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Problem

Software fails.




Problem

® Software fails because we can’t engineer it.
® We can’t engineer what we can’t predict.

® We can’t predict the behavior of software.




Message

® Static analysis of modern software is hard!
® Control-flow analysis is the gatekeeper.

® Yet, precise control-flow analysis is possible.




Optimization Parallelism

A++




Optimization Parallelism

Static analysis




Software “engineering”
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VVhy we need

software engineering




Security vulnerabilities

$80 billion in cyber-crime each year.




Cost and cause of insecurity
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Cost and cause of insecurity

@® Vulnerabilities @ Fraud @ Dumb Employees @ DoS

Cost of cybercrime ($80bn)

Source: CSI/FBI Survey 2007



Cost and cause of insecurity

@® Vulnerabilities @ Fraud @ Dumb Employees @ DoS

Cost of cybercrime ($80bn) Type of vulnerability

® Buffer Overflow @ Injection Int Overflow @ Format String @ Other

Source: CSI/FBI Survey 2007 Source: US CERT, Feb 2008



Software bugs

Bugs cost U.S. economy $60 billion annually.
NIST




VVhy bugs are bad
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Parallelism is here

Source: Intel
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Parallelism is here

We are here.
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Parallelism is here

We are here. \
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Tomorrow’s software




Tomorrow’s software

The future!?
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Bottom line

If we want software that is...

® ..more parallel,
® ..more correct,

® ..more secure,

then we need engineering.




Why can’t we predict
what software will do?




Why can’t we predict
what software will do?

Because Alan Turing said we can't.




“Thou shalt not write a

program which determines
whether a program halts.”




Banned by corollary

® Will a program eventually do X?

® Will a program never do Y!




A “loop” hole

® Always answering “yes” or “no’” is impossible.

® Answering “yes,” “no” or “maybe” is allowed.




The static analysis game




The static analysis game
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The static analysis game

Ta++ =




The static analysis game




The static analysis game




The static analysis game

MAX++ ratt =

= =

“Full employment theorem.” -Appel




VWhy analyzing modern

software is hard




What happens here?

animal .eat(food);




What happens here?

What is animal?

N\

animal .eat(food);

N

What is food?




What happens here?

vold process (Animal animal) {

food = world.gather() ;
animal .eat(food);




What happens here?

Who calls process!?

N\,

vold process (Animal animal) {

food = world.gather() ;

animal.eatf%squi\\.
§

What is world!?
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The control-flow problem




The control-flow problem

Control-flow
Data-flow




Gatekeeper

Before we can do anything interesting,
we must bound interprocedural control-flow.




Essence of the problem

Value = Object




Essence of the problem

Value = Object

= Class + Record




Essence of the problem

Value = Object
= Class + Record
C Code + Data




Which language

is the paragon of
value = code + data!’




A-calculus




Assertion

If we can analyze A-calculus expressions,
we can analyze object-oriented programs.




A-calculus (Church, 1928)




A-calculus (Church, 1928)

Alonzo Church

® Minimalist, universal language




A-calculus (Church, 1928)

® Minimalist, universal language

® Three expression types:

V [variable]
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Alonzo Church

® Minimalist, universal language

® Three expression types:

V [variable]

e1(e2)  [function application]




A-calculus (Church, 1928)

Alonzo Church

® Minimalist, universal language

® Three expression types:

V [variable]
e1(e2)  [function application]

Av.e [anonymous function]




Lisp and Scheme

® v=V

* fle) = (f e
® )v.e = (lambda (v) e)




A-fortified

Lisp C++ (Boost)
SML Python
Haskell Ruby

Scala Smalltalk
Java JavaScript

CH PHP(!)




One rule: B-reduction

(Av.v2)(3)




One rule: B-reduction
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Another interpretation

Functions = Closures

Closure = N X Env

Env= Var — Value

Ex: (Az.z + 2|z~ 1))




Essence of the essence

® Value = Code + Data

® Closure = A\ + Environment




Control-flow question

Given a call site f(x), what could f be?




Control-flow scenarios




Control-flow scenarios

let f = A\z.zZ
1in f(x)




Control-flow scenarios




Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may
be invoked at a given call site.




Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may
be invoked at a given call site.

A value-flow analysis conservatively
approximates the values to which
an expression may evaluate.




Techniques for CFA

® Ad hoc techniques
® Constraint-solving
® [ype-based analysis

® Abstract interpretation




Techniques for CFA

® Ad hoc techniques

® Constraint-solving

® [ype-based analysis

® Abstract interpretation




Techniques for CFA

® Ad hoc techniques

® Constraint-solving
y

® [ype-based analysis

® Abstract interpretation




Constraint-based OCFA




What is OCFA!?

Lambda-flow analysis.




The OCFA approximation

® Value = Code x Data
® Closure = Lambda x Env

® Object = Class x Record




The OCFA approximation

® Value = Code
® Closure = Lambda

® Object = Class
















\v.en, € FlowsTolei] and wval € FlowsTo[e?]

val € FlowsTo[v]

L -
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OCFA
f\ val

AV.€p

\_.~

e1(e2)

\v.ep, € FlowsTole]

and val € FlowsTolep]

val € F
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OCFA

\v.en € FlowsTo|\v.ep]

\v.ep € FlowsTole;] and
val € FlowsTolei(e2)]

\v.en € FlowsTolei] and wval € FlowsToles]
val € FlowsTol|v)

L -
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OCFA (Palsberg, 1995)

{\v.er} € FlowsTo|\v.ep]

\v.en € FlowsTole]

C FlowsTolei(e2)]

\v.eb € FlowsTole]

FlowsTol|es] € FlowsTo|v]
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OCFA (Palsberg, 1995)

{\v.er} € FlowsTo|\v.ep]

\v.en € FlowsTole]

C FlowsTolei(e2)]

\v.eb € FlowsTole]

FlowsTol|es] € FlowsTo|v]
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OCFA (Palsberg, 1995)

{\v.en} € FlowsTo|hv.ep)

\v.ep, € FlowsTole]
C FlowsTolei(e2)]

+ Constraint Solver

\v.ep, € FlowsTole]
FlowsTo[e2] € FlowsTo|v]

= Control-flow analysis




Applications

Classic data-flow analysis
Data-flow optimizations
Global register allocation
Defunctionalization

Static method resolution

Global constant propagation
Global copy propagation
Loop detection/optimization
Escape analysis

Constant folding




A problem with the

“CFA-first” approach




Problem: Cross-flow

map f list




Problem: Cross-flow

fireMissile(n) [ ]
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Problem: Cross-flow
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Problem: Cross-flow
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Problem: Cross-flow

fireMissile(n) €|

\ ./
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Problem: Cross-flow

fireMissile(n) €|

\ ./

map f list

7\

petBunny(n) [1,2,3]




Problem: Cross-flow

fireMissile(n) €|

\ ./

map f list

7\

petBunny(n) €———[1,2,3]




Problem: Cross-flow

fireMissile(n) €|

map f *]list
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petBunny(n)(—‘[l,Z,‘,’»]




Problem: Cross-flow

fireMi 5511e(n) G [ ]

N

map f 1}5t

VAR

petBunny(n)(—[l,Z,E»]




Solution platform:

Small-step abstract
Interpretation




Small-step advantage




Small-step advantage




Small-step advantage
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Small-step advantage
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Small-step strategy

® Model program as infinite-state machine

® Approximate program with finite-state machine




Small-step machine




Small-step machine

® Convert program e into machine state s,




Small-step machine

® Convert program e into machine state s,

® Transition from state s, to state S,

€

l

So m—p S| m—p So m—p Sg w— S, — ..




Abstract machine




Abstract machine




Abstract machine




Abstract machine




Abstract machine




Abstract machine




Abstract machine

Theorem: simulates the concrete.




Abstraction



Abstraction

‘-




Example: Abstract graph

(letrec ((1pl (A (i x)
(if (=0 i) x
(letrec ((1p2 (A (j £ y) (if (= 0 j)
(1p1 (- i 1) y)
(1p2 (- j 1) £
(£ y))))))

(1p2 10 (A (n) (+ n 1)) x))))))
(1p1 10 0))
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Example




Small-step CFA for CPS




Continuation-passing style

v € Var
f,e € Exp = Var 4+ Lam
lam € Lam ::= (A (v ...v,) call)
call € Call ::= (fer...epn)




Concrete state-space

¢ € X = Call x BEnv x Store x Time
0 € BEnv = Var — Addr
o € Store = Addr — Clo
clo € Clo = Lam x BEnv
a € Addr is a set of addresses

t € Time is a set of time-stamps




Simpler option

¢ €Y = Call x Env

p € Env = Var — Clo
clo € Clo = Lam x Env




Concrete state-space

¢ € X = Call x BEnv x Store x Time
0 € BEnv = Var — Addr
o € Store = Addr — Clo
clo € Clo = Lam x BEnv
a € Addr is a set of addresses

t € Time is a set of time-stamps




State-spaces

‘-




State-spaces

’-




Injector

7 Call — X
T (call) = (call, ], ]|, o)




State-spaces

’-




State-spaces

‘-

call




Factored evaluator

E(v, B,0) = o(B(v))
E(lam, B,0) = (lam, B)




Concrete semantics

When call = [(f e1...ep)]:

(call,B,0,t) = (call’, 3", 0", t"), where
(lam, ') = E(f,B,0)
clo, = &E(e;, B, 0)
lam = [(A (1 ...v,) call)]
t' = tick(call,t)
a; = alloc(v;,t')
3" 5’[%‘ — a;)

o' = ola; — cloj]
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Concrete semantics

When call = [(f e1...ep)]:

(call,B,0,t) = (call’, 3", 0", t"), where
(lam, 8') = E(f, B, 0)
clo; = E(e;, B, 0)
lam = [(A (1 ...v,) call)]
¢
3" = 5/[%‘ — ;]

o' = ola; — cloj]
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The easy solution

To'me = N
Addr = Var x Time

tick(_,t) =t+1
alloc(v,t) = (v, t)




State-spaces

call

‘-




State-spaces




Abstracting into a

control-flow analysis




Abstract state-space

fEf]:CaII X BEnv x Store x Time
3 € BEnv = Var — Addr

/\

6€St0re:m“ﬁ77<@)

@E@:Lamx%

/\

a € Addr i1s a finite set of addresses

A

t € Time is a finite set of time-stamps




Abstract state-space

¢ € 3 = Call x BEnv x Store x Time

¢ €Y = Call x BEnv x Store x Time
3 € BEnv = Var — Addr

0 € BEnv = Var — Addr
o € Store = Addr — P (C’lo) o € Store = Addr — Clo
clo € Clo = Lam x BEnv clo € Clo = Lam x BEnv

e~

a € Addr is a finite set of addresses a € Addr is a set of addresses

e~

t € Time is a finite set of time-stamps t € Time is a set of time-stamps




Abstract state-space

L ————

éEizCallxl@\mx%xTime

¢ €Y = Call x BEnv x Store x Time
3 € BEnv = Var — Addr

0 € BEnv = Var — Addr
o € Store = Addr — Clo
@E@:Lamx% clo € Clo = Lam x BEnv

665/75076214/035“%73(6%)

e~

a € Addr is a finite set of addresses a € Addr is a set of addresses

e~

t € Time is a finite set of time-stamps t € Time is a set of time-stamps

Is this state-space finite?
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Non-recursive

S € > = Call x BEnv x Store x Time

/\

5‘65%07“6:@‘%7)(65)

%E@:Lamx%

B3 € BEnv = Var — Addr

a € Addr is a finite set of addresses

t € Time is a finite set of time-stamps




Non-recursive

S € > = Call x BEnv x Store x Time

/\

o € Store™= Addr /A P 6’5)

A

c/\ZOEZ%— gam X BEnv
B € BEnu®
a € Addr fMite set of addresses

A

t € Time is a finite set of time-stamps




State-spaces

- = call




State-spaces

- = call




Injector

A\ A

T(call) = (call, ||, ]|, o)




State-spaces

’-‘\ 7 call




State-spaces

‘-




Abstract components

(~) C X x X

é:Expx%xS/to\m%P<@)




c‘f:Expr/EEng()\m%P(@>

E(v, B,6) = 6(B(v))

c‘f(lam,ﬁA, { lam 6 }




Abstract semantics

When call = [(fe1...ep)]:

(call, 3,6,1) ~ (call', 3", 6,1, where
(lam, ') € E(f, 3,6)
C: = é’(ei,B,&)
lam = [(A (v1...v,) call)]
t = gc\k(call,f)

/\

a; = alloc(v;, )
3" = B'[v; — a]

&' =6 Ula; — G
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State-spaces
o 7 Lcally T

‘-




State-spaces
o 7 Lcally T

‘-




Abstraction maps

acall, B,0,t) = (call,a(8), a(o), a(t))
a(f) = Av.a(B(v))

a(o) = Na. | | a(o(a))
ala)=a

a(lam, B) = {(lam, a(f3))}

a(a) is set by parameter

a(t) is set by parameter

56 = Na.(6(a) Ué(a))
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State-spaces
o 7 Lcally T

‘-




State-spaces
o 7 Lcally T




Soundness

S = > ¢

Y Y

A

g ............. W ......... ><~\/

Theorem: If the concrete takes a step,
then the abstract can take a matching step.
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State-spaces
o 7 Lcally T




State-spaces
o 7 Lcally T

’-




Application:

Buffer-overflow checks




Logic-flow analysis




Logic-flow analysis

y o2 g2 ' [ -
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Logic-flow analysis

1 < length(a)

R@%XX

A § — § —  — " — . ..




Logic-flow analysis

1 < length(a)




Beyond CFA

Abstract G.C.

Nondeterministic A.l.
Frame-string analysis
Abstract counting
Logic-flow analysis

Dependence analysis

See matt.might.net
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Thanks!
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