
Shape analysis of
higher-order programs:
A colorless green idea?

Matthew Might
University of Utah

matt.might.net
www.ucombinator.org

http://www.ucombinator.org
http://www.ucombinator.org

Is shape analysis of higher-order programs meaningful?

What is shape analysis of higher-order programs?

It’s still shape analysis, but with different words.

address :: binding

structure :: binding environment

heap :: value environment

shape analysis :: environment analysis

Why bother?

Top-down reason: Need to move beyond CFAs.

Bottom-up reason

CFA Pointer analysis

Bottom-up reason

CFA Pointer analysis

Bottom-up reason

CFA Pointer analysis

Shape analysis

Bottom-up reason

CFA Pointer analysis

Shape analysis?

Bottom-up reason

What is “higher order?”

The essence of higher-order: Lambda calculus.

Variables; function abstractions; applications.

Syntax

Variables; function abstractions; applications.
v (λ (v) e) (e1 e2)

Syntax

Value = Value → Value

Semantics

No integers.

No floats.

No arrays.

No structs.

No pointers.

No mutation.

Lambda-calculus lacks linked, mutable, dynamic structures.

Shape analysis studies linked, mutable, dynamic structures.

So, does shape analysis of the λ-calculus mean anything?

Do functions have shape?

What determines the shape of these functions?

Parameters.

f(x) = ax2 + bx + c

f(x) = A sin(ωx + φ)

f(x) = A sin(ωx + φ)

f = λx.A sin(ωx + φ)

Free variables determine function shape.

What determines the value of free variables?

Environments.

Function = Closure = Lambda-term + Environment

λx.A sin(ωx + φ)

(λx.A sin(ωx + φ),[A=1,ω=1,φ=π/2])

cos

Environments are linked, mutable, dynamic data structures.

Shape analysis studies linked, mutable, dynamic structures.

Shape analysis of the λ-calculus is environment analysis.

Shape analysis determines the meaning of functions.

• Singleton abstraction

• Relational abstraction

• Heap/shape predicates

Same tools apply

But first,
do environments matter?

CFA Limitation: Super-β inlining Inlining a function based on flow infor-

mation is blocked by the lack of environmental precision in control-flow analysis.

Shivers termed the inlining of a function based on flow information super-β in-

lining [27], because it is beyond the reach of ordinary β-reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h), the only procedure ever

invoked is a closure over the lambda term (lambda () x). The lambda term’s

only free variable, x, is in scope at the invocation site. It feels safe to inline.

Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x), the meaning of the program will change from #f to #t. This happens

because the closure that gets invoked was closed over an earlier binding of x (to

#f), whereas the inlined lambda term closes over the binding of x currently in

scope (which is to #t). Programs like this mean that functional compilers must

be conservative when they inline based on information obtained from a CFA. If

the inlined lambda term has a free variable, the inlining could be unsafe.

Specific problem To determine the safety of inlining the lambda term lam at the

call site [[(f . . .)]], we need to know that for every environment ρ in which this

call is evaluated, that ρ[[f]] = (lam, ρ�) and ρ(v) = ρ�(v) for each free variable v
in the term lam.2

CFA Limitation: Globalization Sestoft identified globalization as a second

blindspot of control-flow analysis [25]. Globalization is an optimization that con-

verts a procedure parameter into a global variable when it is safe to do so. Though

not obvious, globalization can also be cast as a problem of reasoning about en-

vironments: if, for every state of execution, all reachable environments which

contain a variable are equivalent for that variable, then it is safe to turn that

variable into a global.

Specific problem To determine the safety of globalizing the variable v, we need to

know that for each reachable state, for any two environments ρ and ρ� reachable

inside that state, it must be that ρ(v) = ρ�(v) if v ∈ dom(ρ) and v ∈ dom(ρ�).

CFA Limitation: Rematerialization Compilers for imperative languages

have found that it can be beneficial to rematerialize (to recompute) a value

at its point of use if the values on which it depends are still available. On mod-

ern hardware, rematerialization can decrease register pressure and improve cache

performance. Functional languages currently lack analyses to drive rematerial-

ization. Consider a trivial example:

2 The symbol ρ denotes a conventional variable-to-value environment map.

Application: Inlining

CFA Limitation: Super-β inlining Inlining a function based on flow infor-

mation is blocked by the lack of environmental precision in control-flow analysis.

Shivers termed the inlining of a function based on flow information super-β in-

lining [27], because it is beyond the reach of ordinary β-reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h), the only procedure ever

invoked is a closure over the lambda term (lambda () x). The lambda term’s

only free variable, x, is in scope at the invocation site. It feels safe to inline.

Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x), the meaning of the program will change from #f to #t. This happens

because the closure that gets invoked was closed over an earlier binding of x (to

#f), whereas the inlined lambda term closes over the binding of x currently in

scope (which is to #t). Programs like this mean that functional compilers must

be conservative when they inline based on information obtained from a CFA. If

the inlined lambda term has a free variable, the inlining could be unsafe.

Specific problem To determine the safety of inlining the lambda term lam at the

call site [[(f . . .)]], we need to know that for every environment ρ in which this

call is evaluated, that ρ[[f]] = (lam, ρ�) and ρ(v) = ρ�(v) for each free variable v
in the term lam.2

CFA Limitation: Globalization Sestoft identified globalization as a second

blindspot of control-flow analysis [25]. Globalization is an optimization that con-

verts a procedure parameter into a global variable when it is safe to do so. Though

not obvious, globalization can also be cast as a problem of reasoning about en-

vironments: if, for every state of execution, all reachable environments which

contain a variable are equivalent for that variable, then it is safe to turn that

variable into a global.

Specific problem To determine the safety of globalizing the variable v, we need to

know that for each reachable state, for any two environments ρ and ρ� reachable

inside that state, it must be that ρ(v) = ρ�(v) if v ∈ dom(ρ) and v ∈ dom(ρ�).

CFA Limitation: Rematerialization Compilers for imperative languages

have found that it can be beneficial to rematerialize (to recompute) a value

at its point of use if the values on which it depends are still available. On mod-

ern hardware, rematerialization can decrease register pressure and improve cache

performance. Functional languages currently lack analyses to drive rematerial-

ization. Consider a trivial example:

2 The symbol ρ denotes a conventional variable-to-value environment map.

Application: Inlining

Environment in closure must match environment at call.

“Does env1(x) = env2(x)?”

Special environment problem

(lambda () z)

(f)

(lambda () z)

Application: Rematerialization

Compiler wants to inline, but z is out of scope at the call!

((lambda () y))

(lambda () z)

Application: Rematerialization

Compiler wants to inline, but z is out of scope at the call!

“Does env1(z) = env2(y)?”

General environment problem

Approach: Build general solution atop special solution.

Starting point:
k-CFA for CPS

In CPS, all calls must be tail calls.

Functions never return, so no stack required.

ς ∈ State = Call× Env
ρ ∈ Env = Var � Clo

clo ∈ Clo = Lam× Env

Small-step state-space

ς ∈ State = Call× Env
ρ ∈ Env = Var � Clo

clo ∈ Clo = Lam× Env

Small-step state-space

ρ ∈ Env = Var � Clo

Split environments
(Shivers, 1991)

ρ ∈ Env = Var � Clo
ρ ∈ Env = Var � Clo

Split environments
(Shivers, 1991)

β ∈ BEnv = Var � Bind
ve ∈ VEnv = Bind � Clo

Split environments
(Shivers, 1991)

ς ∈ State = Call× BEnv ×VEnv
β ∈ BEnv = Var � Bind

ve ∈ VEnv = Bind � Clo
clo ∈ Clo = Lam× BEnv
b ∈ Bind is some infinite set

ς ∈ State = PC× Struct ×Heap

s ∈ Struct = Var � Addr

h ∈ Heap = Addr � Tagged

t ∈ Tagged = Type× Struct

a ∈ Addr is some infinite set

Solving the
special problem

Special problem

β̂(v) = β̂�(v)

β(v) = β�(v)

Special problem

β̂(v) = β̂�(v)

β(v) = β�(v)

α α

Special problem

β̂(v) = β̂�(v)

β(v) = β�(v)

α α

Special problem

β̂(v) = β̂�(v)

β(v) = β�(v)

α α

?

α(b) = α(b�) b = b�When does imply ?

When the abstract bindings are singleton abstractions.

A singleton abstraction has only one concrete constituent.

Next step: Engineer a singleton abstraction into semantics.

Anodized bindings

Bindings

Anodized bindings

AnodizedOriginal

g

g−1

Anodized bindings

AnodizedOriginal

Anodization constraint

If g(b) and g(b�) are reachable and α(b) = α(b�), then b = b�.

Policy example: Recency
(Balakrishnan & Reps, 2006)

Anodize most-recently allocated binding.

Solving the
general problem

What implies ve(b) = ve(b�)?

Fact 1: ve(b) = ve(b)

Fact 2: ve(b) = ve(b�) and ve(b�) = ve(b��) implies ve(b) = ve(b��).

When will we know that ve(b�) = ve(b��)?

When b is bound to b� during function call.

When (f x) calls (λ (v) call), we know ve(β(x)) = ve(β�(v)).

Solution: Track binding invariants as separate abstraction.

Π ∈ State≡ ⊆ �Bind × �Bind

Binding invariants

74

s
Π

ŝ

74

Relational

Mechanical

s
Π Πʹ

ŝ ŝʹ

74

Relational

Mechanical

s
Π Πʹ

ŝ ŝʹ

74

Relational

Mechanical

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

74

Relational

Mechanical

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

74

Relational

Mechanical

β̂(x) ≡ β̂�(y)?

Related work
• Cousot & Cousot,1977, 1979, 1991, 1994.

• Sagiv, Reps, & Wilhelm, 2002.

• Ball et al., 2001.

• Hudak et al., 1985.

• Chase et al., 1990.

• Shivers, 1988, 1991.

• Jagannathan et al., 1998.

More in paper

CFA Limitation: Super-β inlining Inlining a function based on flow infor-

mation is blocked by the lack of environmental precision in control-flow analysis.

Shivers termed the inlining of a function based on flow information super-β in-

lining [27], because it is beyond the reach of ordinary β-reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h), the only procedure ever

invoked is a closure over the lambda term (lambda () x). The lambda term’s

only free variable, x, is in scope at the invocation site. It feels safe to inline.

Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x), the meaning of the program will change from #f to #t. This happens

because the closure that gets invoked was closed over an earlier binding of x (to

#f), whereas the inlined lambda term closes over the binding of x currently in

scope (which is to #t). Programs like this mean that functional compilers must

be conservative when they inline based on information obtained from a CFA. If

the inlined lambda term has a free variable, the inlining could be unsafe.

Specific problem To determine the safety of inlining the lambda term lam at the

call site [[(f . . .)]], we need to know that for every environment ρ in which this

call is evaluated, that ρ[[f]] = (lam, ρ�) and ρ(v) = ρ�(v) for each free variable v
in the term lam.2

CFA Limitation: Globalization Sestoft identified globalization as a second

blindspot of control-flow analysis [25]. Globalization is an optimization that con-

verts a procedure parameter into a global variable when it is safe to do so. Though

not obvious, globalization can also be cast as a problem of reasoning about en-

vironments: if, for every state of execution, all reachable environments which

contain a variable are equivalent for that variable, then it is safe to turn that

variable into a global.

Specific problem To determine the safety of globalizing the variable v, we need to

know that for each reachable state, for any two environments ρ and ρ� reachable

inside that state, it must be that ρ(v) = ρ�(v) if v ∈ dom(ρ) and v ∈ dom(ρ�).

CFA Limitation: Rematerialization Compilers for imperative languages

have found that it can be beneficial to rematerialize (to recompute) a value

at its point of use if the values on which it depends are still available. On mod-

ern hardware, rematerialization can decrease register pressure and improve cache

performance. Functional languages currently lack analyses to drive rematerial-

ization. Consider a trivial example:

2 The symbol ρ denotes a conventional variable-to-value environment map.

More in paper

CFA Limitation: Super-β inlining Inlining a function based on flow infor-

mation is blocked by the lack of environmental precision in control-flow analysis.

Shivers termed the inlining of a function based on flow information super-β in-

lining [27], because it is beyond the reach of ordinary β-reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h), the only procedure ever

invoked is a closure over the lambda term (lambda () x). The lambda term’s

only free variable, x, is in scope at the invocation site. It feels safe to inline.

Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x), the meaning of the program will change from #f to #t. This happens

because the closure that gets invoked was closed over an earlier binding of x (to

#f), whereas the inlined lambda term closes over the binding of x currently in

scope (which is to #t). Programs like this mean that functional compilers must

be conservative when they inline based on information obtained from a CFA. If

the inlined lambda term has a free variable, the inlining could be unsafe.

Specific problem To determine the safety of inlining the lambda term lam at the

call site [[(f . . .)]], we need to know that for every environment ρ in which this

call is evaluated, that ρ[[f]] = (lam, ρ�) and ρ(v) = ρ�(v) for each free variable v
in the term lam.2

CFA Limitation: Globalization Sestoft identified globalization as a second

blindspot of control-flow analysis [25]. Globalization is an optimization that con-

verts a procedure parameter into a global variable when it is safe to do so. Though

not obvious, globalization can also be cast as a problem of reasoning about en-

vironments: if, for every state of execution, all reachable environments which

contain a variable are equivalent for that variable, then it is safe to turn that

variable into a global.

Specific problem To determine the safety of globalizing the variable v, we need to

know that for each reachable state, for any two environments ρ and ρ� reachable

inside that state, it must be that ρ(v) = ρ�(v) if v ∈ dom(ρ) and v ∈ dom(ρ�).

CFA Limitation: Rematerialization Compilers for imperative languages

have found that it can be beneficial to rematerialize (to recompute) a value

at its point of use if the values on which it depends are still available. On mod-

ern hardware, rematerialization can decrease register pressure and improve cache

performance. Functional languages currently lack analyses to drive rematerial-

ization. Consider a trivial example:

2 The symbol ρ denotes a conventional variable-to-value environment map.

semantics, binding environments map variables to bindings. A binding b is a

commemorative token minted for each instance of a variable receiving a value;

for example, in k-CFA, a binding is a variable name paired with the time-stamp

at which it was bound. The value environment ve tracks the denotable values

(D) associated with every binding. A denotable value d is a closure.

In CFAs, bindings—the atomic components of environments—play the role

that addresses do in pointer analysis. Our ultimate goal is to infer relationships

between the concrete values behind abstract bindings. For example, we want to

be able to show that bindings to the variable v at some set of times are equal,

under the value environment, to the bindings to the variable x at some other set

of times. (In the pure λ-calculus, the only obvious relationships between bindings

are equality and inequality.)

In CFA theory, time-stamps also go by the less-intuitive name of contours.
Both the concrete and the abstract state-spaces leave the exact structure of

time-stamps and bindings undefined. The choices for bindings determine the

polyvariance of the analysis. Time-stamps encode the history of execution in

some fashion, so that under abstraction, their structure determines the context

in context-sensitivity.

The concrete and abstract state-spaces are linked by a parameterized second-

order abstraction map, αη : Σ → Σ̂, where the parameter η : (Addr → �Addr) ∪
(Time → �Time) abstracts both bindings and times:

αη
(call , β, ve, t) = (αη

(V), αη
(β), αη

(ve), η(t))

αη
BEnv (β) = λv.η(β(v))

αη
VEnv (ve) = λb̂.

�

η(b)=b̂

αη
(ve(b))

αη
D(d) = {αη

Val(d)}
αη

Val(lam, β) = (lam, αη
(β)).

2.2 Transition rules

With state-spaces defined, we can specify the concrete transition relation for

CPS, (⇒) ⊆ Σ × Σ; then we can define its corresponding abstraction under

the map αη, (❀) ⊆ Σ̂ × Σ̂. With the help of an argument-expression evaluator,

E : Exp× BEnv ×VEnv � D:

E (v, β, ve) = ve(β(v))

E (lam, β, ve) = (lam, β),

ς ∈ Σ = Call× BEnv ×VEnv × Time

β ∈ BEnv = Var � Bind

ve ∈ VEnv = Bind � D

d ∈ D = Val

val ∈ Val = Clo

clo ∈ Clo = Lam× BEnv

b ∈ Bind is an infinite set of bindings

t ∈ Time is an infinite set of times

ς̂ ∈ Σ̂ = Call× �BEnv × �VEnv ×�Time

β̂ ∈ �BEnv = Var � �Bind

bve ∈ �VEnv = �Bind → D̂

d̂ ∈ D̂ = P(dVal)

cval ∈ dVal = dClo

cclo ∈ dClo = Lam× �BEnv

b̂ ∈ �Bind is a finite set of bindings

t̂ ∈ �Time is a finite set of times

Fig. 1. State-space for the lambda calculus: Concrete (left) and abstract (right).

we can define the single concrete transition rule for CPS:

([[(f e1 . . . en)
�]], β, ve, t)⇒ (call , β��, ve �, t�), where:

di = E(ei, β, ve)

d0 = ([[(λ��
(v1 . . . vn) call)]], β�)

t� = tick(call , t)
bi = alloc(vi, t

�)
β�� = β�[vi �→ bi]
ve � = ve[bi �→ di].

With the help of an abstract evaluator, Ê : Exp× �BEnv × �VEnv → D̂:

Ê (v, β̂, �ve) = �ve(β̂(v))

Ê (lam, β̂, �ve) =
�

(lam, β̂)
�

,

we can define an analogous transition rule for the abstract semantics:

([[(f e1 . . . en)
�]], β̂, �ve, t̂) ❀ (call , β̂��, �ve �, t̂�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

β̂�� = β̂�[vi �→ b̂i]

�ve � = �ve � [b̂i �→ d̂i].

2.3 Concrete and abstract interpretation

To evaluate a program call in the concrete semantics, its meaning is the set of
states reachable from the initial state ς0 = (call , [], [], t0):

{ς : ς0 ⇒∗ ς} .

A näıve abstract interpreter could behave similarly, exploring the states reach-
able from the initial state ς̂ = (call , [],⊥, t̂0):

{ς̂ : ς̂0 ❀∗ ς̂} .

In practice, widening on value environments [5] accelerates convergence [16, 27].

2.4 Parameters for the analysis framework

Time-stamp incrementers and binding allocators serve as parameters:

alloc : Var × Time → Bind �alloc : Var ×�Time → �Bind

tick : Call× Time → Time �tick : Call×�Time → �Time.

Time-stamps are designed to encode context/history. Thus, the abstract time-
stamp incrementer �tick and the abstraction map αη decide how much history to
retain in the abstraction. As a result, the function �tick determines the context-
sensitivity of the analysis. Similarly, the abstract binding allocator chooses how
to allocate abstract bindings to variables, and in doing so, it fixes the polyvari-
ance of the analysis. Once the parameters are fixed, the semantics must obey a
straightforward soundness theorem:

Theorem 1. If αη(ς) � ς̂ and ς ⇒ ς �, then there exists a state ς̂ � such that
ς̂ ❀ ς̂ � and αη(ς �) � ς̂ �.

3 Analogy: Singleton abstraction to binding anodization

Focusing on our goal of solving the generalized environment problem—reasoning
about the equality of individual bindings—we turn to singleton abstraction [4].
Singleton abstraction has been used in pointer and shape analyses to drive must-
alias analysis; we extend singleton abstraction, and the framework of anodiza-
tion, to determine the equivalence of bindings to the same variable. That is, we
will be able to solve the environment problem with our singleton abstraction,
but not the generalized environment problem. In Section 4, we will solve the
generalized problem by bootstrapping binding invariants on top of anodization.

A Galois connection [6] X −−−→←−−−α

γ
X̂ has a singleton abstraction iff there exists

a subset X̂1 ⊆ X̂ such that for all x̂ ∈ X̂1, size(γ(x̂)) = 1. The critical property of
singleton abstractions is that equality of abstract representatives implies equal-
ity of their concrete constituents. Hence, when the set X contains addresses,
singleton abstractions enable must-alias analysis. Analogously, when the set X
contains bindings, singleton abstraction enables binding-equality testing.

2.3 Concrete and abstract interpretation

To evaluate a program call in the concrete semantics, its meaning is the set of
states reachable from the initial state ς0 = (call , [], [], t0):

{ς : ς0 ⇒∗ ς} .

A näıve abstract interpreter could behave similarly, exploring the states reach-
able from the initial state ς̂ = (call , [],⊥, t̂0):

{ς̂ : ς̂0 ❀∗ ς̂} .

In practice, widening on value environments [5] accelerates convergence [16, 27].

2.4 Parameters for the analysis framework

Time-stamp incrementers and binding allocators serve as parameters:

alloc : Var × Time → Bind �alloc : Var ×�Time → �Bind

tick : Call× Time → Time �tick : Call×�Time → �Time.

Time-stamps are designed to encode context/history. Thus, the abstract time-
stamp incrementer �tick and the abstraction map αη decide how much history to
retain in the abstraction. As a result, the function �tick determines the context-
sensitivity of the analysis. Similarly, the abstract binding allocator chooses how
to allocate abstract bindings to variables, and in doing so, it fixes the polyvari-
ance of the analysis. Once the parameters are fixed, the semantics must obey a
straightforward soundness theorem:

Theorem 1. If αη(ς) � ς̂ and ς ⇒ ς �, then there exists a state ς̂ � such that
ς̂ ❀ ς̂ � and αη(ς �) � ς̂ �.

3 Analogy: Singleton abstraction to binding anodization

Focusing on our goal of solving the generalized environment problem—reasoning
about the equality of individual bindings—we turn to singleton abstraction [4].
Singleton abstraction has been used in pointer and shape analyses to drive must-
alias analysis; we extend singleton abstraction, and the framework of anodiza-
tion, to determine the equivalence of bindings to the same variable. That is, we
will be able to solve the environment problem with our singleton abstraction,
but not the generalized environment problem. In Section 4, we will solve the
generalized problem by bootstrapping binding invariants on top of anodization.

A Galois connection [6] X −−−→←−−−α

γ
X̂ has a singleton abstraction iff there exists

a subset X̂1 ⊆ X̂ such that for all x̂ ∈ X̂1, size(γ(x̂)) = 1. The critical property of
singleton abstractions is that equality of abstract representatives implies equal-
ity of their concrete constituents. Hence, when the set X contains addresses,
singleton abstractions enable must-alias analysis. Analogously, when the set X
contains bindings, singleton abstraction enables binding-equality testing.

Example 1. Suppose we have a concrete machine with three memory addresses:
0x01, 0x02 and 0x03. Suppose the addresses abstract so that α(0x01) = â1 and
α(0x02) = α(0x03) = â∗. The address â1 is a singleton abstraction, because
it has only one concrete constituent—0x01. After a pointer analysis, if some
pointer variable p1 points only to address â� and another pointer variable p2
points only to address â�� and â� = â1 = â�� then p1 must alias p2.

In order to solve the super-β inlining problem, Shivers informally proposed
a singleton abstraction for k-CFA which he termed “re-flow analysis” [27]. In
re-flow analysis, the CFA is re-run, but with a “golden” contour inserted at a
point of interest. The golden contour—allocated only once—is a singleton ab-
straction by definition. While sound in theory, re-flow analysis does not work in
practice: the golden contour flows everywhere the non-golden contours flow, and
inevitably, golden and non-golden contours are compared for equality. Neverthe-
less, we can salvage the spirit of Shivers’s golden contours through anodization.
Under anodization, bindings are not golden, but may be temporarily gold-plated.

In anodization, the concrete and abstract bindings are split into two halves:

Bind = Bind∞ + Bind1
�Bind = �Bind∞ + �Bind1,

and we assert “anodizing” bijections between these halves:

g : Bind∞ → Bind1 ĝ : �Bind∞ → �Bind1,

such that:
η(b) = b̂ iff η(g(b)) = ĝ(b̂).

Every abstract binding has two variants, a summary variant, b̂, and an anodized
variant, ĝ(b̂). We will craft the concrete and abstract semantics so that the an-
odized variant will be a singleton abstraction. We must anodize concrete bind-
ings as well because the concrete semantics have to employ the same anodization
strategy as the abstract semantics in order to prove soundness.

The concrete semantics must also obey an abstraction-uniqueness constraint
over anodized bindings, so that for any reachable state (call , β, ve, t):

If g(b) ∈ dom(ve) and g(b�) ∈ dom(ve) and η(b) = η(b�) then b = b�. (1)

In other words, once the concrete semantics decides to allocate an anodized bind-
ing, it must de-anodize existing concrete bindings which abstract to the same
abstract binding. Anodization by itself does not dictate when a concrete seman-
tics should allocate an anodized binding; this is a policy decision; anodization is
a mechanism. For simple policies, the parameters alloc and �alloc, by selecting
anodized or summary bindings, jointly encode the policy.

As an example of the simplest anodization policy, we describe the higher-
order analog of Balakrishnan and Reps’s recency abstraction in Section 3.3. An
example of a more complicated policy is closure-focusing (Section 3.4).

Formally, the concrete transition rule must rebuild the value environment
with every transition:

([[(f e1 . . . en)
�]], β, ve, t)⇒ (call , β��, ve �, t�), where:

di = E(ei, β, ve)

d0 = ([[(λ��
(v1 . . . vn) call)]], β�)

t� = tick(call , t)
bi = alloc(vi, t

�)
B = {bi : bi ∈ Bind1}
β�� = (g−1

B β�)[vi �→ bi]

ve � = (g−1
B ve)[bi �→ (g−1

B di)],

where the de-anodization function g−1
B : (BEnv → BEnv) ∪ (VEnv → VEnv) ∪

(D → D) ∪ (Bind → Bind) strips the anodization off bindings that abstract to
any binding in the set B:

g−1
B (b) = b

g−1
B (g(b)) =

�
b η(b) = η(b�) for some g(b�) ∈ B

g(b) otherwise

g−1
B (lam, β) = (lam, g−1

B (β))

g−1
B (β) = λv.g−1

B (β(v))

g−1
B (ve) = λb.g−1

B (ve(b)).

The corresponding abstract transition rule must also rebuild the value envi-
ronment with every transition:

([[(f e1 . . . en)
�]], β̂, �ve, t̂) ❀ (call , β̂��, �ve �, t̂�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

B̂ =
�

b̂i : b̂i ∈ Bind1

�

β̂�� = (ĝ−1
B̂

β̂�)[vi �→ b̂i]

�ve � = (ĝ−1
B̂

�ve) � [b̂i �→ (ĝ−1
B̂

d̂i)],

where the de-anodization function ĝ−1
B̂

: (�BEnv → �BEnv) ∪ (�VEnv → �VEnv) ∪
(�D → �D) ∪ (�Val → �Val) ∪ (�Bind → �Bind) strips the anodization off abstract

Formally, the concrete transition rule must rebuild the value environment
with every transition:

([[(f e1 . . . en)
�]], β, ve, t)⇒ (call , β��, ve �, t�), where:

di = E(ei, β, ve)

d0 = ([[(λ��
(v1 . . . vn) call)]], β�)

t� = tick(call , t)
bi = alloc(vi, t

�)
B = {bi : bi ∈ Bind1}
β�� = (g−1

B β�)[vi �→ bi]

ve � = (g−1
B ve)[bi �→ (g−1

B di)],

where the de-anodization function g−1
B : (BEnv → BEnv) ∪ (VEnv → VEnv) ∪

(D → D) ∪ (Bind → Bind) strips the anodization off bindings that abstract to
any binding in the set B:

g−1
B (b) = b

g−1
B (g(b)) =

�
b η(b) = η(b�) for some g(b�) ∈ B

g(b) otherwise

g−1
B (lam, β) = (lam, g−1

B (β))

g−1
B (β) = λv.g−1

B (β(v))

g−1
B (ve) = λb.g−1

B (ve(b)).

The corresponding abstract transition rule must also rebuild the value envi-
ronment with every transition:

([[(f e1 . . . en)
�]], β̂, �ve, t̂) ❀ (call , β̂��, �ve �, t̂�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

B̂ =
�

b̂i : b̂i ∈ Bind1

�

β̂�� = (ĝ−1
B̂

β̂�)[vi �→ b̂i]

�ve � = (ĝ−1
B̂

�ve) � [b̂i �→ (ĝ−1
B̂

d̂i)],

where the de-anodization function ĝ−1
B̂

: (�BEnv → �BEnv) ∪ (�VEnv → �VEnv) ∪
(�D → �D) ∪ (�Val → �Val) ∪ (�Bind → �Bind) strips the anodization off abstract

bindings in the set B̂:

ĝ−1
B̂

(b̂) =

�
b̂� b̂ ∈ B̂ and b̂ = ĝ(b̂�)
b̂ otherwise

ĝ−1
B̂

�
d̂1, . . . , d̂n

�
=

�
ĝ−1

B̂
(d̂1), . . . , ĝ−1

B̂
(d̂n)

�

ĝ−1
B̂

(lam, β̂) = (lam, ĝ−1
B̂

(β̂))

ĝ−1
B̂

(β̂) = λv.ĝ−1
B̂

(β̂(v))

ĝ−1
B̂

(�ve) = λb̂.ĝ−1
B̂

(�ve(b̂)).

Because the concrete semantics obey the uniqueness constraint (Equation 1),
the abstract interpretation may treat the set �Bind1 as a set of singleton abstrac-
tions for the purpose of testing binding equality.

3.1 Solving the environment problem with anodization

Given two abstract environments β̂1 and β̂2, it is easy to determine whether the
concrete constituents of these environments agree on the value of some subset
of their domains, {v1, . . . , vn}:

Theorem 2. If αη(β1) = β̂1 and αη(β2) = β̂2, and β̂1(v) = β̂2(v) and β̂1(v) ∈
�Bind1, then β1(v) = β2(v).

Proof. By the abstraction-uniqueness constraint.

3.2 Implementing anodization efficiently

The näıve implementation of the abstract transition rule is inefficient: the de-
anodizing function ĝ−1

B̂
must walk the abstract value environment with every

transition. Even in 0CFA, this walk adds a quadratic penalty to every transition.
To avoid this walk, the analysis should use serial numbers on bindings “under
the hood,” so that:

�Bind ≈ �Bind∞ × N.

That is, the value environment should be implemented as two maps:

�VEnv ≈ (�Bind∞ → N → D̂)× (�Bind∞ → N).

Given a split value environment �ve = (f̂ , ĥ), a binding (b̂, n) is anodized only if
n = ĥ(b̂), and it is not anodized if n < ĥ(b̂). Thus, when the allocator chooses to
anodize a binding, it does need to walk the value environment with the function
ĝ−1

B̂
to strip away existing anodization; it merely needs to increment the serial

number associated with that binding.

The constraints of a straightforward soundness theorem (Theorem 1) lead to
an abstract transition relation over this space:

(([[(f e1 . . . en)
�]], β̂, �ve, t̂),≡) ❀ ((call , β̂��, �ve �, t̂�),≡�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

B̂ =
�

b̂i : b̂i ∈ �Bind1

�

β̂�� = (ĝ−1
B̂

β̂�)[vi �→ b̂i]

�ve � = (ĝ−1
B̂

�ve) � [b̂i �→ (ĝ−1
B̂

d̂i)],

and singleton bindings are reflexively equivalent:

b̂ ∈ �Bind1

b̂ ≡� b̂,

and bindings between singletons are trivially equivalent:

β̂(ei) ∈ �Bind1 b̂i ∈ �Bind1

β̂(ei) ≡� b̂i,

and untouched bindings retain their equivalence:

b̂ ≡ b̂� b̂ �∈ B̂ b̂� �∈ B̂

b̂ ≡� b̂�,

and bindings re-bound to themselves also retain their equivalence:

β̂(ei) ≡ b̂i

β̂(ei) ≡� b̂i.

4.1 Solving the generalized environment problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , β̂, �ve, t̂),≡) and two ab-
stract bindings, b̂ and b̂�, if α̇η(call , β, ve, t) � ((call , β̂, �ve, t̂),≡) and η(b) = b̂
and η(b�) = b̂� and b̂ ≡ b̂�, then ve(b) = ve(b�).

Proof. By the structure of the direct product abstraction α̇η.

The constraints of a straightforward soundness theorem (Theorem 1) lead to
an abstract transition relation over this space:

(([[(f e1 . . . en)
�]], β̂, �ve, t̂),≡) ❀ ((call , β̂��, �ve �, t̂�),≡�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

B̂ =
�

b̂i : b̂i ∈ �Bind1

�

β̂�� = (ĝ−1
B̂

β̂�)[vi �→ b̂i]

�ve � = (ĝ−1
B̂

�ve) � [b̂i �→ (ĝ−1
B̂

d̂i)],

and singleton bindings are reflexively equivalent:

b̂ ∈ �Bind1

b̂ ≡� b̂,

and bindings between singletons are trivially equivalent:

β̂(ei) ∈ �Bind1 b̂i ∈ �Bind1

β̂(ei) ≡� b̂i,

and untouched bindings retain their equivalence:

b̂ ≡ b̂� b̂ �∈ B̂ b̂� �∈ B̂

b̂ ≡� b̂�,

and bindings re-bound to themselves also retain their equivalence:

β̂(ei) ≡ b̂i

β̂(ei) ≡� b̂i.

4.1 Solving the generalized environment problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , β̂, �ve, t̂),≡) and two ab-
stract bindings, b̂ and b̂�, if α̇η(call , β, ve, t) � ((call , β̂, �ve, t̂),≡) and η(b) = b̂
and η(b�) = b̂� and b̂ ≡ b̂�, then ve(b) = ve(b�).

Proof. By the structure of the direct product abstraction α̇η.

The constraints of a straightforward soundness theorem (Theorem 1) lead to
an abstract transition relation over this space:

(([[(f e1 . . . en)
�]], β̂, �ve, t̂),≡) ❀ ((call , β̂��, �ve �, t̂�),≡�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

B̂ =
�

b̂i : b̂i ∈ �Bind1

�

β̂�� = (ĝ−1
B̂

β̂�)[vi �→ b̂i]

�ve � = (ĝ−1
B̂

�ve) � [b̂i �→ (ĝ−1
B̂

d̂i)],

and singleton bindings are reflexively equivalent:

b̂ ∈ �Bind1

b̂ ≡� b̂,

and bindings between singletons are trivially equivalent:

β̂(ei) ∈ �Bind1 b̂i ∈ �Bind1

β̂(ei) ≡� b̂i,

and untouched bindings retain their equivalence:

b̂ ≡ b̂� b̂ �∈ B̂ b̂� �∈ B̂

b̂ ≡� b̂�,

and bindings re-bound to themselves also retain their equivalence:

β̂(ei) ≡ b̂i

β̂(ei) ≡� b̂i.

4.1 Solving the generalized environment problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , β̂, �ve, t̂),≡) and two ab-
stract bindings, b̂ and b̂�, if α̇η(call , β, ve, t) � ((call , β̂, �ve, t̂),≡) and η(b) = b̂
and η(b�) = b̂� and b̂ ≡ b̂�, then ve(b) = ve(b�).

Proof. By the structure of the direct product abstraction α̇η.

5 Application: Higher-order rematerialization

Now that we have a generalized environment analysis, we can precisely state

the condition under which higher-order rematerialization is safe. Might’s work

on the correctness of super-β inlining formally defined safe to mean that the

transformed program and the untransformed program maintain a bisimulation

in their concrete executions [16].

Theorem 4. It is safe to rematerialize the expression e� in place of the expres-
sion e in the call site call iff for every reachable compound abstract state of
the form ((call , β̂��, �ve, t̂),≡), it is the case that Ê(e�, β̂��, �ve) = (lam �, β̂�

) and
Ê(e, β̂��, �ve) = (lam, β̂) and the relation σ ⊆ Var×Var is a substitution that uni-
fies the free variables of lam � with lam and for each (v�, v) ∈ σ, β̂�

(v�) ≡ β̂(v).

Proof. The proof of bisimulation has a structure identical to that of the proof

correctness for super-β inlining in [16].

6 Related work

Clearly, this work draws on the Cousots’ abstract interpretation [5, 6]. Binding

invariants succeed the Cousots’ work as a relational abstraction of higher-order

programs [7, 8], with the distinction that binding invariants range over abstract

bindings instead of formal parameters. Binding invariants were also inspired by

Gulwani et al.’s quantified abstract domains [9]; there is an implicit universal

quantification ranging over concrete constituents in the definition of the abstrac-

tion map αη
≡. This work also falls within and retains the advantages of Schmidt’s

small-step abstract interpretive framework [24]. As a generalization of control-

flow analysis, the platform of Section 2 is a small-step reformulation of Shivers’s

denotational CFA [27], which itself was a extension of Jones’s original CFA [13].

Like the Nielsons’ unifying work on CFA [22], this work is an implicit argument

in favor of the inherent flexibility of abstract interpretation for the static analy-

sis of higher-order programs. In contrast with constraint-based, type-based and

model-checking CFAs, small-step abstract interpretive CFAs are easy to extend

via direct products and parameterization.

From shape analysis, anodized bindings draw on singleton abstraction while

binding invariants are inspired by both predicate-based abstractions [3] and

three-valued logic analysis [23]. Chase et. al had early work on counting-based

singleton abstractions [4], while Hudak’s work on analysis of first-order functional

programs employed a precursor to counting-based singleton abstraction [10]. An-

odization, using factored sets of singleton and non-singleton bindings, is most

closely related to the Balakrishnan and Reps’s recency abstraction [2], except

that anodization works on bindings instead of addresses, and anodization is not

restricted to a most-recent allocation policy. Superficially, one might also term

Jones and Bohr’s work on termination analysis of the untyped λ-calculus via

size-change as another kind of shape analysis for higher-order programs [14].

Formally, the concrete transition rule must rebuild the value environment
with every transition:

([[(f e1 . . . en)
�]], β, ve, t)⇒ (call , β��, ve �, t�), where:

di = E(ei, β, ve)

d0 = ([[(λ��
(v1 . . . vn) call)]], β�)

t� = tick(call , t)
bi = alloc(vi, t

�)
B = {bi : bi ∈ Bind1}
β�� = (g−1

B β�)[vi �→ bi]

ve � = (g−1
B ve)[bi �→ (g−1

B di)],

where the de-anodization function g−1
B : (BEnv → BEnv) ∪ (VEnv → VEnv) ∪

(D → D) ∪ (Bind → Bind) strips the anodization off bindings that abstract to
any binding in the set B:

g−1
B (b) = b

g−1
B (g(b)) =

�
b η(b) = η(b�) for some g(b�) ∈ B

g(b) otherwise

g−1
B (lam, β) = (lam, g−1

B (β))

g−1
B (β) = λv.g−1

B (β(v))

g−1
B (ve) = λb.g−1

B (ve(b)).

The corresponding abstract transition rule must also rebuild the value envi-
ronment with every transition:

([[(f e1 . . . en)
�]], β̂, �ve, t̂) ❀ (call , β̂��, �ve �, t̂�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

B̂ =
�

b̂i : b̂i ∈ Bind1

�

β̂�� = (ĝ−1
B̂

β̂�)[vi �→ b̂i]

�ve � = (ĝ−1
B̂

�ve) � [b̂i �→ (ĝ−1
B̂

d̂i)],

where the de-anodization function ĝ−1
B̂

: (�BEnv → �BEnv) ∪ (�VEnv → �VEnv) ∪
(�D → �D) ∪ (�Val → �Val) ∪ (�Bind → �Bind) strips the anodization off abstract

Shape analysis of higher-order programs exists.

Shape analysis is useful.

¡Gracias!

matt.might.net

I don’t know.

Yes.

No.

Widening?

Narrowing?

