Static analysis of modern
software systems:

Taming control-flow

Matt Might
University of Utah
matt.might.net
ucombinator.org

Problem

Software fails.

Problem

® Software fails because we can’t engineer it.
® We can’t engineer what we can’t predict.

® We can’t predict the behavior of software.

Message

® Static analysis of modern software is hard!
® Control-flow analysis is the gatekeeper.

® Yet, precise control-flow analysis is possible.

Optimization Parallelism

A++

Optimization Parallelism

Static analysis

Software “engineering”

MOW DO THEY KNOW THE
LOAD LIMIT ON BRIDGES,
DAD?
.__../

_g;\fa-‘

m \\\L

J

i L

THEY DRINE BIGGER AND

BIGSER TRUGS OVER THE

BRIDGE UNTIL T BREAKS

TUEN THEY WEIGH THE
LAST TR K AND
REBUILD THE BRIDGE .

CH. 1

SHOLD'VE
GUESSED.

DEAR, IF YOU
DON'T KNOW
THE ANSHER,
JUST TELL

_ HM

VVhy we need

software engineering

Security vulnerabilities

$80 billion in cyber-crime each year.

Cost and cause of insecurity

@® Vulnerabilities @ Fraud @ Dumb Employees DoS

Cost of cybercrime ($80bn)

Cost and cause of insecurity

@® Vulnerabilities @ Fraud @ Dumb Employees @ DoS

Cost of cybercrime ($80bn)

Source: CSI/FBI Survey 2007

Cost and cause of insecurity

@® Vulnerabilities @ Fraud @ Dumb Employees @ DoS

Cost of cybercrime ($80bn) Type of vulnerability

® Buffer Overflow @ Injection Int Overflow @ Format String @ Other

Source: CSI/FBI Survey 2007 Source: US CERT, Feb 2008

Software bugs

Bugs cost U.S. economy $60 billion annually.
NIST

VVhy bugs are bad

<exploding-rocket-video />

Al =S FACE

* CNN
fiteracte

Parallelism is here

Source: Intel

Parallelism is here

2010

Source: Intel

Parallelism is here

)
]
o
0

0
]
o
o

s GHz

2010

Source: Intel

Parallelism is here

2010

Source: Intel

Parallelism is here

We are here.

2010

Source: Intel

Parallelism is here

We are here. \

\ GHz

2010

Source: Intel

Tomorrow’s software

Tomorrow’s software

The future!?

| 4

Bottom line

If we want software that is...

® ..more parallel,
® ..more correct,

® ..more secure,

then we need engineering.

Why can’t we predict
what software will do?

Why can’t we predict
what software will do?

Because Alan Turing said we can't.

“Thou shalt not write a

program which determines
whether a program halts.”

Banned by corollary

® Will a program eventually do X?

® Will a program never do Y!

A “loop” hole

® Always answering “yes” or “no’” is impossible.

® Answering “yes,” “no” or “maybe” is allowed.

The static analysis game

The static analysis game

\/\”

The static analysis game

Ta++ =

The static analysis game

The static analysis game

The static analysis game

MAX++ ratt =

= =

“Full employment theorem.” -Appel

VWhy analyzing modern

software is hard

What happens here?

animal .eat(food);

What happens here?

What is animal?

N\

animal .eat(food);

N

What is food?

What happens here?

vold process (Animal animal) {

food = world.gather() ;
animal .eat(food);

What happens here?

Who calls process!?

N\,

vold process (Animal animal) {

food = world.gather() ;

animal.eatf%squi\\.
§

What is world!?

22

The control-flow problem

The control-flow problem

Control-flow
Data-flow

Gatekeeper

Before we can do anything interesting,
we must bound interprocedural control-flow.

Essence of the problem

Value = Object

Essence of the problem

Value = Object

= Class + Record

Essence of the problem

Value = Object
= Class + Record
C Code + Data

Which language

is the paragon of
value = code + data!’

A-calculus

Assertion

If we can analyze A-calculus expressions,
we can analyze object-oriented programs.

A-calculus (Church, 1928)

A-calculus (Church, 1928)

Alonzo Church

® Minimalist, universal language

A-calculus (Church, 1928)

® Minimalist, universal language

® Three expression types:

V [variable]

A-calculus (Church, 1928)

Alonzo Church

® Minimalist, universal language

® Three expression types:

V [variable]

e1(e2) [function application]

A-calculus (Church, 1928)

Alonzo Church

® Minimalist, universal language

® Three expression types:

V [variable]
e1(e2) [function application]

Av.e [anonymous function]

Lisp and Scheme

® v=V

* fle) = (f e
®)v.e = (lambda (v) e)

A-fortified

Lisp C++ (Boost)
SML Python
Haskell Ruby

Scala Smalltalk
Java JavaScript

CH PHP(!)

One rule: B-reduction

(Av.v2)(3)

One rule: B-reduction

32

Another interpretation

Functions = Closures

Closure = N X Env

Env= Var — Value

Ex: (Az.z + 2|z~ 1))

Essence of the essence

® Value = Code + Data

® Closure = A\ + Environment

Control-flow question

Given a call site f(x), what could f be?

Control-flow scenarios

Control-flow scenarios

let f = A\z.zZ
1in f(x)

Control-flow scenarios

Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may
be invoked at a given call site.

Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may
be invoked at a given call site.

A value-flow analysis conservatively
approximates the values to which
an expression may evaluate.

Techniques for CFA

® Ad hoc techniques
® Constraint-solving
® [ype-based analysis

® Abstract interpretation

Techniques for CFA

® Ad hoc techniques

® Constraint-solving

® [ype-based analysis

® Abstract interpretation

Techniques for CFA

® Ad hoc techniques

® Constraint-solving
y

® [ype-based analysis

® Abstract interpretation

Constraint-based OCFA

What is OCFA!?

Lambda-flow analysis.

The OCFA approximation

® Value = Code x Data
® Closure = Lambda x Env

® Object = Class x Record

The OCFA approximation

® Value = Code
® Closure = Lambda

® Object = Class

\v.en, € FlowsTolei] and wval € FlowsTo[e?]

val € FlowsTo[v]

L -

42

OCFA
f\ val

AV.€p

_.~

e1(e2)

\v.ep, € FlowsTole]

and val € FlowsTolep]

val € F

owsTolei(e2)]

\v.en, € FlowsTole]

and

val € F

owsTolei(e2)]

OCFA

\v.en € FlowsTo|\v.ep]

\v.ep € FlowsTole;] and
val € FlowsTolei(e2)]

\v.en € FlowsTolei] and wval € FlowsToles]
val € FlowsTol|v)

L -

43

OCFA (Palsberg, 1995)

{\v.er} € FlowsTo|\v.ep]

\v.en € FlowsTole]

C FlowsTolei(e2)]

\v.eb € FlowsTole]

FlowsTol|es] € FlowsTo|v]

44

OCFA (Palsberg, 1995)

{\v.er} € FlowsTo|\v.ep]

\v.en € FlowsTole]

C FlowsTolei(e2)]

\v.eb € FlowsTole]

FlowsTol|es] € FlowsTo|v]

45

OCFA (Palsberg, 1995)

{\v.en} € FlowsTo|hv.ep)

\v.ep, € FlowsTole]
C FlowsTolei(e2)]

+ Constraint Solver

\v.ep, € FlowsTole]
FlowsTo[e2] € FlowsTo|v]

= Control-flow analysis

Applications

Classic data-flow analysis
Data-flow optimizations
Global register allocation
Defunctionalization

Static method resolution

Global constant propagation
Global copy propagation
Loop detection/optimization
Escape analysis

Constant folding

A problem with the

“CFA-first” approach

Problem: Cross-flow

map f list

Problem: Cross-flow

fireMissile(n) []

map f list

petBunny(n) [1,2,3]

Problem: Cross-flow

fireMissile(n) []

\

map f list

petBunny(n) [1,2,3]

Problem: Cross-flow

/[]

fireMissile(n)

map f list

petBunny(n) [1,2,3]

Problem: Cross-flow

fireMissile(n) €|

\ ./

map f list

petBunny(n) [1,2,3]

Problem: Cross-flow

fireMissile(n) €|

\ ./

map f list

/

petBunny(n) [1,2,3]

Problem: Cross-flow

fireMissile(n) €|

\ ./

map f list

7\

petBunny(n) [1,2,3]

Problem: Cross-flow

fireMissile(n) €|

\ ./

map f list

7\

petBunny(n) €———[1,2,3]

Problem: Cross-flow

fireMissile(n) €|

map f *]list

°
<
¢
<
©
¢
©
©
&

petBunny(n)(—‘[l,Z,‘,’»]

Problem: Cross-flow

fireMi 5511e(n) G []

N

map f 1}5t

VAR

petBunny(n)(—[l,Z,E»]

Solution platform:

Small-step abstract
Interpretation

Small-step advantage

Small-step advantage

Small-step advantage

Hﬁﬂ,

R P
S
s J/

> 8

Small-step advantage

I 1 s S| (— ;

0, 25,205,258, 2%

A L e § Gty " o ..

Small-step strategy

® Model program as infinite-state machine

® Approximate program with finite-state machine

Small-step machine

Small-step machine

® Convert program e into machine state s,

Small-step machine

® Convert program e into machine state s,

® Transition from state s, to state S,

€

l

So m—p S| m—p So m—p Sg w— S, — ..

Abstract machine

Abstract machine

Abstract machine

Abstract machine

Abstract machine

Abstract machine

Abstract machine

Theorem: simulates the concrete.

Abstraction

Abstraction

‘-

Example: Abstract graph

(letrec ((1pl (A (i x)
(if (=0 i) x
(letrec ((1p2 (A (j £ y) (if (= 0 j)
(1p1 (- i 1) y)
(1p2 (- j 1) £
(£ y))))))

(1p2 10 (A (n) (+ n 1)) x))))))
(1p1 10 0))

i =
al
Q]
0.0
s
@,
S
=
V)
<

Example

Small-step CFA for CPS

Continuation-passing style

v € Var
f,e € Exp = Var 4+ Lam
lam € Lam ::= (A (v ...v,) call)
call € Call ::= (fer...epn)

Concrete state-space

¢ € X = Call x BEnv x Store x Time
0 € BEnv = Var — Addr
o € Store = Addr — Clo
clo € Clo = Lam x BEnv
a € Addr is a set of addresses

t € Time is a set of time-stamps

Simpler option

¢ €Y = Call x Env

p € Env = Var — Clo
clo € Clo = Lam x Env

Concrete state-space

¢ € X = Call x BEnv x Store x Time
0 € BEnv = Var — Addr
o € Store = Addr — Clo
clo € Clo = Lam x BEnv
a € Addr is a set of addresses

t € Time is a set of time-stamps

State-spaces

‘-

State-spaces

’-

Injector

7 Call — X
T (call) = (call,],]|, o)

State-spaces

’-

State-spaces

‘-

call

Factored evaluator

E(v, B,0) = o(B(v))
E(lam, B,0) = (lam, B)

Concrete semantics

When call = [(f e1...ep)]:

(call,B,0,t) = (call’, 3", 0", t"), where
(lam, ') = E(f,B,0)
clo, = &E(e;, B, 0)
lam = [(A (1 ...v,) call)]
t' = tick(call,t)
a; = alloc(v;,t')
3" 5’[%‘ — a;)

o' = ola; — cloj]

65

Concrete semantics

When call = [(f e1...ep)]:

(call,B,0,t) = (call’, 3", 0", t"), where
(lam, 8') = E(f, B, 0)
clo; = E(e;, B, 0)
lam = [(A (1 ...v,) call)]
¢
3" = 5/[%‘ — ;]

o' = ola; — cloj]

65

The easy solution

To'me = N
Addr = Var x Time

tick(_,t) =t+1
alloc(v,t) = (v, t)

State-spaces

call

‘-

State-spaces

Abstracting into a

control-flow analysis

Abstract state-space

fEf]:CaII X BEnv x Store x Time
3 € BEnv = Var — Addr

/\

6€St0re:m“ﬁ77<@)

@E@:Lamx%

/\

a € Addr i1s a finite set of addresses

A

t € Time is a finite set of time-stamps

Abstract state-space

¢ € 3 = Call x BEnv x Store x Time

¢ €Y = Call x BEnv x Store x Time
3 € BEnv = Var — Addr

0 € BEnv = Var — Addr
o € Store = Addr — P (C’lo) o € Store = Addr — Clo
clo € Clo = Lam x BEnv clo € Clo = Lam x BEnv

e~

a € Addr is a finite set of addresses a € Addr is a set of addresses

e~

t € Time is a finite set of time-stamps t € Time is a set of time-stamps

Abstract state-space

L ————

éEizCallxl@\mx%xTime

¢ €Y = Call x BEnv x Store x Time
3 € BEnv = Var — Addr

0 € BEnv = Var — Addr
o € Store = Addr — Clo
@E@:Lamx% clo € Clo = Lam x BEnv

665/75076214/035“%73(6%)

e~

a € Addr is a finite set of addresses a € Addr is a set of addresses

e~

t € Time is a finite set of time-stamps t € Time is a set of time-stamps

Is this state-space finite?

69

Non-recursive

S € > = Call x BEnv x Store x Time

/\

5‘65%07“6:@‘%7)(65)

%E@:Lamx%

B3 € BEnv = Var — Addr

a € Addr is a finite set of addresses

t € Time is a finite set of time-stamps

Non-recursive

S € > = Call x BEnv x Store x Time

/\

o € Store™= Addr /A P 6’5)

A

c/\ZOEZ%— gam X BEnv
B € BEnu®
a € Addr fMite set of addresses

A

t € Time is a finite set of time-stamps

State-spaces

- = call

State-spaces

- = call

Injector

A\ A

T(call) = (call, ||,]|, o)

State-spaces

’-‘\ 7 call

State-spaces

‘-

Abstract components

(~) C X x X

é:Expx%xS/to\m%P<@)

c‘f:Expr/EEng()\m%P(@>

E(v, B,6) = 6(B(v))

c‘f(lam,ﬁA, { lam 6 }

Abstract semantics

When call = [(fe1...ep)]:

(call, 3,6,1) ~ (call', 3", 6,1, where
(lam, ') € E(f, 3,6)
C: = é’(ei,B,&)
lam = [(A (v1...v,) call)]
t = gc\k(call,f)

/\

a; = alloc(v;,)
3" = B'[v; — a]

&' =6 Ula; — G

76

State-spaces
o 7 Lcally T

‘-

State-spaces
o 7 Lcally T

‘-

Abstraction maps

acall, B,0,t) = (call,a(8), a(o), a(t))
a(f) = Av.a(B(v))

a(o) = Na. | | a(o(a))
ala)=a

a(lam, B) = {(lam, a(f3))}

a(a) is set by parameter

a(t) is set by parameter

56 = Na.(6(a) Ué(a))

78

State-spaces
o 7 Lcally T

‘-

State-spaces
o 7 Lcally T

Soundness

S = > ¢

Y Y

A

g W ><~\/

Theorem: If the concrete takes a step,
then the abstract can take a matching step.

80

State-spaces
o 7 Lcally T

State-spaces
o 7 Lcally T

’-

Application:

Buffer-overflow checks

Logic-flow analysis

Logic-flow analysis

y o2 g2 ' [-

0, 25,28, 2% 2%

A L e § Gty " o ..

Logic-flow analysis

1 < length(a)

R@%XX

A § — § — — " — . ..

Logic-flow analysis

1 < length(a)

Beyond CFA

Abstract G.C.

Nondeterministic A.l.
Frame-string analysis
Abstract counting
Logic-flow analysis

Dependence analysis

See matt.might.net

84

Thanks!

85

