Shape analysis of
nigher-order programs

A colorless green ide¢

Matthew Might
University of Utah

matt.might.net
www.ucombinator.org

http://www.ucombinator.org
http://www.ucombinator.org

Is shape analysis of higher-order programs meaning

What isshape analysis of higher-order programs?

tOs stiBhape analysis , but with different words.

address :: binding

structure :: binding environment

heap :: value environment

shape analysis :: environment analysis

Why bother?

Top-down reason: Need to move beyond CFAs.

Bottom-up reason

Bottom-up reason

Pointer analysis

Bottom-up reason

Pointer analysis

Bottom-up reason

Pointer analysis

Shape analysis

Bottom-up reason

Pointer analysis

What is Ohigher order?:

The essence of higher-order: Lambda calculus.

Syntax

Variables; function abstractions; applications.

Syntax

Variables; function abstractions; applications.
Vv (! (V) e) (e 1€ 2)

Semantics

Value = Value! Value

No Integers.

No [3oats.

NO arrays.

NO structs.

No pointers.

No mutation.

Lambda-calculus lacks linked, mutable, dynamic struct

Shape analysis studies linked, mutable, dynamic struc

S0, does shape analysis of thealculus mean anything

Do functions have shap

What determines the shape of these functions?

Parameters.

-1.0 =035

flz)= az?+ bx+ C

f="z2Asin(! z+ ")

Free variables determine function shape.

What determines the value of free variables?

Environments.

Function = Closure = Lambda-term + Environment

"z A sin(! x+ ")

("z.A sin(l z+ "), JA=11 =1," =% J])

COS

Environments are linked, mutable, dynamic data struct

Shape analysis studies linked, mutable, dynamic struc

Shape analysis of thecalculus Is environment analysi:

Shape analysis determines the meaning of function

Same tools apply

¥ Singleton abstraction
¥ Relational abstraction

¥ Heap/shape predicate

But Prst,

do environments matter?

Application: Inlining

(let ((f (lambda (x h)
(if X
(h)

(lambda () x)))))
(f #t (f #f nil)))

Application: Inlining

(let ((f (lambda (x h)
(if X
n)

(lambda () x)))))
(f #t (f #f nil)))

Environment in closure must match environment at ce

Special environment probl

ODoesenui(X) = enwv(x)?0

Application: Rematerializati

(1)

|

(lambda () z)

Compiler wants to Inline, but Is out of scope at the cal

Application: Rematerializati

((lambda () y))

|

(lambda () z)

Compiler wants to Inline, but Is out of scope at the cal

General environment proble

ODoesenui(z) = enw(y)?0

Approach: Build general solution atop special solutio

Starting point:

K-CFA for CPS

In CPS, all calls must be talil calls.

Functions never return, so no stack required.

Small-step state-spac

| 1 State = Call" Env
"1 Env =Var# Clo
clo! Clo =Lam" Env

Small-step state-spac

| 1 State = Call" Env
"1 Env.=Var# Clo
clo! Clo =Lam" Env

Split environments
(Shivers, 1991)

' Env =Var" Clo

Split environments
(Shivers, 1991)

' Env =Var" Clo
' Env =Var" Clo

Split environments
(Shivers, 1991)

' I BEnv =Var" Bind
vel VEnv = Bind" Clo

| € State = Call x BEnv x VEnv
" € BEnv = Var# Bind
ve € VEnv = Bind # Clo

clo € Clo = Lam x BEnv

b < Bind IS some Inbnite set

| € State = PC x Struct x Heap
S € Struct = Var” Addr
h € Heap = Addr " Tagged

t € Tagged= Type x Struct

a € Addr Is some Inbnite set

Solving the

special problem

Special problem

g g

Special problem

Special problem

Special problem

When does a(b) = o(b) imply b=b ?

When the abstract bindings are singleton abstractio

A singleton abstraction has only one concrete constitus

Next step: Engineer a singleton abstraction into sema

Anodized bindings

Bindings

Anodized bindings

Anodized

Anodized bindings

- Anodized
—1

Anodization constrain

If g(b) and g(b) are reachable anti (b) = ! (), thenb= D.

Policy example: Recency
(Balakrishnan & Reps, 20(

Anodize most-recently allocated binding.

Solving the

general problem

What impliesve(b) = ve(ly)?

Fact 1: ve(b) = ve(b)

Fact 2: ve(b) = ve(b) and ve(ld) = ve(lb’) impliesve(b) = ve(lr").

When will we know thatve(b) = ve(b’)?

Whenb is bound tod’ during function call.

When (f x) calls (! (v) call), we knowve(! (x)) = ve(! '(v)).

Solution: Track binding invariants as separate abstract

Binding invariants

| 1 Stater " Bind # Bind

74

Relational

Mechanical

Relational

%

Mechanical

Relational

‘¢w X
S

A %

Mechanical

Relational
P p— 50

¢¢W X
S

0..
Mechanical

Relational

Mechanical

Related work

¥ Cousot & Cousot,1977,1979, 1991, 1994.
¥ Sagiv, Reps, & Wilhelm, 2002.
¥ Ball et al., 2001.

¥ Hudak et al., 1985.

¥ Chase et al., 1990.

¥ Shivers, 1988, 1991.

¥ Jagannathan et al., 1998.

More In paper

Specibc problemTo determine the safety of inlining the lambda term lam at the
call site [(f ...)], we need to know that for every environment " in which this
call is evaluated, that "[f] = (lam,"") and " (v) = "*(v) for each free variable Vv
in the term lam.?

More In paper

ol(call, B, ve, t) = (a(V), a"(3), a"(ve), n(t))
AL (B) = AV.n(B(v))
g, (VE) = AB.| | a"(ve(b)
n(b)=8
a'h(d) = {af,,(d)}
o'l (lam, B) = (lam, a"(3)).

Specibc problemTo determine the safety of inlining the lambda term lam at the
call site [(f ...)], we need to know that for every environment " in which this
call is evaluated, that "[f] = (lam,"') and " (v) = "'(v) for each free variable v

#(b) = Bi! #(g(b) = @)

[A)i # andl
' I;ia

| (e;) # Bind,

the form ((call, 9", ve, §),=), it is the case that B(e', 9" ve) = (lam',¥) and
B(e, 9" ve) = (lam, ©) and the relation" C Var x Var is a substitution that uni-
Pes the free variables of lamwith lam and for each(V',v) € *, ©'(v!) = O(v).

gs (b) = b

- _ b "(b) = " (b) for someg(b) " B
% (9() = g(b) otherwise

Theorem 3.

stract bmdmgs 8 and 9
and #(B) = 8 and B! 9, then ve(b) = ve(b).

gs'(lam,!) = (lam,gg (1))
gs (1) = #v.gg t(! (V)
g 1(ve) = #b.g, *(ve(b)).

Theorem 2. If#'(1,) = O, (v) and Oy (v) !

Bindy, then ! 1(v) = ! (V).

O and #' (!) = Oy (v) =

0,, and !

.e)'].9,ve O !
@ = B(e, O, Ve)
& & ([t
f = fick (call, ©)

B = %lloc(vi,ﬁ)

= §:8" Bind;
O = (@ "9 #54]

([(feq..

Theorem 1. I" then there exists a state B such that

B! B and"

If" (')%band! !

(1Y % B (vy ..

alloc : Var x Time — Bind alloc : Var x Time — Bind

%
tick : Call x Time — Time fick : Call x Time — ‘fime

ve' = (@ 've)

Theorem 4. It is safe to rematerialize the expressione' in place of the expres-
sion e in the call site call i! for every reachable compound abstract state o

(([[(f €1...€n

Given a compound abstract state ((call,©, de,9),!) and two ab-

if "0 (call,! ,ve,t) (((call,®, de,®),!) and #(b) = 8

(call, @', ve', 8), where:

.Vp) calbD],

B! O = Call" BEmw" YEnv" Time
#1 BEnv=Var$ Bind
! YEnv= Bind#t D
é O = pP(a)
Sal! Wal= @10
Eo! &lo= Lam" BEnw
81 Bind is a bnite set of bindings

1 Time is a bnite set of times

~/

YU, de, 8),0) ((call, V", G, #),1 "), where:

5(6.,.1@@)
" ([N o) calD], 1)
ti ck:(call t)

dlloc(vi, 1)

{ b # Bindy |

(A_l' o $%b;]

) [b, $/((g§1dl)]

f
13

e’ = (9" 0

e)' 1!, ve, t) ! (call,! ', ve' '), where:
d; = &£(e;, !, ve)
do=(" (v1
t’ = tick (call, 1)
by = alloc(v;,t')
B ={b:b" Bindi}

V= (g5t v #$bj]
ve' = (g5 ve)[b; #$ (g5 d;)],

([(fes..

|0') V) cal)])

R

Shape analysis of higher-order programs exists.

Shape analysis is useful.

AGracias!

matt.might.net

| donOt know.

Yes.

NO.

Widening?

Narrowing?

