
Abstract
interpreters

for free
Matthew Might

University of Utah
matt.might.net
@mattmight

“I replaced myself with
a shell script.”

Hilary Mason

My life goal: Replace myself
with a macro.LATEX

Big
Idea

small-step concrete semantics
=>

small-step abstract semantics

small-step concrete semantics
=>

small-step abstract semantics

(for free)

How do you design an
abstract interpreter?

More science; less art?

Yes.

A tale of two machines

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

The principle?

Put hats on everything.

Problem: It doesn’t work.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

analyses (which take a fundamentally different approach to abstraction of envi-

ronments and closures). Choice points in the method also end up (quite unex-

pectedly) providing graph-theoretic explanations for the emergence of properties

such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal

dimension to the art of analysis design. One can teach a student what abstract

interpretation is, and what Galois connections are, but this knowledge doesn’t

make a student an analysis designer any more than rote knowledge of the syntax

of Java makes her a programmer. She is still left with the question of how to

design a static analysis. The method described in this work provides one answer

to that question: it constitutes a process students can follow to go from a concrete

semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics

resemble the concrete semantics. We point out this resemblance to encourage

the idea that the abstract semantics might be synthesized from the concrete

semantics. Consider the concrete rule for Move in a register machine:

([[var := var �
]] : stmt , env , heap)⇒ (stmt , env [var �→ env(var �

)], heap).

The transition moves to the next statement, and updates the environment in

the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var �
]] : stmt , �env , �heap) ❀ (stmt , �env [var �→ �env(var �

)], �heap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-

ilar that presenting them both in a technical paper begs charges of redundancy.

Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule

for pointer assignment:

([[*var := var �
]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) �→ env(var �

)]),

and its abstract counterpart:

â ∈ �env(var)

([[*var := var �]] : stmt , �env , �heap) ❀ (stmt , �env , �heap � [â �→ �env(var �)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there

is one subsequent state for each possible abstract address to which the machine

may write. The abstract rule also changed from functional extension to join for

updating the heap. Staring at the similarities, it feels like there should be a

principled method that can figure out where to introduce the nondeterminism

and where to swap functional extension for join.

Where to add
nondeterminism?

Where to add sets?

A two-step process.

1.Snipping
2.Trickling

Snipping

Why doesn’t putting hats
on everything work?

It doesn’t abstract.

α

ϒ

Where does infinite
structure come from?

Recursive definitions.

Example: λ-calculus

Closure = Lambda × Environment

Environment = Var → Closure

Closure = Lambda × Environment

Environment = Var → Closure

Closure = Lambda × Environment

Environment = Var → Closure

∞

How do we untie this knot?

Scott & Strachey, 1966

Clo Env

VarLam

Clo Env

VarLam

Clo Env

VarLam

So, what happens
to the semantics?

How do programmers
handle recursive structures?

Pointers.

struct Clo {
 Lam lam ;
 Env env ;
} ;

struct Env {
 Var var ;
 Clo value ;
 Env* env ;
} ;

struct Clo {
 Lam lam ;
 Env env ;
} ;

struct Env {
 Var var ;
 Clo value ;
 Env* env ;
} ;

error: field ‘clo’ has incomplete type

struct Clo {
 Lam lam ;
 Env env ;
} ;

struct Env {
 Var var ;
 Clo value ;
 Env* env ;
} ;

struct Clo {
 Lam lam ;
 Env env ;
} ;

struct Env {
 Var var ;
 Clo value ;
 Env* env ;
} ;

*

But, math lacks malloc().

So, we add a store.

concrete semantics for CPS into several abstract interpreters. The grammar for
(pure) CPS is conveniently small:

f, e ∈ Exp ::= Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
v ∈ Var is a set of identifiers

call ∈ Call ::= (f e1 . . . en).

A textbook concrete (small-step) state-space (Σ) for pure CPS is also simple:

ς ∈ Σ = Call× Env
ρ ∈ Env = Var � Clo

clo ∈ Clo = Lam× Env .

And, the small-step transition relation, (⇒) ⊆ Σ ×Σ needs but one rule:

([[(f e1 . . . en)]], ρ)⇒ (call , ρ��), where
(lam, ρ�) = E(f, ρ)

lam = [[(λ (v1 . . . vn) call)]]
ρ�� = ρ�[vi �→ E(ei, ρ)],

where the argument evaluator E : Exp × Env � Clo evaluates an expression in
the context of an environment:

E(v, ρ) = ρ(v)
E(lam, ρ) = (lam, ρ).

3 A näıve attempt: “Throw hats on everything”

At first glance, it appears that the only change between concrete and abstract
semantics is typographical: hats appear on all of the abstract domains (and
the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
passing style, to arrive at an abstract state-space Σ̂:

ς̂ ∈ Σ̂ = Call× �Env

ρ̂ ∈ �Env = Var→ P
�
�Clo

�

�clo ∈ �Clo = Lam× �Env .

But, there is an obvious problem with this “abstract” state-space: it’s infinite, be-
cause closures contain environments, and environments contain closures. More-
over, a structural abstraction function defined on the concrete state-space isn’t

State-space (CPS λ-C)

concrete semantics for CPS into several abstract interpreters. The grammar for
(pure) CPS is conveniently small:

f, e ∈ Exp ::= Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
v ∈ Var is a set of identifiers

call ∈ Call ::= (f e1 . . . en).

A textbook concrete (small-step) state-space (Σ) for pure CPS is also simple:

ς ∈ Σ = Call× Env
ρ ∈ Env = Var � Clo

clo ∈ Clo = Lam× Env .

And, the small-step transition relation, (⇒) ⊆ Σ ×Σ needs but one rule:

([[(f e1 . . . en)]], ρ)⇒ (call , ρ��), where
(lam, ρ�) = E(f, ρ)

lam = [[(λ (v1 . . . vn) call)]]
ρ�� = ρ�[vi �→ E(ei, ρ)],

where the argument evaluator E : Exp × Env � Clo evaluates an expression in
the context of an environment:

E(v, ρ) = ρ(v)
E(lam, ρ) = (lam, ρ).

3 A näıve attempt: “Throw hats on everything”

At first glance, it appears that the only change between concrete and abstract
semantics is typographical: hats appear on all of the abstract domains (and
the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
passing style, to arrive at an abstract state-space Σ̂:

ς̂ ∈ Σ̂ = Call× �Env

ρ̂ ∈ �Env = Var→ P
�
�Clo

�

�clo ∈ �Clo = Lam× �Env .

But, there is an obvious problem with this “abstract” state-space: it’s infinite, be-
cause closures contain environments, and environments contain closures. More-
over, a structural abstraction function defined on the concrete state-space isn’t

State-space (CPS λ-C)

State-space (CPS λ-C)
Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (CPS λ-C)
Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (CPS λ-C)

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (snipped)

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (snipped)

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (snipped)

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (snipped)

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (snipped)

How do transitions change?

Store-passing style.
(Scott & Strachey, 1966)

Before

concrete semantics for CPS into several abstract interpreters. The grammar for
(pure) CPS is conveniently small:

f, e ∈ Exp ::= Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
v ∈ Var is a set of identifiers

call ∈ Call ::= (f e1 . . . en).

A textbook concrete (small-step) state-space (Σ) for pure CPS is also simple:

ς ∈ Σ = Call× Env
ρ ∈ Env = Var � Clo

clo ∈ Clo = Lam× Env .

And, the small-step transition relation, (⇒) ⊆ Σ ×Σ needs but one rule:

([[(f e1 . . . en)]], ρ)⇒ (call , ρ��), where
(lam, ρ�) = E(f, ρ)

lam = [[(λ (v1 . . . vn) call)]]
ρ�� = ρ�[vi �→ E(ei, ρ)],

where the argument evaluator E : Exp × Env � Clo evaluates an expression in
the context of an environment:

E(v, ρ) = ρ(v)
E(lam, ρ) = (lam, ρ).

3 A näıve attempt: “Throw hats on everything”

At first glance, it appears that the only change between concrete and abstract
semantics is typographical: hats appear on all of the abstract domains (and
the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
passing style, to arrive at an abstract state-space Σ̂:

ς̂ ∈ Σ̂ = Call× �Env

ρ̂ ∈ �Env = Var→ P
�
�Clo

�

�clo ∈ �Clo = Lam× �Env .

But, there is an obvious problem with this “abstract” state-space: it’s infinite, be-
cause closures contain environments, and environments contain closures. More-
over, a structural abstraction function defined on the concrete state-space isn’t

After
and a new transition rule:

([[(f e1 . . . en)]], ρ,σ)⇒ (call , ρ��, σ��), where
((lam, ρ�), σ�0) = E((f, ρ), σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an �∈ dom(σ�0)

ρ�� = ρ�[vi �→ ai]
(cloi, σ

�
i) = E((ei, ρ), σ�i−1)

σ�� = σ�n[ai �→ cloi],

where the argument evaluator E : (Exp×Env)×Store � (Clo×Store) evaluates
an expression in the context of an environment and a store, to return a value
and a store:

E((v, ρ), σ) = (σ(ρ(v)), σ)
E((lam, ρ), σ) = ((lam, ρ), σ).

Cleaning up with useless-variable elimination Applying useless-variable
elimination [20] to the transformed semantics (again treating the semantics like
an interpreter) picks up on the fact that the argument evaluator never modifies
the store, which leads to a cleaner transition relation:

([[(f e1 . . . en)]], ρ,σ)⇒ (call , ρ��, σ�), where
(lam, ρ�) = E(f, ρ,σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an �∈ dom(σ)

ρ�� = ρ�[vi �→ ai]
cloi = E(ei, ρ,σ)

σ� = σ[ai �→ cloi],

where the argument evaluator E : Exp×Env ×Store � Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

E(v, ρ,σ) = σ(ρ(v))
E(lam, ρ,σ) = (lam, ρ).

4.3 Option 2: Snipping Clo → Env

The other option for eliminating recursion is to snip the Clo → Env edge. This
snip leads to a family of analyses with a character unlike any in the published
literature on higher-order flow analysis.

After (cleaned up)

and a new transition rule:

([[(f e1 . . . en)]], ρ,σ)⇒ (call , ρ��, σ��), where
((lam, ρ�), σ�0) = E((f, ρ), σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an �∈ dom(σ�0)

ρ�� = ρ�[vi �→ ai]
(cloi, σ

�
i) = E((ei, ρ), σ�i−1)

σ�� = σ�n[ai �→ cloi],

where the argument evaluator E : (Exp×Env)×Store � (Clo×Store) evaluates
an expression in the context of an environment and a store, to return a value
and a store:

E((v, ρ), σ) = (σ(ρ(v)), σ)
E((lam, ρ), σ) = ((lam, ρ), σ).

Cleaning up with useless-variable elimination Applying useless-variable
elimination [20] to the transformed semantics (again treating the semantics like
an interpreter) picks up on the fact that the argument evaluator never modifies
the store, which leads to a cleaner transition relation:

([[(f e1 . . . en)]], ρ,σ)⇒ (call , ρ��, σ�), where
(lam, ρ�) = E(f, ρ,σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an �∈ dom(σ)

ρ�� = ρ�[vi �→ ai]
cloi = E(ei, ρ,σ)

σ� = σ[ai �→ cloi],

where the argument evaluator E : Exp×Env ×Store � Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

E(v, ρ,σ) = σ(ρ(v))
E(lam, ρ,σ) = (lam, ρ).

4.3 Option 2: Snipping Clo → Env

The other option for eliminating recursion is to snip the Clo → Env edge. This
snip leads to a family of analyses with a character unlike any in the published
literature on higher-order flow analysis.

But, the state-space
is still infinite.

So, how do we deal
with addresses?

Cousot & Cousot, 1977

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (snipped)

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

State-space (snipped)

: infinite set of addresses → finite set of addresses

η : Addr → �Addr

η : Addr → �Addr5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

Trickling

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

If structures X1, X2, . . . , Xn are Galois connections,
then F (X1, X2, . . . , X3) is also a Galois connection.

Xi is a Galois connection
F (X1, X2, . . . , X3) is a Galois connection

Example 1. Given Galois connections (A,!A) −−−→←−−−
α

γ
(Â,!Â) and (B,!B) −−−→←−−−

α′

γ′

(B̂,!B̂), the product Galois connection is the structure (A × B,!A×B) −−−−→←−−−−
α′′

γ′′

(Â× B̂,!Â×B̂), where:

α′′(a, b) = (α(a),α′(b))

γ′′(â, b̂) = (γ(a), γ′(b)).

For the sake of mechanizing the process, we phrase the definitions of structural
Galois connections as inference rules taking us from less-structured Galois con-
nection to a more-structured one; for example:

(A,!A) −−−→←−−−
α

γ
(Â,!Â) (B,!B) −−−→←−−−

α′

γ′

(B̂,!B̂)

(A×B,!A×B) −−−−→←−−−−
α′′

γ′′

(Â× B̂,!Â×B̂).

5.3 Galois inference rules

In this work, we use the inference rules sketched in Figure 2 in addition to
the “standard” structural Galois connections found in Nielson et al. [13]. (For
brevity, we omit defining new concretization and abstraction maps in each rule.)

(P (A),!1) −−−−−→←−−−−−
λS.S

λS.S
(P(A),!1) (power identity)

(P (A),!1) −−−→←−−−
α

γ
(P(Â),!2) (P (B),!′

1) −−−→←−−−
α′

γ′

(P(B̂),!′
2)

(P (A×B),!′′
1) −−−−→←−−−−

α′′

γ′′

(P(Â× B̂),!′′
2)

(power product)

(P (Y),!1) −−−→←−−−
α

γ
(P(Ŷ),!2)

(P (X → Y),!′′
1) −−−→←−−−

α′

γ′

(P(X → Ŷ),!′′
2)

(image)

(P (X),!1) −−−→←−−−
α

γ
(X̂,!2)

(P (X),!1) −−−→←−−−
α′

γ′

(P(X̂),!′
2)

(power lift)

(P (X),!1) −−−→←−−−
α

γ
(P(X̂),!2) (P (Y),!′

1) −−−→←−−−
α′

γ′

(P(Ŷ),!′
2)

(P (X → Y),!′′
1) −−−−→←−−−−

α′′

γ′′

(P(X̂ → Ŷ),!′′
2)

(function)

Fig. 2. Structural inference rules for generating an abstract-state space. Once a
designer specifies a Galois connection over the leaves of the concrete state-space,
these inference rules construct an abstract state-space and corresponding abstrac-
tion/concretization functions.

Some inference rules

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

?

Cousot & Cousot, 1979

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

(�) = α ◦ (⇒) ◦ γ

(Cousot2, 1979)

5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → �Addr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),�P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× �Env × �Store

ρ̂ ∈ �Env = Var � �Addr
�clo ∈ �Clo = Lam× �Env

σ̂ ∈ �Store = �Addr � �Clo

â ∈ �Addr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ,σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
�

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (❀) ⊆ Σ̂ × Σ̂:

ς̂� �� �
([[(f e1 . . . en)]], ρ̂, σ̂) ❀

ς̂�

� �� �
(call , ρ̂��, σ̂�) , where

(lam, ρ̂�) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = �alloc(vi, ς̂)
ρ̂�� = ρ̂�[vi �→ âi]

σ̂� = σ̂ � [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × �Store � �Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function �alloc : Var×Σ̂ →
�Addr . (The concrete semantics selected addresses nondeterministically from out-

side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

k-CFA (Shivers, 1991)

What if we snip a
different edge?

Snip Clo-to-Env

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Environment-flow analysis

Snip Σ-to-Call?
Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Controls flow-sensitivity.

Snip Env-to-Var?

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

Controls field-sensitivity.

Snip Clo-to-Lam?

Call

Σ

����������

��

Clo

��

�� Env

��

��

Lam Var

Call

Store

�� ����
��

��
��

� Σ

����
��

��
��

�

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr � B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var � Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr � Clo
a ∈ Addr is an infinite set of addresses,

No word to describe it.

Doggie bag matt.might.net
@mattmight

Doggie bag

Scott & Strachey, 1966

matt.might.net
@mattmight

Doggie bag

Scott & Strachey, 1966 Cousot & Cousot, 1977

matt.might.net
@mattmight

Doggie bag

Scott & Strachey, 1966 Cousot & Cousot, 1977 Cousot & Cousot, 1979

matt.might.net
@mattmight

Doggie bag

Scott & Strachey, 1966 Cousot & Cousot, 1977 Cousot & Cousot, 1979

Merci!

matt.might.net
@mattmight

