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Is shape analysis of higher-order programs meaningful?



What is shape analysis  of higher-order programs?



ItÕs still shape analysis , but with different words.



address :: binding



structure :: binding environment



heap ::  value environment



shape analysis :: environment analysis



Why bother?



Top-down reason: Need to move beyond CFAs.



Bottom-up reason



CFA Pointer analysis

Bottom-up reason



CFA Pointer analysis

Bottom-up reason



CFA Pointer analysis

Shape analysis

Bottom-up reason



CFA Pointer analysis

Shape analysis?

Bottom-up reason



What is Òhigher order?Ó



The essence of higher-order: Lambda calculus.



Variables; function abstractions; applications.

Syntax



Variables; function abstractions; applications.
v (! (v) e) (e 1 e 2)

Syntax



Value = Value ! Value

Semantics



No integers.



No ßoats.



No arrays.



No structs.



No pointers.



No mutation.



Lambda-calculus lacks linked, mutable, dynamic structures.



Shape analysis studies linked, mutable, dynamic structures.



So, does shape analysis of the ! -calculus mean anything?



Do functions have shape?







What determines the shape of these functions?



Parameters.



f(x) = ax2 + bx + c



f(x) = A  sin(! x +  " )



f(x) = A  sin(! x +  " )



f = " x.A  sin(! x +  " )



Free variables determine function shape.



What determines the value of free variables?



Environments.



Function = Closure = Lambda-term + Environment



" x.A  sin(! x + " )



(" x.A  sin(! x + " ),[A =1, ! =1, " = #/ 2])



cos



Environments are linked, mutable, dynamic data structures.



Shape analysis studies linked, mutable, dynamic structures.



Shape analysis of the ! -calculus is environment analysis.



Shape analysis determines the meaning of functions.



¥Singleton abstraction

¥Relational abstraction

¥Heap/shape predicates

Same tools apply



But Þrst,
do environments matter?



CFA Limitation: Super-! inlining Inlining a function based on ßow infor-
mation is blocked by the lack of environmental precision in control-ßow analysis.
Shivers termed the inlining of a function based on ßow informationsuper-! in-
lining [27], because it is beyond the reach of ordinary! -reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will Þnd that at the call site (h) , the only procedure ever
invoked is a closure over the lambda term(lambda () x) . The lambda termÕs
only free variable, x, is in scope at the invocation site. It feels safe to inline.
Yet, if the compiler replaces the reference toh with the lambda term (lambda
() x) , the meaning of the program will change from#f to #t . This happens
because the closure that gets invoked was closed over an earlier binding ofx (to
#f ), whereas the inlined lambda term closes over the binding ofx currently in
scope (which is to#t ). Programs like this mean that functional compilers must
be conservative when they inline based on information obtained from a CFA. If
the inlined lambda term has a free variable, the inlining could be unsafe.

SpeciÞc problemTo determine the safety of inlining the lambda term lam at the
call site [[(f . . . ) ]], we need to know that for every environment" in which this
call is evaluated, that " [[f ]] = ( lam, " �) and " (v) = " �(v) for each free variablev
in the term lam.2

CFA Limitation: Globalization Sestoft identiÞed globalization as a second
blindspot of control-ßow analysis [25]. Globalization is an optimization that con-
verts a procedure parameter into a global variable when it is safe to do so. Though
not obvious, globalization can also be cast as a problem of reasoning about en-
vironments: if, for every state of execution, all reachable environments which
contain a variable are equivalent for that variable, then it is safe to turn that
variable into a global.

SpeciÞc problemTo determine the safety of globalizing the variablev, we need to
know that for each reachable state, for any two environments" and " � reachable
inside that state, it must be that " (v) = " �(v) if v ! dom(" ) and v ! dom(" �).

CFA Limitation: Rematerialization Compilers for imperative languages
have found that it can be beneÞcial to rematerialize (to recompute) a value
at its point of use if the values on which it depends are still available. On mod-
ern hardware, rematerialization can decrease register pressure and improve cache
performance. Functional languages currently lack analyses to drive rematerial-
ization. Consider a trivial example:
2 The symbol ! denotes a conventional variable-to-value environment map.

Application: Inlining
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Application: Inlining



Environment in closure must match environment at call.



ÒDoes env1(x) = env2(x)?Ó

Special environment problem



(lambda () z)

(f)

(lambda () z)

Application: Rematerialization

Compiler wants to inline, but z is out of scope at the call!



((lambda () y))

(lambda () z)

Application: Rematerialization

Compiler wants to inline, but z is out of scope at the call!



ÒDoes env1(z) = env2(y)?Ó

General environment problem



Approach: Build general solution atop special solution.



Starting point: 
k-CFA for CPS



In CPS, all calls must be tail calls.



Functions never return, so no stack required.



! ! State = Call" Env

" ! Env = Var # Clo

clo ! Clo = Lam" Env

Small-step state-space



! ! State = Call" Env

" ! Env = Var # Clo

clo ! Clo = Lam" Env

Small-step state-space



! ! Env = Var " Clo

Split environments
(Shivers, 1991)



! ! Env = Var " Clo

! ! Env = Var " Clo

Split environments
(Shivers, 1991)



! ! BEnv = Var " Bind
ve ! VEnv = Bind " Clo

Split environments
(Shivers, 1991)



! ∈ State = Call× BEnv × VEnv

" ∈ BEnv = Var # Bind

ve ∈ VEnv = Bind # Clo

clo ∈ Clo = Lam× BEnv

b∈ Bind is some inÞnite set



! ∈ State = PC× Struct × Heap

s ∈ Struct = Var " Addr

h ∈ Heap = Addr " Tagged

t ∈ Tagged= Type× Struct

a ∈ Addr is some inÞnite set



Solving the
special problem



Special problem

β̂(v) = β̂!(v)

β(v) = β!(v)



Special problem

β̂(v) = β̂!(v)

β(v) = β!(v)

" "



Special problem

β̂(v) = β̂!(v)

β(v) = β!(v)

" "



Special problem

β̂(v) = β̂!(v)

β(v) = β!(v)

" "

?



α(b) = α(b!) b = b!When does                       imply             ?



When the abstract bindings are singleton abstractions.



A singleton abstraction has only one concrete constituent.



Next step: Engineer a singleton abstraction into semantics.



Anodized bindings

Bindings



Anodized bindings

AnodizedOriginal



g

g−1

Anodized bindings

AnodizedOriginal



Anodization constraint

If g(b) and g(b!) are reachable and! (b) = ! (b!), then b = b!.



Policy example: Recency 
(Balakrishnan & Reps, 2006)

Anodize most-recently allocated binding.



Solving the
general problem



What impliesve(b) = ve(b!)?



Fact 1: ve(b) = ve(b)



Fact 2: ve(b) = ve(b!) and ve(b!) = ve(b!!) impliesve(b) = ve(b!!).



When will we know thatve(b!) = ve(b!!)?



When b is bound tob! during function call.



When(f x) calls(! (v) call), we knowve(! (x)) = ve(! !(v)) .



Solution: Track binding invariants as separate abstraction.



! ! State! " !Bind # !Bind

Binding invariants
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ö! (x) ! ö! !(y)?
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More in paper

CFA Limitation: Super-! inlining Inlining a function based on flow infor-

mation is blocked by the lack of environmental precision in control-flow analysis.

Shivers termed the inlining of a function based on flow information super-! in-

lining [27], because it is beyond the reach of ordinary ! -reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h) , the only procedure ever

invoked is a closure over the lambda term (lambda () x) . The lambda term’s

only free variable, x, is in scope at the invocation site. It feels safe to inline.

Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x) , the meaning of the program will change from #f to #t . This happens

because the closure that gets invoked was closed over an earlier binding of x (to

#f ), whereas the inlined lambda term closes over the binding of x currently in

scope (which is to #t ). Programs like this mean that functional compilers must

be conservative when they inline based on information obtained from a CFA. If

the inlined lambda term has a free variable, the inlining could be unsafe.

SpeciÞc problemTo determine the safety of inlining the lambda term lam at the

call site [[(f . . . ) ]], we need to know that for every environment " in which this

call is evaluated, that " [[f ]] = (lam, " !) and " (v) = " !(v) for each free variable v
in the term lam.2

CFA Limitation: Globalization Sestoft identified globalization as a second

blindspot of control-flow analysis [25]. Globalization is an optimization that con-

verts a procedure parameter into a global variable when it is safe to do so. Though

not obvious, globalization can also be cast as a problem of reasoning about en-

vironments: if, for every state of execution, all reachable environments which

contain a variable are equivalent for that variable, then it is safe to turn that

variable into a global.

SpeciÞc problemTo determine the safety of globalizing the variable v, we need to

know that for each reachable state, for any two environments " and " ! reachable

inside that state, it must be that " (v) = " !(v) if v ∈ dom(" ) and v ∈ dom(" !).

CFA Limitation: Rematerialization Compilers for imperative languages

have found that it can be beneficial to rematerialize (to recompute) a value

at its point of use if the values on which it depends are still available. On mod-

ern hardware, rematerialization can decrease register pressure and improve cache

performance. Functional languages currently lack analyses to drive rematerial-

ization. Consider a trivial example:

2 The symbol ρ denotes a conventional variable-to-value environment map.
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semantics, binding environments map variables to bindings. A bindingb is a
commemorative token minted for each instance of a variable receiving a value;
for example, in k-CFA, a binding is a variable name paired with the time-stamp
at which it was bound. The value environment ve tracks the denotable values
(D) associated with every binding. A denotable valued is a closure.

In CFAs, bindingsÑthe atomic components of environmentsÑplay the role
that addresses do in pointer analysis. Our ultimate goal is to infer relationships
between the concrete values behind abstract bindings. For example, we want to
be able to show that bindings to the variable v at some set of times are equal,
under the value environment, to the bindings to the variable x at some other set
of times. (In the pure λ-calculus, the only obvious relationships between bindings
are equality and inequality.)

In CFA theory, time-stamps also go by the less-intuitive name ofcontours.
Both the concrete and the abstract state-spaces leave the exact structure of
time-stamps and bindings undeÞned. The choices for bindings determine the
polyvariance of the analysis. Time-stamps encode the history of execution in
some fashion, so that under abstraction, their structure determines the context
in context-sensitivity.

The concrete and abstract state-spaces are linked by a parameterized second-
order abstraction map, αη : Σ ! öΣ, where the parameterη : (Addr ! !Addr ) "
(Time ! "Time ) abstracts both bindings and times:

αη(call , β, ve, t) = ( αη(V ), αη(β), αη(ve), η(t))

αη
BEnv (β) = λv.η(β(v))

αη
VEnv (ve) = λöb.

�

η(b)= öb

αη(ve(b))

αη
D (d) = { αη

Val (d)}

αη
Val (lam, β) = ( lam, αη(β)).

2.2 Transition rules

With state-spaces deÞned, we can specify the concrete transition relation for
CPS, (# ) $ Σ % Σ; then we can deÞne its corresponding abstraction under
the map αη, (! ) $ öΣ % öΣ. With the help of an argument-expression evaluator,
E : Exp%BEnv %VEnv � D:

E (v,β, ve) = ve(β(v))

E (lam, β, ve) = ( lam, β),

! ! " = Call " BEnv " VEnv " Time

# ! BEnv = Var $ Bind

ve ! VEnv = Bind $ D

d ! D = Val

val ! Val = Clo

clo ! Clo = Lam " BEnv

b ! Bind is an inÞnite set of bindings

t ! Time is an inÞnite set of times

ö! ! ö" = Call " !BEnv " !VEnv " !Time

ö# ! !BEnv = Var $ "Bind

bve ! !VEnv = "Bind # öD

öd ! öD = P(dVal )

cval ! dVal = dClo

cclo ! dClo = Lam " !BEnv

öb ! "Bind is a Þnite set of bindings

öt ! !Time is a Þnite set of times

Fig. 1. State-space for the lambda calculus: Concrete (left) and abstract (right).

we can deÞne the single concrete transition rule for CPS:

([[( f e 1 . . . en ) ! ]], β, ve, t) ! (call , β!! , ve!, t !), where:

di = E(ei , β, ve)

d0 = ([[ ( ! ! !
( v1 . . . vn ) call) ]], β! )

t ! = tick (call , t)

bi = alloc(vi , t ! )

β!! = β! [vi "# bi ]

ve! = ve[bi "# di ].

With the help of an abstract evaluator, öE : Exp $ !BEnv $ !VEnv # öD:

öE (v, öβ, !ve) = !ve( öβ(v))

öE (lam, öβ, !ve) =
"

(lam, öβ)
#

,

we can deÞne an analogous transition rule for the abstract semantics:

([[( f e 1 . . . en ) ! ]], öβ, !ve, öt) ! (call , öβ!! , !ve!, öt !), where:

ödi = öE(ei , öβ, !ve)

öd0 %([[( ! ! !
( v1 . . . vn ) call) ]], öβ! )

öt ! = $tick (call , öt)

öbi = "alloc(vi , öt !)

öβ!! = öβ! [vi "# öbi ]

!ve! = !ve & [öbi "# ödi ].

2.3 Concrete and abstract interpretation

To evaluate a program call in the concrete semantics, its meaning is the set of
states reachable from the initial state !0 = ( call , [], [], t0):

{ ! : !0 ⇒! ! } .

A na¬õve abstract interpreter could behave similarly, exploring the states reach-
able from the initial state ö! = ( call, [],⊥, öt0):

{ ö! : ö!0 ! ! ö! } .

In practice, widening on value environments [5] accelerates convergence [16, 27].

2.4 Parameters for the analysis framework

Time-stamp incrementers and binding allocators serve as parameters:

alloc : Var× Time → Bind !alloc : Var× "Time → !Bind

tick : Call× Time → Time �tick : Call× "Time → "Time .

Time-stamps are designed to encode context/history. Thus, the abstract time-
stamp incrementer �tick and the abstraction map " ! decide how much history to
retain in the abstraction. As a result, the function �tick determines the context-
sensitivity of the analysis. Similarly, the abstract binding allocator chooses how
to allocate abstract bindings to variables, and in doing so, it Þxes the polyvari-
ance of the analysis. Once the parameters are Þxed, the semantics must obey a
straightforward soundness theorem:

Theorem 1. If " ! (! ) � ö! and ! ⇒ ! ", then there exists a stateö! " such that
ö! ! ö! " and " ! (! ") � ö! ".

3 Analogy: Singleton abstraction to binding anodization

Focusing on our goal of solving the generalized environment problemÑreasoning
about the equality of individual bindingsÑwe turn to singleton abstraction [4].
Singleton abstraction has been used in pointer and shape analyses to drive must-
alias analysis; we extend singleton abstraction, and the framework of anodiza-
tion, to determine the equivalence of bindings to thesame variable. That is, we
will be able to solve the environment problem with our singleton abstraction,
but not the generalized environment problem. In Section 4, we will solve the
generalized problem by bootstrapping binding invariants on top of anodization.

A Galois connection [6]X −−−→←−−−"

# öX has a singleton abstraction i! there exists

a subset öX 1 ⊆ öX such that for all öx ∈ öX 1, size(#(öx)) = 1. The critical property of
singleton abstractions is that equality of abstract representatives implies equal-
ity of their concrete constituents. Hence, when the setX contains addresses,
singleton abstractions enable must-alias analysis. Analogously, when the setX
contains bindings, singleton abstraction enables binding-equality testing.
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3 Analogy: Singleton abstraction to binding anodization

Focusing on our goal of solving the generalized environment problemÑreasoning
about the equality of individual bindingsÑwe turn to singleton abstraction [4].
Singleton abstraction has been used in pointer and shape analyses to drive must-
alias analysis; we extend singleton abstraction, and the framework of anodiza-
tion, to determine the equivalence of bindings to thesame variable. That is, we
will be able to solve the environment problem with our singleton abstraction,
but not the generalized environment problem. In Section 4, we will solve the
generalized problem by bootstrapping binding invariants on top of anodization.

A Galois connection [6]X &&&$'&&&
"

# öX has a singleton abstraction i! there exists

a subset öX 1 ( öX such that for all öx ) öX 1, size(#(öx)) = 1. The critical property of
singleton abstractions is that equality of abstract representatives implies equal-
ity of their concrete constituents. Hence, when the setX contains addresses,
singleton abstractions enable must-alias analysis. Analogously, when the setX
contains bindings, singleton abstraction enables binding-equality testing.

Example 1. Suppose we have a concrete machine with three memory addresses:
0x01, 0x02 and 0x03. Suppose the addresses abstract so that! (0x01) = öa1 and
! (0x02) = ! (0x03) = öa∗. The address öa1 is a singleton abstraction, because
it has only one concrete constituentÑ0x01. After a pointer analysis, if some
pointer variable p1 points only to address öa� and another pointer variable p2
points only to address öa�� and öa� = öa1 = öa�� then p1 must alias p2.

In order to solve the super-" inlining problem, Shivers informally proposed
a singleton abstraction for k-CFA which he termed Òre-ßow analysisÓ [27]. In
re-ßow analysis, the CFA is re-run, but with a ÒgoldenÓ contour inserted at a
point of interest. The golden contourÑallocated only onceÑis a singleton ab-
straction by deÞnition. While sound in theory, re-ßow analysis does not work in
practice: the golden contour ßows everywhere the non-golden contours ßow, and
inevitably, golden and non-golden contours are compared for equality. Neverthe-
less, we can salvage the spirit of ShiversÕs golden contours throughanodization.
Under anodization, bindings are not golden, but may be temporarily gold-plated.

In anodization, the concrete and abstract bindings are split into two halves:

Bind = Bind∞ + Bind 1 !Bind = !Bind∞ + !Bind 1,

and we assert ÒanodizingÓ bijections between these halves:

g : Bind∞ → Bind 1 ög : !Bind∞ → !Bind 1,

such that:
#(b) = öb i! #(g(b)) = ög(öb).

Every abstract binding has two variants, a summary variant, öb, and an anodized
variant, ög(öb). We will craft the concrete and abstract semantics so that the an-
odized variant will be a singleton abstraction. We must anodize concrete bind-
ings as well because the concrete semantics have to employ the same anodization
strategy as the abstract semantics in order to prove soundness.

The concrete semantics must also obey an abstraction-uniqueness constraint
over anodized bindings, so that for any reachable state (call , " , ve, t):

If g(b) ∈ dom(ve) and g(b�) ∈ dom(ve) and #(b) = #(b�) then b = b�. (1)

In other words, once the concrete semantics decides to allocate an anodized bind-
ing, it must de-anodize existing concrete bindings which abstract to the same
abstract binding. Anodization by itself does not dictate when a concrete seman-
tics should allocate an anodized binding; this is apolicy decision; anodization is
a mechanism. For simple policies, the parametersalloc and !alloc, by selecting
anodized or summary bindings, jointly encode the policy.

As an example of the simplest anodization policy, we describe the higher-
order analog of Balakrishnan and RepsÕs recency abstraction in Section 3.3. An
example of a more complicated policy is closure-focusing (Section 3.4).

Formally, the concrete transition rule must rebuild the value environment
with every transition:

([[( f e 1 . . . en) ! ]], ! , ve, t) ! (call , ! ��, ve �, t �), where:

di = E(ei, ! , ve)

d0 = ([[ ( ! ! !
( v1 . . . vn) call ) ]], ! �)

t � = tick (call , t)

bi = alloc(vi, t �)

B = {bi : bi " Bind1}
! �� = ( g−1

B ! �)[vi #$ bi]

ve � = ( g−1
B ve)[bi #$ (g−1

B di)],

where the de-anodization functiong−1
B : (BEnv $ BEnv ) %(VEnv $ VEnv ) %

(D $ D) %(Bind $ Bind ) strips the anodization off bindings that abstract to
any binding in the set B :

g−1
B (b) = b

g−1
B (g(b)) =

!
b " (b) = " (b�) for some g(b�) " B
g(b) otherwise

g−1
B (lam, ! ) = ( lam, g−1

B (! ))

g−1
B (! ) = #v.g−1

B (! (v))

g−1
B (ve) = #b.g−1

B (ve(b)).

The corresponding abstract transition rule must also rebuild the value envi-
ronment with every transition:

([[( f e 1 . . . en) ! ]], ö! , "ve, öt) ! (call , ö! ��, "ve �, öt �), where:

ödi = öE(ei, ö! , "ve)

öd0 & ([[( ! ! !
( v1 . . . vn) call ) ]], ö! �)

öt � = #tick (call , öt)

öbi = !alloc(vi, öt �)

öB =
$

öbi : öbi " Bind1

%

ö! �� = (ög−1
öB

ö! �)[vi #$öbi]

"ve � = (ög−1
öB

"ve) ' [öbi #$ (ög−1
öB

ödi)],

where the de-anodization function ög−1
öB

: ( "BEnv $ "BEnv ) %( "VEnv $ "VEnv ) %

( "D $ "D) %(#Val $ #Val ) %( !Bind $ !Bind ) strips the anodization off abstract
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bindings in the set öB :

ög! 1
öB

(öb) =

!
öb" öb ! öB and öb = ög(öb")
öb otherwise

ög! 1
öB

"
öd1, . . . , ödn

#
=

"
ög! 1

öB
( öd1), . . . , ög! 1

öB
( ödn )

#

ög! 1
öB

(lam, ö! ) = ( lam, ög! 1
öB

( ö! ))

ög! 1
öB

( ö! ) = " v.ög! 1
öB

( ö! (v))

ög! 1
öB

( $ve) = " öb.ög! 1
öB
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Because the concrete semantics obey the uniqueness constraint (Equation 1),
the abstract interpretation may treat the set !Bind1 as a set of singleton abstrac-
tions for the purpose of testing binding equality.

3.1 Solving the environment problem with anodization

Given two abstract environments ö! 1 and ö! 2, it is easy to determine whether the
concrete constituents of these environments agree on the value of some subset
of their domains, {v1, . . . , vn }:

Theorem 2. If #! (! 1) = ö! 1 and #! (! 2) = ö! 2, and ö! 1(v) = ö! 2(v) and ö! 1(v) !
!Bind1, then ! 1(v) = ! 2(v).

Proof. By the abstraction-uniqueness constraint.

3.2 Implementing anodization e fficiently

The na¬õve implementation of the abstract transition rule is inefficient: the de-
anodizing function ög! 1

öB
must walk the abstract value environment with every

transition. Even in 0CFA, this walk adds a quadratic penalty to every transition.
To avoid this walk, the analysis should use serial numbers on bindings Òunder
the hood,Ó so that:

!Bind " !Bind# # N.

That is, the value environment should be implemented as two maps:

"VEnv " ( !Bind# $ N $ öD) # ( !Bind# $ N).

Given a split value environment $ve = ( öf , öh), a binding (öb, n) is anodized only if
n = öh(öb), and it is not anodized if n < öh(öb). Thus, when the allocator chooses to
anodize a binding, it does need to walk the value environment with the function
ög! 1

öB
to strip away existing anodization; it merely needs to increment the serial

number associated with that binding.

The constraints of a straightforward soundness theorem (Theorem 1) lead to
an abstract transition relation over this space:

(([[(f e1 . . . en)
! ]], !̂ , �ve, t̂), ! ) ! ((call , !̂ ��, �ve �, t̂�), ! �), where:

d̂i = Ê(ei , !̂ , �ve)

d̂0 " ([[(λ! !
(v1 . . . vn) call)]], !̂ �)

t̂� = �tick(call , t̂)

b̂i = !alloc(vi , t̂
�)

B̂ =
�

b̂i : b̂i # !Bind1

�

!̂ �� = (ĝ−1
öB

!̂ �)[vi $%̂bi ]

�ve � = (ĝ−1
öB

�ve) & [b̂i $%(ĝ−1
öB

d̂i )],

and singleton bindings are reflexively equivalent:

b̂ # !Bind1

b̂ ! � b̂,

and bindings between singletons are trivially equivalent:

!̂ (ei ) # !Bind1 b̂i # !Bind1

!̂ (ei ) ! � b̂i ,

and untouched bindings retain their equivalence:

b̂ ! b̂� b̂ '# B̂ b̂� '# B̂

b̂ ! � b̂�,

and bindings re-bound to themselves also retain their equivalence:

!̂ (ei ) ! b̂i

!̂ (ei ) ! � b̂i .

4.1 Solving the generalized environment problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , !̂ , �ve, t̂), ! ) and two ab-
stract bindings, b̂ and b̂�, if ˙" " (call , ! , ve, t) ( ((call , !̂ , �ve, t̂), ! ) and #(b) = b̂
and #(b�) = b̂� and b̂ ! b̂�, then ve(b) = ve(b�).

Proof. By the structure of the direct product abstraction ˙" " .
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and #(b�) = b̂� and b̂ ! b̂�, then ve(b) = ve(b�).

Proof. By the structure of the direct product abstraction ˙" " .

The constraints of a straightforward soundness theorem (Theorem 1) lead to
an abstract transition relation over this space:
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( v1 . . . vn) call ) ]], ö! !)

öt ! = "tick (call , öt)

öbi = �alloc(vi, öt !)

öB =
#

öbi : öbi # �Bind1

$

ö! !! = (ög" 1
öB

ö! !)[vi $%öbi]

!ve ! = (ög" 1
öB

!ve) & [öbi $%(ög" 1
öB
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and singleton bindings are reßexively equivalent:

öb # �Bind1

öb ! ! öb,

and bindings between singletons are trivially equivalent:

ö! (ei) # �Bind1
öbi # �Bind1

ö! (ei) ! ! öbi,

and untouched bindings retain their equivalence:

öb ! öb! öb '# öB öb! '# öB

öb ! ! öb!,

and bindings re-bound to themselves also retain their equivalence:

ö! (ei) ! öbi

ö! (ei) ! ! öbi.

4.1 Solving the generalized environment problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , ö! , !ve, öt), ! ) and two ab-
stract bindings, öb and öb!, if ú" " (call , ! , ve, t) ( ((call , ö! , !ve, öt), ! ) and #(b) = öb
and #(b!) = öb! and öb ! öb!, then ve(b) = ve(b!).

Proof. By the structure of the direct product abstraction ú" " .

5 Application: Higher-order rematerialization

Now that we have a generalized environment analysis, we can precisely state
the condition under which higher-order rematerialization is safe. MightÕs work
on the correctness of super-! inlining formally deÞned safe to mean that the
transformed program and the untransformed program maintain a bisimulation
in their concrete executions [16].

Theorem 4. It is safe to rematerialize the expressione! in place of the expres-
sion e in the call site call i! for every reachable compound abstract state of
the form ((call, ö! !! , !ve, öt),≡), it is the case that öE(e!, ö! !! , !ve) = ( lam!, ö! !) and
öE(e, ö! !! , !ve) = ( lam, ö! ) and the relation " ⊆ Var×Var is a substitution that uni-
Þes the free variables of lam! with lam and for each (v!, v) ∈ " , ö! !(v!) ≡ ö! (v).

Proof. The proof of bisimulation has a structure identical to that of the proof
correctness for super-! inlining in [16].

6 Related work

Clearly, this work draws on the CousotsÕ abstract interpretation [5, 6]. Binding
invariants succeed the CousotsÕ work as a relational abstraction of higher-order
programs [7, 8], with the distinction that binding invariants range over abstract
bindings instead of formal parameters. Binding invariants were also inspired by
Gulwani et al.Õs quantiÞed abstract domains [9]; there is an implicit universal
quantiÞcation ranging over concrete constituents in the deÞnition of the abstrac-
tion map #!

" . This work also falls within and retains the advantages of SchmidtÕs
small-step abstract interpretive framework [24]. As a generalization of control-
ßow analysis, the platform of Section 2 is a small-step reformulation of ShiversÕs
denotational CFA [27], which itself was a extension of JonesÕs original CFA [13].
Like the NielsonsÕ unifying work on CFA [22], this work is an implicit argument
in favor of the inherent ßexibility of abstract interpretation for the static analy-
sis of higher-order programs. In contrast with constraint-based, type-based and
model-checking CFAs, small-step abstract interpretive CFAs are easy to extend
via direct products and parameterization.

From shape analysis, anodized bindings draw on singleton abstraction while
binding invariants are inspired by both predicate-based abstractions [3] and
three-valued logic analysis [23]. Chaseet. al had early work on counting-based
singleton abstractions [4], while HudakÕs work on analysis of Þrst-order functional
programs employed a precursor to counting-based singleton abstraction [10]. An-
odization, using factored sets of singleton and non-singleton bindings, is most
closely related to the Balakrishnan and RepsÕs recency abstraction [2], except
that anodization works on bindings instead of addresses, and anodization is not
restricted to a most-recent allocation policy. SuperÞcially, one might also term
Jones and BohrÕs work on termination analysis of the untyped$-calculus via
size-change as another kind of shape analysis for higher-order programs [14].
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