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How do you design an 
abstract interpreter?



More science; less art?



Yes.



A tale of two machines



analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.
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Where to add 
nondeterminism?



Where to add sets?



A two-step process.



1.Snipping
2.Trickling



Snipping



Why doesn’t putting hats 
on everything work?



It doesn’t abstract.





α

ϒ



Where does infinite 
structure come from?



Recursive definitions.



Example: λ-calculus



Closure = Lambda × Environment

Environment = Var → Closure



Closure = Lambda × Environment

Environment = Var → Closure



Closure = Lambda × Environment

Environment = Var → Closure



∞



How do we untie this knot?





Scott & Strachey, 1966
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So, what happens 
to the semantics?



How do programmers 
handle recursive structures?



Pointers.



struct Clo {
 Lam   lam ;
 Env   env ;
} ;

struct Env {
 Var   var ;
 Clo   value ;
 Env*  env ;
} ;



struct Clo {
 Lam   lam ;
 Env   env ;
} ;

struct Env {
 Var   var ;
 Clo   value ;
 Env*  env ;
} ;

error: field ‘clo’ has incomplete type
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struct Env {
 Var   var ;
 Clo   value ;
 Env*  env ;
} ;



struct Clo {
 Lam   lam ;
 Env   env ;
} ;

struct Env {
 Var   var ;
 Clo   value ;
 Env*  env ;
} ;

*



But, math lacks malloc().



So, we add a store.



concrete semantics for CPS into several abstract interpreters. The grammar for
(pure) CPS is conveniently small:

f, e ∈ Exp ::= Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
v ∈ Var is a set of identifiers

call ∈ Call ::= (f e1 . . . en).

A textbook concrete (small-step) state-space (Σ) for pure CPS is also simple:

ς ∈ Σ = Call× Env
ρ ∈ Env = Var � Clo

clo ∈ Clo = Lam× Env .

And, the small-step transition relation, (⇒) ⊆ Σ ×Σ needs but one rule:

([[(f e1 . . . en)]], ρ)⇒ (call , ρ��), where
(lam, ρ�) = E(f, ρ)

lam = [[(λ (v1 . . . vn) call)]]
ρ�� = ρ�[vi �→ E(ei, ρ)],

where the argument evaluator E : Exp × Env � Clo evaluates an expression in
the context of an environment:

E(v, ρ) = ρ(v)
E(lam, ρ) = (lam, ρ).

3 A näıve attempt: “Throw hats on everything”

At first glance, it appears that the only change between concrete and abstract
semantics is typographical: hats appear on all of the abstract domains (and
the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
passing style, to arrive at an abstract state-space Σ̂:

ς̂ ∈ Σ̂ = Call× �Env

ρ̂ ∈ �Env = Var→ P
�
�Clo

�

�clo ∈ �Clo = Lam× �Env .

But, there is an obvious problem with this “abstract” state-space: it’s infinite, be-
cause closures contain environments, and environments contain closures. More-
over, a structural abstraction function defined on the concrete state-space isn’t
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At first glance, it appears that the only change between concrete and abstract
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the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
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to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,
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Store-passing style.
(Scott & Strachey, 1966)
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concrete semantics for CPS into several abstract interpreters. The grammar for
(pure) CPS is conveniently small:

f, e ∈ Exp ::= Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
v ∈ Var is a set of identifiers

call ∈ Call ::= (f e1 . . . en).

A textbook concrete (small-step) state-space (Σ) for pure CPS is also simple:

ς ∈ Σ = Call× Env
ρ ∈ Env = Var � Clo

clo ∈ Clo = Lam× Env .

And, the small-step transition relation, (⇒) ⊆ Σ ×Σ needs but one rule:

([[(f e1 . . . en)]], ρ)⇒ (call , ρ��), where
(lam, ρ�) = E(f, ρ)

lam = [[(λ (v1 . . . vn) call)]]
ρ�� = ρ�[vi �→ E(ei, ρ)],

where the argument evaluator E : Exp × Env � Clo evaluates an expression in
the context of an environment:

E(v, ρ) = ρ(v)
E(lam, ρ) = (lam, ρ).

3 A näıve attempt: “Throw hats on everything”

At first glance, it appears that the only change between concrete and abstract
semantics is typographical: hats appear on all of the abstract domains (and
the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
passing style, to arrive at an abstract state-space Σ̂:

ς̂ ∈ Σ̂ = Call× �Env

ρ̂ ∈ �Env = Var→ P
�
�Clo

�

�clo ∈ �Clo = Lam× �Env .

But, there is an obvious problem with this “abstract” state-space: it’s infinite, be-
cause closures contain environments, and environments contain closures. More-
over, a structural abstraction function defined on the concrete state-space isn’t



After
and a new transition rule:

([[(f e1 . . . en)]], ρ,σ)⇒ (call , ρ��, σ��), where
((lam, ρ�), σ�0) = E((f, ρ), σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an �∈ dom(σ�0)

ρ�� = ρ�[vi �→ ai]
(cloi, σ

�
i) = E((ei, ρ), σ�i−1)

σ�� = σ�n[ai �→ cloi],

where the argument evaluator E : (Exp×Env)×Store � (Clo×Store) evaluates
an expression in the context of an environment and a store, to return a value
and a store:

E((v, ρ), σ) = (σ(ρ(v)), σ)
E((lam, ρ), σ) = ((lam, ρ), σ).

Cleaning up with useless-variable elimination Applying useless-variable
elimination [20] to the transformed semantics (again treating the semantics like
an interpreter) picks up on the fact that the argument evaluator never modifies
the store, which leads to a cleaner transition relation:

([[(f e1 . . . en)]], ρ,σ)⇒ (call , ρ��, σ�), where
(lam, ρ�) = E(f, ρ,σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an �∈ dom(σ)

ρ�� = ρ�[vi �→ ai]
cloi = E(ei, ρ,σ)

σ� = σ[ai �→ cloi],

where the argument evaluator E : Exp×Env ×Store � Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

E(v, ρ,σ) = σ(ρ(v))
E(lam, ρ,σ) = (lam, ρ).

4.3 Option 2: Snipping Clo → Env

The other option for eliminating recursion is to snip the Clo → Env edge. This
snip leads to a family of analyses with a character unlike any in the published
literature on higher-order flow analysis.
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to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
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: infinite set of addresses → finite set of addresses



η : Addr → �Addr



η : Addr → �Addr5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo
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to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,
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then F (X1, X2, . . . , X3) is also a Galois connection.



Xi is a Galois connection
F (X1, X2, . . . , X3) is a Galois connection



Example 1. Given Galois connections (A,!A) −−−→←−−−
α

γ
(Â,!Â) and (B,!B) −−−→←−−−

α′

γ′

(B̂,!B̂), the product Galois connection is the structure (A × B,!A×B) −−−−→←−−−−
α′′

γ′′

(Â× B̂,!Â×B̂), where:

α′′(a, b) = (α(a),α′(b))

γ′′(â, b̂) = (γ(a), γ′(b)).

For the sake of mechanizing the process, we phrase the definitions of structural
Galois connections as inference rules taking us from less-structured Galois con-
nection to a more-structured one; for example:

(A,!A) −−−→←−−−
α

γ
(Â,!Â) (B,!B) −−−→←−−−

α′

γ′

(B̂,!B̂)

(A×B,!A×B) −−−−→←−−−−
α′′

γ′′

(Â× B̂,!Â×B̂).

5.3 Galois inference rules

In this work, we use the inference rules sketched in Figure 2 in addition to
the “standard” structural Galois connections found in Nielson et al. [13]. (For
brevity, we omit defining new concretization and abstraction maps in each rule.)

(P (A),!1) −−−−−→←−−−−−
λS.S

λS.S
(P(A),!1) (power identity)

(P (A),!1) −−−→←−−−
α

γ
(P(Â),!2) (P (B),!′

1) −−−→←−−−
α′

γ′

(P(B̂),!′
2)

(P (A×B),!′′
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γ′′

(P(Â× B̂),!′′
2 )

(power product)
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α

γ
(P(Ŷ ),!2)

(P (X → Y ),!′′
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(P(X → Ŷ ),!′′
2 )

(image)
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α

γ
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(P (X),!1) −−−→←−−−
α′

γ′

(P(X̂),!′
2)

(power lift)
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α

γ
(P(X̂),!2) (P (Y ),!′

1) −−−→←−−−
α′

γ′

(P(Ŷ ),!′
2)

(P (X → Y ),!′′
1 ) −−−−→←−−−−

α′′

γ′′

(P(X̂ → Ŷ ),!′′
2 )

(function)

Fig. 2. Structural inference rules for generating an abstract-state space. Once a
designer specifies a Galois connection over the leaves of the concrete state-space,
these inference rules construct an abstract state-space and corresponding abstrac-
tion/concretization functions.

Some inference rules



5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�
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(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.
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�

α(a)=â
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â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
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α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
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where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:
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Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,
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Controls flow-sensitivity.
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