of the program). For k ⇤ 1,
however, the algorithm has a genuinely exponential system-space.

4. Shivers’s k-CFA for Java
Having formulated a small-step k-CFA for CPS, it is straightfor-
ward to formulate a small-step, abstract interpretive k-CFA for
Java. To simplify the presentation, we utilize Featherweight Java [?
] in “A-Normal” form. A-Normal Featherweight Java is identical
to ordinary Featherweight Java, except that arguments to a function
call must be atomically evaluable, as they are in A-Normal Form
⇥-calculus. For example, the body return f.foo(b.bar());
becomes the sequence of statements B b1 = b.bar(); F f1 =
f.foo(b1); return f1;. This shift does not change the expres-
sive power of the language or the nature of the analysis, but it does
simplify the semantics by eliminating semantic expression con-
texts. The following grammar describes A-Normal Featherweight
Java; note the (re-)introduction of statements:

Class ::= class C extends C⇥ {
����⌅
C⇥⇥ f ; K

�⌅
M}

K ⇧ Konst ::= C (

��⌅
C f){super(

�⌅
f ⇥
) ;

�����������⌅
this.f ⇥⇥ = f ⇥⇥⇥

;}

M ⇧ Method ::= C m (

��⌅
C v) { ���⌅

C v ; ⇠s }
s ⇧ Stmt ::= v = e ;� | return v ;

�

e ⇧ Exp ::= v | v.f | v.m(

�⌅v) | new C (

�⌅v) | (C)v

f ⇧ FieldName = Var

C ⇧ ClassName is a set of class names
m ⇧ MethodCall is a set of method invocation sites

� ⇧ Lab is a set of labels

The set Var contains both variable and field names. Every statement
has a label. The function succ : Lab ⇤ Stmt yields the subsequent
statement for a statement’s label.

4.1 Concrete semantics for Featherweight Java
Figure ?? contains the concrete state-space for the small-step
Featherweight Java machine, and Figure ?? contains the concrete
semantics.4 The state-space closely resembles the concrete state-
space for CPS. One difference is the need to explicitly allocate
continuations (from the set Kont) at a semantic level. These same
continuations exist in CPS, but they’re hidden in plain sight—the

4 Note that the (+) operation represents right-biased functional union, and
that wherever a vector ⇠x is in scope, its components are implicitly in scope:
⇠x = ↵x0, . . . , xlength(x̃)�.

C : ClassName ⌅ (FieldName� ⇥ Ructor)

K ⇧ Ructor =

fields
� ⌅⇤ ⇥
Addr� ⇥

arguments
�⌅⇤⇥
D� ⌅ (

field values
� ⌅⇤ ⇥
Store ⇥

record
� ⌅⇤ ⇥
BEnv)

M : D ⇥MethodCall ⇧ Method

Figure 5. Helper functions for the concrete semantics.

CPS transform converts semantic continuations into syntactic con-
tinuations.

It is important to note the encoding of objects: objects are a class
plus a record of their fields, and the record component is encoded
as a binding environment that maps field names to their addresses.
This encoding is congruent to k-CFA’s encoding of closures, but it
is probably not the way one would encode the record component
of an object if starting from scratch. The natural encoding would
reduce an object to a class plus a single base address, i.e., Obj =
ClassName � Addr , since fields are accessible as offsets from
the base address. Then, given an object (C, a), the address of
field f would be (f, a). In fact, under our semantics, given an
object (C,�), it is effectively the case that �(f) = (f, a). We are
choosing the functional representation of records to maintain the
closest possible correspondence with CPS. When investigating the
complexity of k-CFA for Java, we will exploit this observation: the
fact that objects can be represented with just a base address causes
the collapse in complexity.

The concrete semantics are encoded as a small-step transition
relation (⌅) ⇥ ���. Each expression type gets a transition rule.
Object allocation creates a new binding environment �⇥, which
shares no structure with the previous environment �; contrast this
with CPS. These rules use the helper functions described in Fig-
ure ??. The constructor-lookup function C yields the field names
and the constructor associated with a class name. A constructor K
takes newly allocated addresses to use for fields and a vector of
arguments; it returns the change to the store plus the record com-
ponent of the object that results from running the constructor. The
method-lookup function M takes a method invocation point and
an object to determine which method is actually being called at
that point.

4.2 Abstract semantics: k-CFA for Featherweight Java
Figure ?? contains the abstract state-space for the small-step Feath-
erweight Java machine, i.e., OO k-CFA. As was the case for CPS,
the abstract semantics closely mirror the concrete semantics. We
assume the natural partial order for the components of the abstract
state-space.

The abstract semantics are encoded as a small-step transition
relation (;) ⇥ �̂ � �̂, shown in Figure ??. There is one abstract
transition rule for each expression type, plus an additional transition
rule to account for return. These rules make use of the helper
functions described in Figure ??. The constructor-lookup function
Ĉ yields the field names and the abstract constructor associated with
a class name. An abstract constructor K̂ takes abstract addresses to
use for fields and a vector of arguments; it returns the “change” to
the store plus the record component of the object that results from
running the constructor. The abstract method-lookup function M̂
takes a method invocation point and an object to determine which
methods could be called at that point.

4.3 The k-CFA solution
As in the original k-CFA for CPS, we factored out time-stamp and
address allocation functions and even the structure of time-stamps
and addresses. The equivalent to call sites in Java are statements.
So, a concrete time-stamp is the sequence of labels traversed since

C/LLVM
into the structure for a particular field. (We’ll use this plus pointer
arithmetic to find the address of a v.field -style expression.)

For later use in an intraprocedural data-flow analysis, we define
Prepr ,Postpr : STMT ⇥ P(STMT) mappings to indicate the
intraprocedural control-flow of functions. That is, if Postpr (s) is
the set {s⇥, s⇥⇥}, then after execution statement s, control transfers
to either statement s⇥ or s⇥⇥. And, if Prepr (s) is the set {s⇥, s⇥⇥},
then control arrives at statement s directly after either statement s⇥

or s⇥⇥.
Finally, for any program, we have a size-of-record map Spr :

TY ⇥ N mapping a record name to the number of fields in that
record. (We’ll use this in expression evaluation.)

For all of these maps, the program pr is clear from context and
therefore omitted from the subscript.

4. Concrete semantics
In order to apply abstract garbage collection and abstract count-
ing, we must develop a component-wise abstractable,1 small-step
semantics for MIR. We use a CESK machine [9] with states that
specify the current program text being executed, together with its
environment, store and control context:

StateCESK = STMT � � Env � Store � Cont�.

Trouble comes from the phrase component-wise abstractable and
the sequence of continuations, Cont�. Component-wise abstrac-
tion of a state is difficult when one of the components is a sequence
of unbounded length. The only viable component-wise abstraction,
a set of abstract continuations, destroys precision by merging all re-
turn points for every function in the program together. Under such
an abstraction, the analysis would reason that every function could
return to every other function.

A technique for circumventing the issue of poor abstraction that
interacts well with abstract garbage collection is to dynamically
allocate continuations in the store. Thus, a single stack pointer
(coupled with continuations in the heap) replaces a sequence of
continuations. As we’ll see, this has an additional advantage of
more closely mimicking the pragmatics of actual programs.

The second issue complicating the concrete semantics is pointer
arithmetic. The standard technique of fat pointers (wherein a
pointer becomes a memory location plus an offset) also abstracts
poorly if done in component-wise fashion. The solution here is to
adapt the simplest model of arithmetic—Peano’s successor-based
model—to pointer arithmetic. To do so, the concrete semantics
maintains two additional maps in addition to a traditional store: a
successor map and a predecessor map relating each location to its
immediate neighbor.

Figure 2 describes the state-space that results from these two
shifts in perspective. Every state contains a configuration c, which
houses a traditional location-to-value store ⇥, a successor-location
map ⇥+ and a predecessor-location map ⇥-. There are three kinds of
locations: heap addresses (the set Addr), stack addresses (the set
StkPtr) and bindings (the set Bind). Bindings can alternately be
viewed as register- or stack-resident, or even some mixture thereof
by tuning the ⇥+/⇥- maps and the stack pointer upon function entry.
For simplicity, the forthcoming semantics models the case in which
all variables are register-resident.

In Eval states, execution has arrived at a statement. An Eval
state also contains a frame pointer, which points to the return con-
tinuation and acts as a base pointer for variables local to the func-
tion. The stack pointer within the Eval state denotes the bottom
(assuming the stack grows down) of the stack.

1 A tuple (a, b, c, . . .) abstracts component-wise if |(a, b, c, . . .)| =
(|a|, |b|, |c|, . . .), where | · | is a concrete-to-abstract mapping.

⌅ ⇤ State = Eval + Apply + AppCont + AppFun
Eval = STMT � � FrmPtr � Conf � StkPtr
Apply = LHS� �D� � Eval
AppFun = FUN �D� � FrmPtr � Conf � StkPtr
AppCont = Cont �D � Conf

d ⇤ D = Val
val ⇤ Val = Cont + FUN + Loc + Bas

� ⇤ Cont = LHS � STMT � � FrmPtr � StkPtr
bas ⇤ Bas = a set of basic values

loc ⇤ Loc = Addr + StkPtr + Bind
a ⇤ Addr = an infinite set of heap pointers

sp ⇤ StkPtr = an infinite set of stack pointers
fp ⇤ FrmPtr = StkPtr
b ⇤ Bind = VAR � FrmPtr

c ⇤ Conf = Store � Succ � Pred
⇥ ⇤ Store = Loc ⇧ D
⇥+ ⇤ Succ = Loc ⇧ Loc
⇥- ⇤ Pred = Loc ⇧ Loc

Figure 2. Concrete state-space

In AppFun states, a function fun is being applied to a vector of
denotable values, d . As in Eval states, the frame pointer indicates
the return point, and the stack pointer indicates the bottom of the
stack.

In AppCont states, a continuation is being applied to a single
return value in the context of a configuration. Continuation states do
not contain frame pointers or stack pointers. Both of these pointers
are captured inside the continuation and awaiting restoration.

Apply states act as subsequent states to both AppFun and
AppCont states, with slots to bind a vector of denotable values
to a vector of left-hand-side expressions.

A continuation contains a left-hand-side expression awaiting the
result of a call; a sequence of statements at which to resume exe-
cution; and the frame and stack pointers that existed at the time of
the call. The protocol obeyed by the semantics is that, upon con-
tinuation invocation, stack and frame pointers are reset. Because
continuations contain frame pointers, which, in turn, point to con-
tinuations in the store, we have effectively encoded a sequence of
continuations from a CESK machine as a linked list.

There are four kinds of values found in the store of this ma-
chine: continuations, functions (effectively, function pointers), lo-
cations and basic values. Basic values are one-word entities such as
integers, naturals, and characters.

4.1 Auxiliary functions
A few auxiliary functions will help us in specifying the concrete
semantics. The argument evaluator A : ReRHS � FrmPtr �
Conf ⇥ D converts a right-hand-side expression into a denotable
value:

A(lit , fp, c) = K(lit)

A(lhs, fp, (⇥, ⇥+, ⇥-)) = ⇥(X (lhs, fp, (⇥, ⇥+, ⇥-)))

A([[op (v1, . . . , vn)]], fp, c) = O([[op]], c)�d1, . . . , d1�
where di = A(vi, fp, c)

A([[sizeof (⇤)]], fp, c) = S(⇤),

whereX is the address-of function defined shortly, andK : LIT ⇥
Bas maps literals to their expected denotations.

Abstract interpretation of imperative programs 3 (svn 388 (2007 7 15))

Up next

JavaScript
1.2 Small-step state-space

⌅ ⇧ � = (Stmt + Body)� BEnv � Store � FPtr [states]
� ⇧ BEnv = Var ⇧ Addr [binding environments]
⇤ ⇧ Store = Addr ⇧ D [stores]

d ⇧ D = Val [denotable values]
val ⇧ Val = Bas + Clo + Kont + Loc [values]
bas ⇧ Bas = String + Num + Boolean [basic values]
clo ⇧ Clo = Fun� BEnv [closures]
⇥ ⇧ Kont ::= ret(v ,�, s, fp) [return continuations]

| ex(v ,�, s, fp, s �) [exceptional continuations]
a ⇧ Addr = Bind + Field + FPtr [addresses]
b ⇧ Bind = Var � Contour [bindings]

field ⇧ Field = Loc � String [object fields]
fp ⇧ FPtr = Contour [frame pointers]

cn ⇧ Contour is an infinite set of contours
loc ⇧ Loc is an infinite set of locations

1.3 Concrete semantics

The expression evaluator helper function:

E : Exp� BEnv � Store ⇧ D

E(v ,�,⇤) = ⇤(�(v))
E(lit ,�,⇤) = K(lit)
E(fun,�,⇤) = (fun,�)

E([[e1[e2]]],�,⇤) = ⇤(E(e1,�,⇤), E(e2,�,⇤))

E([[e1 ? e2 : e3]],�,⇤) =

(
E(e2,�,⇤) E(e1,�,⇤) is not false
E(e3,�,⇤) E(e1,�,⇤) is false

E([[prim(e1, . . . , en)]],�,⇤) = O(prim)⌦E(e1,�,⇤), . . . , E(en,�,⇤)↵.

The small-step transition relation, (⌅) ⇥ �� �:

⌅ ⌅ ⌅ �

1.3.1 Variable mutation

([[v = e ;�]],�,⇤, fp) ⌅ (succ(),�,⇤�, fp)
⇤� = ⇤[�(v) ⌃⇤ E(e,�,⇤)].

2

Bonus: Compositionality

Direct products

Direct products

s
Π Πʹ

ŝ ŝʹ

Direct products

s
Π Πʹ

ŝ ŝʹ

Direct products

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

Application:
Array-bounds checks

Logic-flow analysis

Logic-flow analysis

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

Logic-flow analysis

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

i < length(a)

Logic-flow analysis

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

i < length(a)

a[i]

What about sub-Turing
domain-specific languages?

Regex
Yacc

Datalog
SQL

Avoid halting problem.

WARNING

RFC 2616 (HTTP 1.1)

2.1 Augmented BNF

 All of the mechanisms specified in this document are described in
 both prose and an augmented Backus-Naur Form (BNF) similar to that
 used by RFC 822 [9]. Implementors will need to be familiar with the
 notation in order to understand this specification. The augmented BNF
 includes the following constructs:

http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc822.html

LWS = [CRLF] 1*(SP | HT)

separators = "(" | ")" | "<" | ">" | "@"
 | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | "="
 | "{" | "}" | SP | HT

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

 HTTP-date = rfc1123-date | rfc850-date | asctime-date
 rfc1123-date = wkday "," SP date1 SP time SP "GMT"
 rfc850-date = weekday "," SP date2 SP time SP "GMT"
 asctime-date = wkday SP date3 SP time SP 4DIGIT
 date1 = 2DIGIT SP month SP 4DIGIT
 ; day month year (e.g., 02 Jun 1982)
 date2 = 2DIGIT "-" month "-" 2DIGIT
 ; day-month-year (e.g., 02-Jun-82)
 date3 = month SP (2DIGIT | (SP 1DIGIT))
 ; month day (e.g., Jun 2)
 time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; 00:00:00 - 23:59:59
 wkday = "Mon" | "Tue" | "Wed"
 | "Thu" | "Fri" | "Sat" | "Sun"
 weekday = "Monday" | "Tuesday" | "Wednesday"
 | "Thursday" | "Friday" | "Saturday" | "Sunday"
 month = "Jan" | "Feb" | "Mar" | "Apr"
 | "May" | "Jun" | "Jul" | "Aug"
 | "Sep" | "Oct" | "Nov" | "Dec"

 Chunked-Body = *chunk
 last-chunk
 trailer
 CRLF

 chunk = chunk-size [chunk-extension] CRLF
 chunk-data CRLF
 chunk-size = 1*HEX
 last-chunk = 1*("0") [chunk-extension] CRLF

 chunk-extension= *(";" chunk-ext-name ["=" chunk-ext-val])
 chunk-ext-name = token
 chunk-ext-val = token | quoted-string
 chunk-data = chunk-size(OCTET)
 trailer = *(entity-header CRLF)

media-type = type "/" subtype *(";" parameter)
type = token
subtype = token

http://www.faqs.org/rfcs/rfc1123.html
http://www.faqs.org/rfcs/rfc1123.html
http://www.faqs.org/rfcs/rfc850.html
http://www.faqs.org/rfcs/rfc850.html
http://www.faqs.org/rfcs/rfc1123.html
http://www.faqs.org/rfcs/rfc1123.html
http://www.faqs.org/rfcs/rfc850.html
http://www.faqs.org/rfcs/rfc850.html

RFC 3501 (IMAPv4)

address = "(" addr-name SP addr-adl SP addr-mailbox SP
 addr-host ")"

addr-adl = nstring
 ; Holds route from [RFC-2822] route-addr if
 ; non-NIL

addr-host = nstring
 ; NIL indicates [RFC-2822] group syntax.
 ; Otherwise, holds [RFC-2822] domain name

addr-mailbox = nstring
 ; NIL indicates end of [RFC-2822] group; if
 ; non-NIL and addr-host is NIL, holds
 ; [RFC-2822] group name.
 ; Otherwise, holds [RFC-2822] local-part
 ; after removing [RFC-2822] quoting

addr-name = nstring
 ; If non-NIL, holds phrase from [RFC-2822]
 ; mailbox after removing [RFC-2822] quoting

append = "APPEND" SP mailbox [SP flag-list] [SP date-time] SP
 literal

astring = 1*ASTRING-CHAR / string

ASTRING-CHAR = ATOM-CHAR / resp-specials

atom = 1*ATOM-CHAR

ATOM-CHAR = <any CHAR except atom-specials>

atom-specials = "(" / ")" / "{" / SP / CTL / list-wildcards /
 quoted-specials / resp-specials

authenticate = "AUTHENTICATE" SP auth-type *(CRLF base64)

auth-type = atom
 ; Defined by [SASL]

base64 = *(4base64-char) [base64-terminal]

base64-char = ALPHA / DIGIT / "+" / "/"
 ; Case-sensitive

base64-terminal = (2base64-char "==") / (3base64-char "=")

body = "(" (body-type-1part / body-type-mpart) ")"

body-extension = nstring / number /
 "(" body-extension *(SP body-extension) ")"
 ; Future expansion. Client implementations
 ; MUST accept body-extension fields. Server
 ; implementations MUST NOT generate
 ; body-extension fields except as defined by
 ; future standard or standards-track
 ; revisions of this specification.

body-ext-1part = body-fld-md5 [SP body-fld-dsp [SP body-fld-lang
 [SP body-fld-loc *(SP body-extension)]]]
 ; MUST NOT be returned on non-extensible
 ; "BODY" fetch

body-ext-mpart = body-fld-param [SP body-fld-dsp [SP body-fld-lang
 [SP body-fld-loc *(SP body-extension)]]]
 ; MUST NOT be returned on non-extensible
 ; "BODY" fetch

body-fields = body-fld-param SP body-fld-id SP body-fld-desc SP
 body-fld-enc SP body-fld-octets

body-fld-desc = nstring

body-fld-dsp = "(" string SP body-fld-param ")" / nil

body-fld-enc = (DQUOTE ("7BIT" / "8BIT" / "BINARY" / "BASE64"/
 "QUOTED-PRINTABLE") DQUOTE) / string

body-fld-id = nstring

body-fld-lang = nstring / "(" string *(SP string) ")"

body-fld-loc = nstring

body-fld-lines = number

body-fld-md5 = nstring

body-fld-octets = number

body-fld-param = "(" string SP string *(SP string SP string) ")" / nil

body-type-1part = (body-type-basic / body-type-msg / body-type-text)
 [SP body-ext-1part]

body-type-basic = media-basic SP body-fields
 ; MESSAGE subtype MUST NOT be "RFC822"

env-to = "(" 1*address ")" / nil

examine = "EXAMINE" SP mailbox

fetch = "FETCH" SP sequence-set SP ("ALL" / "FULL" / "FAST" /
 fetch-att / "(" fetch-att *(SP fetch-att) ")")

fetch-att = "ENVELOPE" / "FLAGS" / "INTERNALDATE" /
 "RFC822" [".HEADER" / ".SIZE" / ".TEXT"] /
 "BODY" ["STRUCTURE"] / "UID" /
 "BODY" section ["<" number "." nz-number ">"] /
 "BODY.PEEK" section ["<" number "." nz-number ">"]

flag = "\Answered" / "\Flagged" / "\Deleted" /
 "\Seen" / "\Draft" / flag-keyword / flag-extension
 ; Does not include "\Recent"

flag-extension = "\" atom
 ; Future expansion. Client implementations
 ; MUST accept flag-extension flags. Server
 ; implementations MUST NOT generate
 ; flag-extension flags except as defined by
 ; future standard or standards-track
 ; revisions of this specification.

flag-fetch = flag / "\Recent"

flag-keyword = atom

flag-list = "(" [flag *(SP flag)] ")"

flag-perm = flag / "*"

greeting = "*" SP (resp-cond-auth / resp-cond-bye) CRLF

header-fld-name = astring

header-list = "(" header-fld-name *(SP header-fld-name) ")"

list = "LIST" SP mailbox SP list-mailbox

list-mailbox = 1*list-char / string

list-char = ATOM-CHAR / list-wildcards / resp-specials

list-wildcards = "%" / "*"

literal = "{" number "}" CRLF *CHAR8
 ; Number represents the number of CHAR8s

login = "LOGIN" SP userid SP password

lsub = "LSUB" SP mailbox SP list-mailbox

mailbox = "INBOX" / astring
 ; INBOX is case-insensitive. All case variants of
 ; INBOX (e.g., "iNbOx") MUST be interpreted as INBOX
 ; not as an astring. An astring which consists of
 ; the case-insensitive sequence "I" "N" "B" "O" "X"
 ; is considered to be INBOX and not an astring.
 ; Refer to section 5.1 for further
 ; semantic details of mailbox names.

mailbox-data = "FLAGS" SP flag-list / "LIST" SP mailbox-list /
 "LSUB" SP mailbox-list / "SEARCH" *(SP nz-number) /
 "STATUS" SP mailbox SP "(" [status-att-list] ")" /
 number SP "EXISTS" / number SP "RECENT"

mailbox-list = "(" [mbx-list-flags] ")" SP
 (DQUOTE QUOTED-CHAR DQUOTE / nil) SP mailbox

mbx-list-flags = *(mbx-list-oflag SP) mbx-list-sflag
 *(SP mbx-list-oflag) /
 mbx-list-oflag *(SP mbx-list-oflag)

mbx-list-oflag = "\Noinferiors" / flag-extension
 ; Other flags; multiple possible per LIST response

mbx-list-sflag = "\Noselect" / "\Marked" / "\Unmarked"
 ; Selectability flags; only one per LIST response

media-basic = ((DQUOTE ("APPLICATION" / "AUDIO" / "IMAGE" /
 "MESSAGE" / "VIDEO") DQUOTE) / string) SP
 media-subtype
 ; Defined in [MIME-IMT]

media-message = DQUOTE "MESSAGE" DQUOTE SP DQUOTE "RFC822" DQUOTE
 ; Defined in [MIME-IMT]

media-subtype = string
 ; Defined in [MIME-IMT]

 ; The Universal Time zone is "+0000".

body-type-mpart = 1*body SP media-subtype
 [SP body-ext-mpart]

body-type-msg = media-message SP body-fields SP envelope
 SP body SP body-fld-lines

body-type-text = media-text SP body-fields SP body-fld-lines

capability = ("AUTH=" auth-type) / atom
 ; New capabilities MUST begin with "X" or be
 ; registered with IANA as standard or
 ; standards-track

capability-data = "CAPABILITY" *(SP capability) SP "IMAP4rev1"
 *(SP capability)
 ; Servers MUST implement the STARTTLS, AUTH=PLAIN,
 ; and LOGINDISABLED capabilities
 ; Servers which offer RFC 1730 compatibility MUST
 ; list "IMAP4" as the first capability.

CHAR8 = %x01-ff
 ; any OCTET except NUL, %x00

command = tag SP (command-any / command-auth / command-nonauth /
 command-select) CRLF
 ; Modal based on state

command-any = "CAPABILITY" / "LOGOUT" / "NOOP" / x-command
 ; Valid in all states

command-auth = append / create / delete / examine / list / lsub /
 rename / select / status / subscribe / unsubscribe
 ; Valid only in Authenticated or Selected state

command-nonauth = login / authenticate / "STARTTLS"
 ; Valid only when in Not Authenticated state

command-select = "CHECK" / "CLOSE" / "EXPUNGE" / copy / fetch / store /
 uid / search
 ; Valid only when in Selected state

continue-req = "+" SP (resp-text / base64) CRLF

copy = "COPY" SP sequence-set SP mailbox

create = "CREATE" SP mailbox
 ; Use of INBOX gives a NO error

date = date-text / DQUOTE date-text DQUOTE

date-day = 1*2DIGIT
 ; Day of month

date-day-fixed = (SP DIGIT) / 2DIGIT
 ; Fixed-format version of date-day

date-month = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" /
 "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"

date-text = date-day "-" date-month "-" date-year

date-year = 4DIGIT

date-time = DQUOTE date-day-fixed "-" date-month "-" date-year
 SP time SP zone DQUOTE

delete = "DELETE" SP mailbox
 ; Use of INBOX gives a NO error

digit-nz = %x31-39
 ; 1-9

envelope = "(" env-date SP env-subject SP env-from SP
 env-sender SP env-reply-to SP env-to SP env-cc SP
 env-bcc SP env-in-reply-to SP env-message-id ")"

env-bcc = "(" 1*address ")" / nil

env-cc = "(" 1*address ")" / nil

env-date = nstring

env-from = "(" 1*address ")" / nil

env-in-reply-to = nstring

env-message-id = nstring

env-reply-to = "(" 1*address ")" / nil

env-sender = "(" 1*address ")" / nil

env-subject = nstring

media-text = DQUOTE "TEXT" DQUOTE SP media-subtype
 ; Defined in [MIME-IMT]

message-data = nz-number SP ("EXPUNGE" / ("FETCH" SP msg-att))

msg-att = "(" (msg-att-dynamic / msg-att-static)
 *(SP (msg-att-dynamic / msg-att-static)) ")"

msg-att-dynamic = "FLAGS" SP "(" [flag-fetch *(SP flag-fetch)] ")"
 ; MAY change for a message

msg-att-static = "ENVELOPE" SP envelope / "INTERNALDATE" SP date-time /
 "RFC822" [".HEADER" / ".TEXT"] SP nstring /
 "RFC822.SIZE" SP number /
 "BODY" ["STRUCTURE"] SP body /
 "BODY" section ["<" number ">"] SP nstring /
 "UID" SP uniqueid
 ; MUST NOT change for a message

nil = "NIL"

nstring = string / nil

number = 1*DIGIT
 ; Unsigned 32-bit integer
 ; (0 <= n < 4,294,967,296)

nz-number = digit-nz *DIGIT
 ; Non-zero unsigned 32-bit integer
 ; (0 < n < 4,294,967,296)

password = astring

quoted = DQUOTE *QUOTED-CHAR DQUOTE

QUOTED-CHAR = <any TEXT-CHAR except quoted-specials> /
 "\" quoted-specials

quoted-specials = DQUOTE / "\"

rename = "RENAME" SP mailbox SP mailbox
 ; Use of INBOX as a destination gives a NO error

response = *(continue-req / response-data) response-done

response-data = "*" SP (resp-cond-state / resp-cond-bye /
 mailbox-data / message-data / capability-data) CRLF

response-done = response-tagged / response-fatal

response-fatal = "*" SP resp-cond-bye CRLF
 ; Server closes connection immediately

response-tagged = tag SP resp-cond-state CRLF

resp-cond-auth = ("OK" / "PREAUTH") SP resp-text
 ; Authentication condition

resp-cond-bye = "BYE" SP resp-text

resp-cond-state = ("OK" / "NO" / "BAD") SP resp-text
 ; Status condition

resp-specials = "]"

resp-text = ["[" resp-text-code "]" SP] text

resp-text-code = "ALERT" /
 "BADCHARSET" [SP "(" astring *(SP astring) ")"] /
 capability-data / "PARSE" /
 "PERMANENTFLAGS" SP "("
 [flag-perm *(SP flag-perm)] ")" /
 "READ-ONLY" / "READ-WRITE" / "TRYCREATE" /
 "UIDNEXT" SP nz-number / "UIDVALIDITY" SP nz-number /
 "UNSEEN" SP nz-number /
 atom [SP 1*<any TEXT-CHAR except "]">]

search = "SEARCH" [SP "CHARSET" SP astring] 1*(SP search-key)
 ; CHARSET argument to MUST be registered with IANA

search-key = "ALL" / "ANSWERED" / "BCC" SP astring /
 "BEFORE" SP date / "BODY" SP astring /
 "CC" SP astring / "DELETED" / "FLAGGED" /
 "FROM" SP astring / "KEYWORD" SP flag-keyword /
 "NEW" / "OLD" / "ON" SP date / "RECENT" / "SEEN" /
 "SINCE" SP date / "SUBJECT" SP astring /
 "TEXT" SP astring / "TO" SP astring /
 "UNANSWERED" / "UNDELETED" / "UNFLAGGED" /
 "UNKEYWORD" SP flag-keyword / "UNSEEN" /
 ; Above this line were in [IMAP2]
 "DRAFT" / "HEADER" SP header-fld-name SP astring /
 "LARGER" SP number / "NOT" SP search-key /
 "OR" SP search-key SP search-key /
 "SENTBEFORE" SP date / "SENTON" SP date /
 "SENTSINCE" SP date / "SMALLER" SP number /
 "UID" SP sequence-set / "UNDRAFT" / sequence-set /
 "(" search-key *(SP search-key) ")"

section = "[" [section-spec] "]"

section-msgtext = "HEADER" / "HEADER.FIELDS" [".NOT"] SP header-list /
 "TEXT"
 ; top-level or MESSAGE/RFC822 part

section-part = nz-number *("." nz-number)
 ; body part nesting

section-spec = section-msgtext / (section-part ["." section-text])

section-text = section-msgtext / "MIME"
 ; text other than actual body part (headers, etc.)

select = "SELECT" SP mailbox

seq-number = nz-number / "*"
 ; message sequence number (COPY, FETCH, STORE
 ; commands) or unique identifier (UID COPY,
 ; UID FETCH, UID STORE commands).
 ; * represents the largest number in use. In
 ; the case of message sequence numbers, it is
 ; the number of messages in a non-empty mailbox.
 ; In the case of unique identifiers, it is the
 ; unique identifier of the last message in the
 ; mailbox or, if the mailbox is empty, the
 ; mailbox's current UIDNEXT value.
 ; The server should respond with a tagged BAD
 ; response to a command that uses a message
 ; sequence number greater than the number of
 ; messages in the selected mailbox. This
 ; includes "*" if the selected mailbox is empty.

seq-range = seq-number ":" seq-number
 ; two seq-number values and all values between
 ; these two regardless of order.
 ; Example: 2:4 and 4:2 are equivalent and indicate
 ; values 2, 3, and 4.
 ; Example: a unique identifier sequence range of
 ; 3291:* includes the UID of the last message in
 ; the mailbox, even if that value is less than 3291.

sequence-set = (seq-number / seq-range) *("," sequence-set)
 ; set of seq-number values, regardless of order.
 ; Servers MAY coalesce overlaps and/or execute the
 ; sequence in any order.
 ; Example: a message sequence number set of
 ; 2,4:7,9,12:* for a mailbox with 15 messages is
 ; equivalent to 2,4,5,6,7,9,12,13,14,15
 ; Example: a message sequence number set of *:4,5:7
 ; for a mailbox with 10 messages is equivalent to
 ; 10,9,8,7,6,5,4,5,6,7 and MAY be reordered and
 ; overlap coalesced to be 4,5,6,7,8,9,10.

status = "STATUS" SP mailbox SP
 "(" status-att *(SP status-att) ")"

status-att = "MESSAGES" / "RECENT" / "UIDNEXT" / "UIDVALIDITY" /
 "UNSEEN"

status-att-list = status-att SP number *(SP status-att SP number)

store = "STORE" SP sequence-set SP store-att-flags

store-att-flags = (["+" / "-"] "FLAGS" [".SILENT"]) SP
 (flag-list / (flag *(SP flag)))

string = quoted / literal

subscribe = "SUBSCRIBE" SP mailbox

tag = 1*<any ASTRING-CHAR except "+">

text = 1*TEXT-CHAR

TEXT-CHAR = <any CHAR except CR and LF>

time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; Hours minutes seconds

uid = "UID" SP (copy / fetch / search / store)
 ; Unique identifiers used instead of message
 ; sequence numbers

uniqueid = nz-number
 ; Strictly ascending

unsubscribe = "UNSUBSCRIBE" SP mailbox

userid = astring

x-command = "X" atom <experimental command arguments>

zone = ("+" / "-") 4DIGIT
 ; Signed four-digit value of hhmm representing
 ; hours and minutes east of Greenwich (that is,
 ; the amount that the given time differs from
 ; Universal Time). Subtracting the timezone
 ; from the given time will give the UT form.

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc1730.html
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc822.html

RFC 2812 (IRC)

 The Augmented BNF representation for this is:

 message = [":" prefix SPACE] command [params] crlf
 prefix = servername / (nickname [["!" user] "@" host])
 command = 1*letter / 3digit
 params = *14(SPACE middle) [SPACE ":" trailing]
 =/ 14(SPACE middle) [SPACE [":"] trailing]

 nospcrlfcl = %x01-09 / %x0B-0C / %x0E-1F / %x21-39 / %x3B-FF
 ; any octet except NUL, CR, LF, " " and ":"
 middle = nospcrlfcl *(":" / nospcrlfcl)
 trailing = *(":" / " " / nospcrlfcl)

 SPACE = %x20 ; space character
 crlf = %x0D %x0A ; "carriage return" "linefeed"

 target = nickname / server
 msgtarget = msgto *("," msgto)
 msgto = channel / (user ["%" host] "@" servername)
 msgto =/ (user "%" host) / targetmask
 msgto =/ nickname / (nickname "!" user "@" host)
 channel = ("#" / "+" / ("!" channelid) / "&") chanstring
 [":" chanstring]
 servername = hostname
 host = hostname / hostaddr
 hostname = shortname *("." shortname)
 shortname = (letter / digit) *(letter / digit / "-")
 *(letter / digit)
 ; as specified in RFC 1123 [HNAME]
 hostaddr = ip4addr / ip6addr
 ip4addr = 1*3digit "." 1*3digit "." 1*3digit "." 1*3digit
 ip6addr = 1*hexdigit 7(":" 1*hexdigit)
 ip6addr =/ "0:0:0:0:0:" ("0" / "FFFF") ":" ip4addr
 nickname = (letter / special) *8(letter / digit / special / "-")
 targetmask = ("$" / "#") mask
 ; see details on allowed masks in section 3.3.1
 chanstring = %x01-07 / %x08-09 / %x0B-0C / %x0E-1F / %x21-2B
 chanstring =/ %x2D-39 / %x3B-FF
 ; any octet except NUL, BELL, CR, LF, " ", "," and ":"
 channelid = 5(%x41-5A / digit) ; 5(A-Z / 0-9)

 user = 1*(%x01-09 / %x0B-0C / %x0E-1F / %x21-3F / %x41-FF)
 ; any octet except NUL, CR, LF, " " and "@"
 key = 1*23(%x01-05 / %x07-08 / %x0C / %x0E-1F / %x21-7F)
 ; any 7-bit US_ASCII character,
 ; except NUL, CR, LF, FF, h/v TABs, and " "
 letter = %x41-5A / %x61-7A ; A-Z / a-z
 digit = %x30-39 ; 0-9
 hexdigit = digit / "A" / "B" / "C" / "D" / "E" / "F"
 special = %x5B-60 / %x7B-7D
 ; "[", "]", "\", "`", "_", "^", "{", "|", "}"

http://www.faqs.org/rfcs/rfc1123.html
http://www.faqs.org/rfcs/rfc1123.html

Efficient parsing techniques exist.

LL(k)

LR(k)

LALR(k)

GLR

Earley

Combinators

Operator
precedence

CYK
SLR

PEG packrat

Parsing tools abound.

ANTLR

CUPS

Yacc

Happy

Parsec

Ragel

NLTK

BisonFlex

PLY

State of the art?

*buf++

Apache

2,179 lines of C

lighttpd

1,211 lines of C

freenode IRCD

> 2000 lines of C

Courier IMAP

2,633 lines of C

Result?

Why!?

Yacc blocks on read().

Yacc needs continuations.

The continuation of a
parser is its derivative.

For more, google:
“Yacc is Dead”

The future is...

The future is...

...safe, correct

The future is...

...safe, correct

...domain-specific

The future is...

...safe, correct

...domain-specific

...deep analysis

Thanks!
• POPL 2006: Analysis of environments & stacks

• ICFP 2006: Abstract garbage collection

• PLDI 2006: Enabling coroutine fusion

• POPL 2007: Logic-flow analysis (for arrays)

• PLDI 2010: Featherweight Java analysis

• ICFP 2010: Deriving small-step analyzers

• SFP 2010: Pushdown small-step analysis

• POPL 2011: Small-step analysis on the GPU

matt.might.net
@mattmight

Application:
Dependence analysis

Dependence analysis

Dependence analysis

e �̂

�̂

�̂

�̂

�̂

�̂ �̂�̂

Dependence analysis

�̂

Dependence analysis

�̂

What resources are written?

What resources are read?

Which calling contexts are live on stack?

Context-sensitive
dependence graphs

Context-sensitive
dependence graphs

v bound in k

f called in k’

Resources

Calls

f()
g()

f() g() ||

Advanced technique:
Abstract garbage collection

Abstract objects can die too.

Effects of abstract GC

Effects of abstract GC

Effects of abstract GC

Vicious cyle

Merging (⊔)
Forking (∈)

Vicious cyle

Merging (⊔)
Forking (∈)

Virtuous cycle

Un-merging
No forking

Orders of magnitude

