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Problem

Software fails.



Problem

• Software fails because we can’t engineer it.

• We can’t engineer what we can’t predict.

• We can’t predict the behavior of software.
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Message

• Static analysis of modern software is hard!

• Control-flow analysis is the gatekeeper.

• Yet, precise control-flow analysis is possible.

4



Optimization Parallelism

Goal

Static analysis

CFA

Security Correctness

CFA++



Optimization Parallelism

Goal

Static analysis

CFA

Security Correctness

CFA++



Software “engineering”
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Why we need 
software engineering
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$80 billion in cyber-crime each year.
FBI

Security vulnerabilities
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Cost and cause of insecurity
Vulnerabilities Fraud Dumb Employees DoS

Cost of cybercrime ($80bn)
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Cost and cause of insecurity

Source: CSI/FBI Survey 2007

Vulnerabilities Fraud Dumb Employees DoS

Cost of cybercrime ($80bn)
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Cost and cause of insecurity

Buffer Overflow Injection Int Overflow Format String Other

Source: US CERT, Feb 2008Source: CSI/FBI Survey 2007

Vulnerabilities Fraud Dumb Employees DoS

Type of vulnerabilityCost of cybercrime ($80bn)
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Software bugs

Bugs cost U.S. economy $60 billion annually.
NIST

10



Why bugs are bad

<exploding-rocket-video />
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$10 billion



Parallelism is here

Source: Intel13
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20101968

Source: Intel
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Parallelism is here

We are here.

20101968

Source: Intel

GHz

Cores
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Parallelism is here

We are here.

20101968

Source: Intel

GHz

Cores
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Tomorrow’s software

Low dependence High locality

14



Tomorrow’s software

Low dependence High locality

The future?
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Bottom line

• ...more parallel,

• ...more correct, 

• ...more secure,

If we want software that is...

then we need engineering.



Why can’t we predict 
what software will do?



Why can’t we predict 
what software will do?

Because Alan Turing said we can’t.

Halt!



“Thou shalt not write a 
program which determines 
whether a program halts.”
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Banned by corollary

• Will a program eventually do X?

• Will a program never do Y?
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A “loop” hole

• Always answering “yes” or “no” is impossible.

• Answering “yes,” “no” or “maybe” is allowed.
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The static analysis game
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The static analysis game
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The static analysis game

*0

*a++ = MAX++
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The static analysis game
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The static analysis game

*0

*a++ = MAX++
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The static analysis game

“Full employment theorem.” -Appel

*0

*a++ = MAX++
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Why analyzing modern 
software is hard
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What happens here?

animal.eat(food);
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What happens here?

animal.eat(food);

What is animal?

What is food?
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What happens here?

animal.eat(food);

void process (Animal animal) {
food = world.gather() ;

}
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What happens here?

animal.eat(food);

void process (Animal animal) {
food = world.gather() ;

}

Who calls process?

What is world?
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The control-flow problem
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The control-flow problem

Control-flow
Data-flow
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Gatekeeper

Before we can do anything interesting,
we must bound interprocedural control-flow.



Essence of the problem

Value = Object
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Essence of the problem

Value = Object
 = Class + Record

25



Essence of the problem

Value = Object
 = Class + Record
⊆ Code + Data
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Which language 
is the paragon of 

value = code + data?
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λ-calculus
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Assertion

If we can analyze λ-calculus expressions, 
we can analyze object-oriented programs.
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λ-calculus (Church, 1928)
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λ-calculus (Church, 1928)

• Minimalist, universal language
Alonzo Church
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λ-calculus (Church, 1928)

• Minimalist, universal language

• Three expression types:

v [variable]

e1(e2) [function application] 

λv.e [anonymous function]

Alonzo Church
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Lisp and Scheme

• v ≡ v

• f(e) ≡ (f e)

• λv.e ≡ (lambda (v) e)
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λ-fortified

• Lisp

• SML

• Haskell

• Scala

• Java

• C#

• C++ (Boost)

• Python

• Ruby

• Smalltalk

• JavaScript

• PHP(!)
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(λv.v2)(3)

One rule: β-reduction
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32

One rule: β-reduction
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Another interpretation

• Functions ≡ Closures

• Closure = λ ⨉ Env

• Env = Var → Value

• Ex: (λx.x + z,[z ↦ 1])
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Essence of the essence

• Value = Code + Data

• Closure = λ + Environment
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Control-flow question

Given a call site f(x), what could f be?
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Control-flow scenarios

f(x)
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Control-flow scenarios

f(x)
let f = λz.z

in
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Control-flow scenarios

f(x)λf.
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Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may

be invoked at a given call site.
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Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may

be invoked at a given call site.

A value-flow analysis conservatively
approximates the values to which

an expression may evaluate.
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Techniques for CFA

• Ad hoc techniques

• Constraint-solving

• Type-based analysis

• Abstract interpretation
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Techniques for CFA

• Ad hoc techniques

• Constraint-solving

• Type-based analysis

• Abstract interpretation
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Constraint-based 0CFA
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What is 0CFA?

Lambda-flow analysis.
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The 0CFA approximation

• Value = Code x Data

• Closure = Lambda x Env

• Object = Class x Record
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The 0CFA approximation

• Value = Code

• Closure = Lambda

• Object = Class
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0CFA

e1(e2)
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0CFA

e1(e2)

λv.eb
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0CFA

e1(e2)

val

λv.eb
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0CFA

e1(e2)

val

λv.eb
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0CFA

e1(e2)

val

λv.eb

λv.eb ∈ FlowsTo[e1]  and  val ∈ FlowsTo[e2]
val ∈ FlowsTo[v]
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0CFA

λv.eb ∈ FlowsTo[e1]  and  val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

e1(e2)

λv.eb

val
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0CFA

λv.eb ∈ FlowsTo[e1]  and  val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]
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0CFA

λv.eb ∈ FlowsTo[e1]  and  val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

λv.eb ∈ FlowsTo[e1]  and  val ∈ FlowsTo[e2]
val ∈ FlowsTo[v]

λv.eb ∈ FlowsTo[λv.eb]
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0CFA (Palsberg, 1995)

       λv.eb ∈ FlowsTo[e1]       
       FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

    λv.eb ∈ FlowsTo[e1]    
    FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]
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0CFA (Palsberg, 1995)

       λv.eb ∈ FlowsTo[e1]       
       FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

    λv.eb ∈ FlowsTo[e1]    
    FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]

+ Constraint Solver

= Control-flow analysis
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Applications

• Classic data-flow analysis

• Data-flow optimizations

• Global register allocation

• Defunctionalization

• Static method resolution

• Global constant propagation

• Global copy propagation

• Loop detection/optimization

• Escape analysis

• Constant folding
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A problem with the 
“CFA-first” approach
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Problem: Cross-flow

map f list
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Solution platform:
Small-step abstract 

interpretation
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Small-step advantage

50



Small-step advantage

s
Π Πʹ

ŝ ŝʹ
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s
Π Πʹ
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Small-step advantage

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...
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Small-step strategy

• Model program as infinite-state machine

• Approximate program with finite-state machine
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Small-step machine
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Small-step machine
• Convert program e into machine state s0

e

s0
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Small-step machine
• Convert program e into machine state s0

• Transition from state sn to state sn+1

e

s0 s1 s2 s3 s4 ...

52



Abstract machine

e

s0 s1 s2 s3 s4 ...
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Abstract machine
e

s0 s1 s2 s3 s4 ...
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Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0
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Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3
ŝ3.1
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Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
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Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

Theorem: The abstract simulates the concrete.
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Abstraction
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Abstraction

s1

s3

s2

ŝ1

ŝ2

α

α

α
54



Example: Abstract graph

60 M. Might, B. Chambers, and O. Shivers

analysis will erroneously conclude that a correct program might give rise to
incorrect behavior. The program succeeds, but the analysis has failed.

We address this problem with Step (3) above: garbage-collecting elements of a
machine state (such as its environment structure and bound values) permits the
abstract interpretation to prune false branches from the state space’s transition
graph. To get a feel for the reduction in the state space, consider the following
doubly nested loop, written in a direct-style Scheme:

(letrec ((lp1 (λ (i x)
(if (= 0 i) x

(letrec ((lp2 (λ (j f y) (if (= 0 j)
(lp1 (- i 1) y)
(lp2 (- j 1) f

(f y))))))
(lp2 10 (λ (n) (+ n i)) x))))))

(lp1 10 0))

Figure 1 shows the flow-sensitive, context-sensitive abstract transition graphs
generated by this loop first without, and then with, abstract garbage collection.
Garbage-collecting environment structure during the exploration of the abstract
state space yields an order of magnitude improvement in the size of the state
space—enough so that the doubly-nested structure of the loop is visually ap-
parent from the second graph. (Besides the improvement in analytic precision,
we also get a secondary benefit in that the processor time and memory space
needed to explore the abstract state space are also greatly reduced.)

Abstract garbage collection sets the stage for another technique known as
abstract counting [9]. With abstract counting, we track the “cardinality” of an
abstract object; that is, we track whether an abstract object currently represents
zero, one or more than one concrete values. Suppose we were to use sets of
concrete values for our abstract values. Ordinarily, if abstract value A were
equal to abstract value B, we could not infer that any concrete value a ∈ A is
equal to any concrete value b ∈ B, except for the case where A and B have size
one. The ability to transfer abstract equality to concrete equality allows us to
more precisely evaluate conditions, e.g. (= x y), in the abstract.

In previous work [9], we developed a higher-order flow-analysis framework,
ΓCFA, which synergistically combines abstract counting and abstract garbage
collection as we’ve just outlined above. The benefit of combining the two is
that we can use abstract counts to reason more precisely about reachable values
during abstract garbage collection. This, in turn, increases the chance that we
can cut off even more branches from the abstract transition graph.

Our purpose in this paper is to show how ΓCFA technology can be applied to
the problem of model-checking software written in higher-order languages. Our
technical contributions are:

1. Enhancing abstract garbage collection by switching from reachability to us-
ability as the criterion for liveness. That is, our garbage collector discards
abstract values and environment structure which are “reachable,” but whose
use is dominated by conditions which have become unsatisfiable. We term
this conditional garbage collection.
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Example: Abstract graph
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Small-step CFA for CPS
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Continuation-passing style

v ∈ Var

f, e ∈ Exp = Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
call ∈ Call ::= (f e1 . . . en)
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Concrete state-space

ς ∈ Σ = Call× BEnv × Store × Time
β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Clo
clo ∈ Clo = Lam× BEnv
a ∈ Addr is a set of addresses

t ∈ Time is a set of time-stamps
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Simpler option

ς ∈ Σ = Call× Env
ρ ∈ Env = Var ⇀ Clo

clo ∈ Clo = Lam× Env
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Concrete state-space

ς ∈ Σ = Call× BEnv × Store × Time
β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Clo
clo ∈ Clo = Lam× BEnv
a ∈ Addr is a set of addresses

t ∈ Time is a set of time-stamps
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State-spaces
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State-spaces

Σ
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Injector

I : Call→ Σ
I(call) = (call , [], [], t0)



State-spaces

Σ
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State-spaces

Σ
ς

call
I
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Factored evaluator

E(v, β, σ) = σ(β(v))
E(lam, β, σ) = (lam, β)
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Concrete semantics
When call = [[(f e1 . . . en)]]:

(call , β, σ, t)⇒ (call ′, β′′, σ′, t′), where

(lam, β′) = E(f, β,σ)
cloi = E(ei, β, σ)
lam = [[(λ (v1 . . . vn) call ′)]]

t′ = tick(call , t)
ai = alloc(vi, t

′)
β′′ = β′[vi "→ ai]
σ′ = σ[ai "→ cloi]
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The easy solution

Time = N
Addr = Var× Time

tick( , t) = t + 1
allock(v, t) = (v, t)

Time = N
Addr = Var× Time

tick( , t) = t + 1
alloc(v, t) = (v, t)
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State-spaces

Σ
ς

call
I
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State-spaces

Σ
ς

call
I

ς

ς
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Abstracting into a 
control-flow analysis
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Abstract state-space
ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

β̂ ∈ B̂Env = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps
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Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env
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Is this state-space finite?
69
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Injector

Î(call) = (call , [], [], t̂0)
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State-spaces

Σ
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Abstract components

(!) ⊆ Σ̂× Σ̂

Ê : Exp× B̂Env × Ŝtore → P
(
Ĉlo

)
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Ê : Exp× B̂Env × Ŝtore → P
(
Ĉlo

)

Ê(v, β̂, σ̂) = σ̂(β̂(v))

Ê(lam, β̂, σ̂) =
{

(lam, β̂)
}
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Abstract semantics
When call = [[(f e1 . . . en)]]:

(call , β̂, σ̂, t̂) ! (call ′, β̂′′, σ̂′, t̂′), where

(lam, β̂′) ∈ Ê(f, β̂, σ̂)

Ĉi = Ê(ei, β̂, σ̂)
lam = [[(λ (v1 . . . vn) call ′)]]

t̂′ = t̂ick(call , t̂)

âi = âlloc(vi, t̂
′)

β̂′′ = β̂′[vi "→ âi]

σ̂′ = σ̂ $ [âi "→ Ĉi]
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Σ
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Abstraction maps
α(call , β, σ, t) = (call , α(β), α(σ), α(t))

α(β) = λv.α(β(v))

α(σ) = λâ.
⊔

α(a)=â

α(σ(a))

α(lam, β) = {(lam, α(β))}
α(a) is set by parameter

α(t) is set by parameter

σ̂ ! σ̂′ = λâ.(σ̂(â) ∪ σ̂′(â))
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Soundness
ς ⇒ !!

α

""

ς ′

α

""

#
""

#
""

ς̂ ! !! ς̂ ′

Theorem:  If the concrete takes a step, 
                    then the abstract can take a matching step.
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State-spaces
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ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr
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Application:
Buffer-overflow checks
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Logic-flow analysis
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Logic-flow analysis
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Logic-flow analysis
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a[i]



Beyond CFA
• Abstract G.C.

• Nondeterministic A.I.

• Frame-string analysis

• Abstract counting

• Logic-flow analysis

• Dependence analysis

• See matt.might.net
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Thanks!
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