
Static analysis of modern
software systems:

Taming control-flow
Matt Might

University of Utah
matt.might.net

ucombinator.org

1

Problem

Software fails.

Problem

• Software fails because we can’t engineer it.

• We can’t engineer what we can’t predict.

• We can’t predict the behavior of software.

3

Message

• Static analysis of modern software is hard!

• Control-flow analysis is the gatekeeper.

• Yet, precise control-flow analysis is possible.

4

Optimization Parallelism

Goal

Static analysis

CFA

Security Correctness

CFA++

Optimization Parallelism

Goal

Static analysis

CFA

Security Correctness

CFA++

Software “engineering”

6

Why we need
software engineering

7

$80 billion in cyber-crime each year.
FBI

Security vulnerabilities

8

Cost and cause of insecurity
Vulnerabilities Fraud Dumb Employees DoS

Cost of cybercrime ($80bn)

9

Cost and cause of insecurity

Source: CSI/FBI Survey 2007

Vulnerabilities Fraud Dumb Employees DoS

Cost of cybercrime ($80bn)

9

Cost and cause of insecurity

Buffer Overflow Injection Int Overflow Format String Other

Source: US CERT, Feb 2008Source: CSI/FBI Survey 2007

Vulnerabilities Fraud Dumb Employees DoS

Type of vulnerabilityCost of cybercrime ($80bn)

9

Software bugs

Bugs cost U.S. economy $60 billion annually.
NIST

10

Why bugs are bad

<exploding-rocket-video />

11

$10 billion

Parallelism is here

Source: Intel13

Parallelism is here

20101968

Source: Intel

GHz

13

Parallelism is here

20101968

Source: Intel

GHz

13

Parallelism is here

20101968

Source: Intel

GHz

13

Parallelism is here

We are here.

20101968

Source: Intel

GHz

Cores

13

Parallelism is here

We are here.

20101968

Source: Intel

GHz

Cores

13

Tomorrow’s software

Low dependence High locality

14

Tomorrow’s software

Low dependence High locality

The future?
14

Bottom line

• ...more parallel,

• ...more correct,

• ...more secure,

If we want software that is...

then we need engineering.

Why can’t we predict
what software will do?

Why can’t we predict
what software will do?

Because Alan Turing said we can’t.

Halt!

“Thou shalt not write a
program which determines
whether a program halts.”

17

Banned by corollary

• Will a program eventually do X?

• Will a program never do Y?

18

A “loop” hole

• Always answering “yes” or “no” is impossible.

• Answering “yes,” “no” or “maybe” is allowed.

19

The static analysis game

20

The static analysis game

20

The static analysis game

*0

*a++ = MAX++

20

The static analysis game

*0

*a++ = MAX++

20

The static analysis game

*0

*a++ = MAX++

20

The static analysis game

“Full employment theorem.” -Appel

*0

*a++ = MAX++

20

Why analyzing modern
software is hard

21

What happens here?

animal.eat(food);

22

What happens here?

animal.eat(food);

What is animal?

What is food?

22

What happens here?

animal.eat(food);

void process (Animal animal) {
food = world.gather() ;

}

22

What happens here?

animal.eat(food);

void process (Animal animal) {
food = world.gather() ;

}

Who calls process?

What is world?

22

The control-flow problem

23

The control-flow problem

Control-flow
Data-flow

23

Gatekeeper

Before we can do anything interesting,
we must bound interprocedural control-flow.

Essence of the problem

Value = Object

25

Essence of the problem

Value = Object
 = Class + Record

25

Essence of the problem

Value = Object
 = Class + Record
⊆ Code + Data

25

Which language
is the paragon of

value = code + data?

26

λ-calculus

27

Assertion

If we can analyze λ-calculus expressions,
we can analyze object-oriented programs.

28

λ-calculus (Church, 1928)

29

λ-calculus (Church, 1928)

• Minimalist, universal language
Alonzo Church

29

λ-calculus (Church, 1928)

• Minimalist, universal language

• Three expression types:

v [variable]

e1(e2) [function application]

λv.e [anonymous function]

Alonzo Church

29

λ-calculus (Church, 1928)

• Minimalist, universal language

• Three expression types:

v [variable]

e1(e2) [function application]

λv.e [anonymous function]

Alonzo Church

29

λ-calculus (Church, 1928)

• Minimalist, universal language

• Three expression types:

v [variable]

e1(e2) [function application]

λv.e [anonymous function]

Alonzo Church

29

Lisp and Scheme

• v ≡ v

• f(e) ≡ (f e)

• λv.e ≡ (lambda (v) e)

30

λ-fortified

• Lisp

• SML

• Haskell

• Scala

• Java

• C#

• C++ (Boost)

• Python

• Ruby

• Smalltalk

• JavaScript

• PHP(!)

31

(λv.v2)(3)

One rule: β-reduction

32

32

One rule: β-reduction

32

Another interpretation

• Functions ≡ Closures

• Closure = λ ⨉ Env

• Env = Var → Value

• Ex: (λx.x + z,[z ↦ 1])

33

Essence of the essence

• Value = Code + Data

• Closure = λ + Environment

34

Control-flow question

Given a call site f(x), what could f be?

35

Control-flow scenarios

f(x)

36

Control-flow scenarios

f(x)
let f = λz.z

in

36

Control-flow scenarios

f(x)λf.

36

Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may

be invoked at a given call site.

37

Control-flow analysis

A control-flow analysis conservatively
approximates the procedures which may

be invoked at a given call site.

A value-flow analysis conservatively
approximates the values to which

an expression may evaluate.

37

Techniques for CFA

• Ad hoc techniques

• Constraint-solving

• Type-based analysis

• Abstract interpretation

38

Techniques for CFA

• Ad hoc techniques

• Constraint-solving

• Type-based analysis

• Abstract interpretation

38

Techniques for CFA

• Ad hoc techniques

• Constraint-solving

• Type-based analysis

• Abstract interpretation

38

Constraint-based 0CFA

39

What is 0CFA?

Lambda-flow analysis.

40

The 0CFA approximation

• Value = Code x Data

• Closure = Lambda x Env

• Object = Class x Record

41

The 0CFA approximation

• Value = Code

• Closure = Lambda

• Object = Class

41

0CFA

e1(e2)

42

0CFA

e1(e2)

λv.eb

42

0CFA

e1(e2)

val

λv.eb

42

0CFA

e1(e2)

val

λv.eb

42

0CFA

e1(e2)

val

λv.eb

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[e2]
val ∈ FlowsTo[v]

42

0CFA

e1(e2)

λv.eb

val

42

0CFA

e1(e2)

λv.eb

val

42

0CFA

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

e1(e2)

λv.eb

val

42

0CFA

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

43

0CFA

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[eb]
val ∈ FlowsTo[e1(e2)]

λv.eb ∈ FlowsTo[e1] and val ∈ FlowsTo[e2]
val ∈ FlowsTo[v]

λv.eb ∈ FlowsTo[λv.eb]

43

0CFA (Palsberg, 1995)

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]

44

0CFA (Palsberg, 1995)

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]

45

0CFA (Palsberg, 1995)

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[eb] ⊆ FlowsTo[e1(e2)]

 λv.eb ∈ FlowsTo[e1]
 FlowsTo[e2] ⊆ FlowsTo[v]

{λv.eb} ⊆ FlowsTo[λv.eb]

+ Constraint Solver

= Control-flow analysis

45

Applications

• Classic data-flow analysis

• Data-flow optimizations

• Global register allocation

• Defunctionalization

• Static method resolution

• Global constant propagation

• Global copy propagation

• Loop detection/optimization

• Escape analysis

• Constant folding

46

A problem with the
“CFA-first” approach

47

Problem: Cross-flow

map f list

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Problem: Cross-flow

map f list

fireMissile(n) []

petBunny(n) [1,2,3]

48

Solution platform:
Small-step abstract

interpretation

49

Small-step advantage

50

Small-step advantage

s
Π Πʹ

ŝ ŝʹ

50

Small-step advantage

s
Π Πʹ

ŝ ŝʹ

50

Small-step advantage

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

50

Small-step strategy

• Model program as infinite-state machine

• Approximate program with finite-state machine

51

Small-step machine

52

Small-step machine
• Convert program e into machine state s0

e

s0

52

Small-step machine
• Convert program e into machine state s0

• Transition from state sn to state sn+1

e

s0 s1 s2 s3 s4 ...

52

Abstract machine

e

s0 s1 s2 s3 s4 ...

53

Abstract machine
e

s0 s1 s2 s3 s4 ...

53

Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0

53

Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3
ŝ3.1

53

Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

53

Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

53

Abstract machine
e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

Theorem: The abstract simulates the concrete.
53

Abstraction

54

Abstraction

s1

s3

s2

ŝ1

ŝ2

α

α

α
54

Example: Abstract graph

60 M. Might, B. Chambers, and O. Shivers

analysis will erroneously conclude that a correct program might give rise to
incorrect behavior. The program succeeds, but the analysis has failed.

We address this problem with Step (3) above: garbage-collecting elements of a
machine state (such as its environment structure and bound values) permits the
abstract interpretation to prune false branches from the state space’s transition
graph. To get a feel for the reduction in the state space, consider the following
doubly nested loop, written in a direct-style Scheme:

(letrec ((lp1 (λ (i x)
(if (= 0 i) x

(letrec ((lp2 (λ (j f y) (if (= 0 j)
(lp1 (- i 1) y)
(lp2 (- j 1) f

(f y))))))
(lp2 10 (λ (n) (+ n i)) x))))))

(lp1 10 0))

Figure 1 shows the flow-sensitive, context-sensitive abstract transition graphs
generated by this loop first without, and then with, abstract garbage collection.
Garbage-collecting environment structure during the exploration of the abstract
state space yields an order of magnitude improvement in the size of the state
space—enough so that the doubly-nested structure of the loop is visually ap-
parent from the second graph. (Besides the improvement in analytic precision,
we also get a secondary benefit in that the processor time and memory space
needed to explore the abstract state space are also greatly reduced.)

Abstract garbage collection sets the stage for another technique known as
abstract counting [9]. With abstract counting, we track the “cardinality” of an
abstract object; that is, we track whether an abstract object currently represents
zero, one or more than one concrete values. Suppose we were to use sets of
concrete values for our abstract values. Ordinarily, if abstract value A were
equal to abstract value B, we could not infer that any concrete value a ∈ A is
equal to any concrete value b ∈ B, except for the case where A and B have size
one. The ability to transfer abstract equality to concrete equality allows us to
more precisely evaluate conditions, e.g. (= x y), in the abstract.

In previous work [9], we developed a higher-order flow-analysis framework,
ΓCFA, which synergistically combines abstract counting and abstract garbage
collection as we’ve just outlined above. The benefit of combining the two is
that we can use abstract counts to reason more precisely about reachable values
during abstract garbage collection. This, in turn, increases the chance that we
can cut off even more branches from the abstract transition graph.

Our purpose in this paper is to show how ΓCFA technology can be applied to
the problem of model-checking software written in higher-order languages. Our
technical contributions are:

1. Enhancing abstract garbage collection by switching from reachability to us-
ability as the criterion for liveness. That is, our garbage collector discards
abstract values and environment structure which are “reachable,” but whose
use is dominated by conditions which have become unsatisfiable. We term
this conditional garbage collection.

55

Example: Abstract graph

55

Small-step CFA for CPS

56

Continuation-passing style

v ∈ Var

f, e ∈ Exp = Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
call ∈ Call ::= (f e1 . . . en)

57

Concrete state-space

ς ∈ Σ = Call× BEnv × Store × Time
β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Clo
clo ∈ Clo = Lam× BEnv
a ∈ Addr is a set of addresses

t ∈ Time is a set of time-stamps

58

Simpler option

ς ∈ Σ = Call× Env
ρ ∈ Env = Var ⇀ Clo

clo ∈ Clo = Lam× Env

59

Concrete state-space

ς ∈ Σ = Call× BEnv × Store × Time
β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Clo
clo ∈ Clo = Lam× BEnv
a ∈ Addr is a set of addresses

t ∈ Time is a set of time-stamps

60

State-spaces

61

State-spaces

Σ

61

Injector

I : Call→ Σ
I(call) = (call , [], [], t0)

State-spaces

Σ

63

State-spaces

Σ
ς

call
I

63

Factored evaluator

E(v, β, σ) = σ(β(v))
E(lam, β, σ) = (lam, β)

64

Concrete semantics
When call = [[(f e1 . . . en)]]:

(call , β, σ, t)⇒ (call ′, β′′, σ′, t′), where

(lam, β′) = E(f, β,σ)
cloi = E(ei, β, σ)
lam = [[(λ (v1 . . . vn) call ′)]]

t′ = tick(call , t)
ai = alloc(vi, t

′)
β′′ = β′[vi "→ ai]
σ′ = σ[ai "→ cloi]

65

Concrete semantics
When call = [[(f e1 . . . en)]]:

(call , β, σ, t)⇒ (call ′, β′′, σ′, t′), where

(lam, β′) = E(f, β,σ)
cloi = E(ei, β, σ)
lam = [[(λ (v1 . . . vn) call ′)]]

t′ = tick(call , t)
ai = alloc(vi, t

′)
β′′ = β′[vi "→ ai]
σ′ = σ[ai "→ cloi]

65

The easy solution

Time = N
Addr = Var× Time

tick(, t) = t + 1
allock(v, t) = (v, t)

Time = N
Addr = Var× Time

tick(, t) = t + 1
alloc(v, t) = (v, t)

66

State-spaces

Σ
ς

call
I

67

State-spaces

Σ
ς

call
I

ς

ς

67

Abstracting into a
control-flow analysis

68

Abstract state-space
ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

β̂ ∈ B̂Env = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

69

Abstract state-space

ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

β̂ ∈ B̂Env = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

69

ς ∈ Σ = Call× BEnv × Store × Time
β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Clo
clo ∈ Clo = Lam× BEnv
a ∈ Addr is a set of addresses

t ∈ Time is a set of time-stamps

Abstract state-space

ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

β̂ ∈ B̂Env = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Is this state-space finite?
69

ς ∈ Σ = Call× BEnv × Store × Time
β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Clo
clo ∈ Clo = Lam× BEnv
a ∈ Addr is a set of addresses

t ∈ Time is a set of time-stamps

ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Non-recursive

70

ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Non-recursive

70

State-spaces

Σ
ς

call
I

ς

ς

71

State-spaces

Σ
ς

call
I

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

71

Injector

Î(call) = (call , [], [], t̂0)

72

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

73

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Î

ς̂

73

Abstract components

(!) ⊆ Σ̂× Σ̂

Ê : Exp× B̂Env × Ŝtore → P
(
Ĉlo

)

74

Ê : Exp× B̂Env × Ŝtore → P
(
Ĉlo

)

Ê(v, β̂, σ̂) = σ̂(β̂(v))

Ê(lam, β̂, σ̂) =
{

(lam, β̂)
}

75

Abstract semantics
When call = [[(f e1 . . . en)]]:

(call , β̂, σ̂, t̂) ! (call ′, β̂′′, σ̂′, t̂′), where

(lam, β̂′) ∈ Ê(f, β̂, σ̂)

Ĉi = Ê(ei, β̂, σ̂)
lam = [[(λ (v1 . . . vn) call ′)]]

t̂′ = t̂ick(call , t̂)

âi = âlloc(vi, t̂
′)

β̂′′ = β̂′[vi "→ âi]

σ̂′ = σ̂ $ [âi "→ Ĉi]

76

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Î

ς̂

77

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Î

ς̂ς̂

ς̂

77

Abstraction maps
α(call , β, σ, t) = (call , α(β), α(σ), α(t))

α(β) = λv.α(β(v))

α(σ) = λâ.
⊔

α(a)=â

α(σ(a))

α(lam, β) = {(lam, α(β))}
α(a) is set by parameter

α(t) is set by parameter

σ̂ ! σ̂′ = λâ.(σ̂(â) ∪ σ̂′(â))

78

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Î

ς̂ς̂

ς̂

79

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Î

ς̂ς̂

ς̂

79

Soundness
ς ⇒ !!

α

""

ς ′

α

""

#
""

#
""

ς̂ ! !! ς̂ ′

Theorem: If the concrete takes a step,
 then the abstract can take a matching step.

80

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Î

ς̂ς̂

ς̂

81

State-spaces

Σ
ς

callI

ς

ς ς̂ ∈ Σ̂ = Call× B̂Env × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo

)

ĉlo ∈ Ĉlo = Lam× B̂Env

β̂ ∈ B̂Env = Var→ Âddr

â ∈ Âddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of time-stamps

Î

ς̂ς̂

ς̂

81

Application:
Buffer-overflow checks

82

Logic-flow analysis

83

Logic-flow analysis

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

83

Logic-flow analysis

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

83

i < length(a)

Logic-flow analysis

s
Π Πʹ

ŝ ŝʹ

Πʹʹ

ŝʹʹ

Πʹʹʹ

ŝʹʹʹ

...

...

83

i < length(a)

a[i]

Beyond CFA
• Abstract G.C.

• Nondeterministic A.I.

• Frame-string analysis

• Abstract counting

• Logic-flow analysis

• Dependence analysis

• See matt.might.net

84

Thanks!

85

