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Abstract
We present a small-step abstract interpretation for the A-Normal
Form λ-calculus (ANF). This abstraction has been instrumented to
find data-dependence conflicts for expressions and procedures.

Our goal is parallelization: when two expressions have no de-
pendence conflicts, it is safe to evaluate them in parallel. The under-
lying principle for discovering dependences is Harrison’s principle:
whenever a resources is accessed or modified, procedures that have
frames live on the stack have a dependence upon that resource. The
abstract interpretation models the stack of a modified CESK ma-
chine by mimicking heap-allocation of continuations. Abstractions
of continuation marks are employed so that the abstract semantics
retain proper tail-call optimization without sacrificing dependence
information.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Optimization

General Terms Languages

Keywords A-Normal Form (ANF), abstract interpretation, control-
flow analysis dependence analysis, continuation marks

1. Introduction
Compiler- and tool-driven parallelization of sequential code is an
attractive option for exploiting the proliferation of multicore hard-
ware and parallel systems. Legacy code is largely sequential, and
parallelization of such code by hand is both cost-prohibitive and
error-prone. In addition, decades of computer science education
have created ranks of programmers trained to write sequential
code. Consequently, sequential programming has inertia—an in-
ertia which means that automatic parallelization may be the only
feasible option for improving the performance of many software
systems in the near term. Motivated by this need for automatic
parallelization, this work explores a static analysis for detecting
parallelizable expressions in sequential, side-effecting higher-order
programs.

When parallelizing a sequential program, two questions deter-
mine where parallelization is appropriate:

1. Where is parallelization safe?
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2. Where is parallelization beneficial?

The safety question is clearly necessary because arbitrarily par-
allelizing parts of a program can change the intended behavior
and meaning of the program. The benefit question is necessary
because cache effects, communication penalties, thread overheads
and context-switches attach a cost to invoking parallelism on real
machines. Our focus is answering the safety question, and we an-
swer it with a static analysis tuned to pick up resource-conflict de-
pendences between procedures. We leave the question of benefit
to be answered by the programmer, heuristics, profiling or further
static analysis.

When determining the safety of parallelization, the core prin-
ciple is dependence: given two computations, if one computation
depends on the other, then they may not be executed in parallel. On
the other hand, if the two computations are independent, then exe-
cuting the computations in parallel will not change the meaning of
either one.

Example Consider the following code:

(let ((a (f x))
(b (g y)))

(h a b))

If possible, we would like to transform this code into:

(let|| ((a (f x))
(b (g y)))

(h a b))

where the form (let|| ...) behaves like an ordinary let, ex-
cept that it may execute its expressions in parallel. In order to do
so, however, the possibility of a dependence between the call to f
and the call to g must be ruled out. 2

Dependences may be categorized into control dependences and
data dependences. If the execution of one computation determines
whether or not another computation will happen, then there is
a control dependence between these computations. Fortunately,
functional programming languages make finding intraprocedural
control dependences easy: lexical scoping exposes control depen-
dences without the need for an intraprocedural data-flow analysis.

Example In the following code:

(if (f x)
(g y)
(h z))

there is a control dependence from the expression (g y) upon (f
x) and from (h z) upon (f x). 2



If, on the other hand, one computation modifies a resource
that another computation accesses or modifies, then there is a data
dependence between these computations.

Example In the following code:

(let* ((z 0)
(f (λ (r) (set! z r)))
(g (λ (s) z)))

(let ((a (f x))
(b (g y)))

(h a b)))

it is unsafe to transform the interior let into a let|| form, be-
cause the expression (f x) writes to the address of the variable z,
and the expression (g y) reads from that address. 2

1.1 Goal
Our goal in this work is a static analysis that conservatively bounds
the resources read and written by the evaluation of an expression
in a higher-order program.

The trivial case of such an analysis is an expression involving
only primitive operations, i.e., no procedures are invoked, and there
are no indirect accesses to memory. For example, it is clear that the
expression (+ x y) reads the addresses of the variables x and y,
but writes nothing.

A harder case is when an expression uses a value through an
alias. In this case, we can use a standard value-flow analysis such
as k-CFA [25, 26] to unravel this aliasing.

The hardest case, and therefore the focus of this work, is when
the evaluation of an expression invokes a procedure. For example,
the resources read and written during the evaluation of the expres-
sion (f x) depend on the values of the variables f and x. Syntacti-
cally separate occurrences of the same expression may yield differ-
ent reads and writes, and in fact, even temporally separated invoca-
tions of the same expression can yield different reads and writes.
To maximize precision, our analysis actually provides resource-
dependence information for each calling context of every pro-
cedure. Combined with control-flow information, this procedure-
dependence data makes it possible to determine the data depen-
dences for any given expression.

1.2 Approach
Harrison’s dependence principle [12] inspired our approach:

Principle 1.1 (Harrison’s Dependence Principle). Assuming the
absence of proper tail-call optimization, when a resource is read or
written, all of the procedures which have frames live on the stack
have a dependence on that resource.

Phrased in terms of procedures instead of resources, the intu-
ition behind Harrison’s principle is that a procedure depends on

1. all of the resources which it reads/writes directly, and

2. transitively, all of the resources which its callees read/write.

Harrison’s principle implies that if an analysis could examine
the stack in every machine state which accesses or modifies a re-
source, then the analysis could invert this information to determine
all of the resources which a procedure may read or write during the
course of execution. Obviously, a compiler can’t expect to examine
the real execution trace of a program: it may be non-terminating, or
it may depend upon user input. A compiler can, however, perform
an abstract interpretation of the program that models the program
stack. From this abstract interpretation, the compiler can conserva-
tively bound the resources read and written by each procedure.

Example In the following program,

(define r #f)

(define (f) (g))
(define (g) (h))
(define (h) (set! r 42))

(f)

at the assignment to the variable r, frames on behalf of the pro-
cedures f, g and h are on the stack, meaning each has a write-
dependence on the variable r. 2

A modification of Harrison’s principle generalizes to the pres-
ence of a semantics with proper tail-call optimization by record-
ing caller and context information inside continuation marks [4].
A continuation mark is an annotation attached to a frame (a con-
tinuation) on the stack. This work exploits continuation marks to
reconstruct the procedures and calling contexts live on the stack at
any one moment. The run-time stack is built out of a chain of con-
tinuations, and each time an existing continuation is adopted as a
return point, the adopter is placed in the mark of the continuation;
this allows multiple dependent procedures to share a single stack
frame. It is worth going through the effort of optimizing tail calls
in the concrete semantics, because abstract interpretations of tail-
call-optimized semantics have higher precision [20].

Our approach also extends Harrison’s principle by allowing
dependences to be tracked separately for every context in which a
procedure is invoked. For example, when λ42 is invoked from call
site 13, it may write to resources a and b, but when invoked from
call site 17, it may write to resources c and d. By discriminating
among contexts, parallelizations which appeared to be invalid may
be shown safe.

Clarification It is worth pointing out that our approach does not
work with shared-memory multi-threaded programs. The analysis
works only over sequential input programs, and then finds places
where parallelism may be safely introduced. By restricting our fo-
cus to sequential programs, we avoid the well-known state-space
explosion problem in static analysis of parallel programs. Finding
mechanisms for introducing additional parallelism to parallel pro-
grams is a difficult problem reserved for future work.

1.3 Abstract-resource dependence graphs
The output of our static analysis is an abstract-resource depen-
dence graph. In such a graph, there is a node for each abstract re-
source, and a node for each abstract procedure invocation. Each ab-
stract resource node represents a set of mutable concrete resources,
e.g., heap addresses, I/O channels. An abstract procedure invoca-
tion is a procedure plus an abstract calling context. In the simplest
case, all calling contexts are merged together and there is one node
for each procedure, as in 0CFA [25, 26]. We distinguish invocations
of procedures because each invocation may use different resources.

An edge from a procedure’s invocation node to an abstract
resource node indicates that during the extent of a procedure’s
execution within that context, a write to a resource represented by
that node may occur. An edge from an abstract resource node to a
procedure’s node indicates that, during the extent of a procedure’s
execution within that context, a read from a resource represented
by that node may occur. If there is a path from one invocation
to another, then there is a write/read dependence between these
invocations, and if two invocations can reach the same resource,
then there is a write/write dependence.

Example The write or the read may not be lexically apparent
from the body of the procedure itself, as it may happen inside



another procedure invoked indirectly. For example, consider the
code:

(define r #f)

(define (read-r) r)
(define (indirectly-read-r) (read-r))
(define (write-r) (set! r #t))

(write-r)
(indirectly-read-r)

This would produce a dependence graph of the form:

?> =<89 :;read-r
hh

PPPPPPPPPPPPPP
?> =<89 :;indirectly-read-r

OO
?> =<89 :;write-r

vvmmmmmmmmmmmmmmm

76 5401 23r

In this example, we did not have to concern ourselves with dis-
criminating on context: there is a single context for each procedure.
Since there is only one binding of the variable r, it has its own ab-
stract resource node. 2

1.4 Road map
A-normal form [ANF] (Section 2) is the language that we use for
our dependence analysis. Our analysis consists of an abstract in-
terpretation of a specially constructed CESK-like machine for ad-
ministrative normal form. To highlight the correspondence between
the concrete and the abstract, we’ll present the concrete and ab-
stract semantics simultaneously (Section 3). Following that, we’ll
discuss instantiating parameters to obtain context-insensitive (Sec-
tion 4) and context-sensitive (Section 5) dependence graphs. We’ll
conclude with a discussion of related work (Section 8) and future
efforts (Section 9).

1.5 Contributions
Our work makes the following contributions:

1. A direct abstract interpretation of ANF

2. enabled by abstractions of “heap-allocated” continuations.

3. A garbage-collecting abstract interpretation of ANF.

4. A dependence analysis for higher-order programs

5. enabled by abstractions of continuation marks.

6. A context-sensitive, interprocedural dependence analysis.

2. A-Normal Form (ANF)
The forthcoming semantics and analysis deal with the administra-
tive normal form λ-calculus (ANF) augmented with mutable vari-
ables (Figure 1). In ANF, all arguments in a procedure call must be
immediately evaluable; that is, arguments can be λ terms and vari-
ables, but not procedure applications, let expressions or variable
mutations. As a result, procedure calls must be either let-bound or
in tail-position. A single imperative form (set!) allows the muta-
tion of a variable’s value.

The ANF language in Figure 1 contains only serial constructs.
After the analysis is performed, it is not difficult to add a parallel
let|| form [13] to the language which performs the computation
of its arms in parallel.

Why not continuation-passing style? It is possible to translate
this analysis to continuation-passing style (CPS), but this analysis
is a rare case in which ANF simplifies presentation over CPS.

u ∈ Var = a set of identifiers
lam ∈ Lam ::= (λ (u1 · · ·un) ebody)
f , x ∈ Arg = Lam + Var

e ∈ Exp ::= x
| (f x1 · · · xn)
| (let ((u eval)) ebody)
| (set! u xval ebody)

Figure 1. A-normal form (ANF) augmented with mutable vari-
ables.

Because the analysis is stack-sensitive, the continuation-passing
style language would have to be partitioned as in ∆CFA [19]. This
partition introduces a notational overhead that distracts from pre-
sentation, instead of providing the simplification normally afforded
by CPS.

In addition to the syntactic partitioning, the semantics would
also need to be partitioned, so that true closures are kept separate
from continuation closures. Without such a semantic partitioning,
there would be no way to install the necessary continuation marks
solely on continuations.

The use of continuation-passing style would also require a con-
straint that continuation variables not escape—that call/cc-like
functions not be used in the direct-style source. This constraint
comes from the fact that Harrison’s principle expects stack-usage to
mimick dependence. It is not readily apparent whether Harrison’s
principle can be adapted to allow the stack-usage patterns of unre-
stricted continuations. ANF without call/cc obeys the standard
stack behavior expected by Harrison’s principle.

3. Concrete and abstract semantics
Our goal is to determine all of the possible stack configurations that
may arise at run-time when a procedure is read or written. Toward
that end, we will construct a static analysis which conservatively
bounds all of the machine states which could arise during the
execution of the program. By examining this approximation, we
can construct conservative models of stack behavior at resource-
use points.

This section presents a small-step, operational, concrete seman-
tics for ANF concurrently with an abstract interpretation [6, 7]
thereof. The concrete semantics is a CESK-like machine [9] ex-
cept that instead of having a sequence of continuations for a stack
(e.g., Kont∗ or Frame∗), each continuation is allocated in the
store, and each continuation contains a pointer to the continua-
tion beneath it. The standard CESK components are visible in the
“Eval” states. The semantics employ the approach of Clements and
Felleisen [4, 5] in adding marks to continuations; these allow our
dependence analysis to work in the presence of tail-call optimiza-
tion. (Later, these marks will contain the procedure invocations on
whose behalf the continuation is acting as a return point.)

3.1 High-level structure
At the heart of both the concrete and abstract semantics are their
respective state-spaces: the infinite set State and the finite set
Ŝtate. Within these state-spaces, we will define semantic transition
relations, (⇒) ⊆ State × State for the concrete semantics and
(;) ⊆ Ŝtate × Ŝtate for the abstract semantics, in case-by-case
fashion.

To find the meaning of a program e, we inject it into the con-
crete state-space with the expression-to-state injector function I :
Exp→ State , and then we trace out the set of visitable states:

V[[e]] = {ς | I[[e]]⇒∗ ς}.



Similarly, to compute the abstract interpretation, we also inject
the program e into the initial abstract state, Î : Exp→ Ŝtate. After
this, a crude (but simple) way to imagine executing the abstract
interpretation is to trace out the set of visitable states:

V̂[[e]] = {ς̂ | Î[[e]] ;
∗ ς̂}.

(Of course, in practice an implementor may opt to use a combina-
tion of widening and monotonic termination testing to more effi-
ciently compute or approximate this set [17].)

Relating the concrete and the abstract The concrete and abstract
semantics are formally tied together through an abstraction relation.
To construct this abstraction relation, we define a partial ordering
on abstract states: (Ŝtate,v). Then, we define an abstraction func-
tion on states: α : State → Ŝtate. The abstraction relation is then
the composition of these two: (v) ◦ α.

Finding dependence Even without knowing the specifics of the
semantics, we can still describe the high-level approach we will
take for computing dependence information. In effect, we will ex-
amine each abstract state ς̂ in the set V̂(e), and ask three questions:

1. From which abstract resources may ς̂ read?

2. To which abstract resources may ς̂ write?

3. Which procedures may have frames live on the stack in ς̂?

For each live procedure and for each resource read or written, the
analysis adds an edge to the dependence graph.

3.2 Correctness
We can express the correctness of the analysis in terms of its
high-level structure. To prove soundness, we need to show that
the abstract semantics simulate the concrete semantics under the
abstraction relation. The key inductive lemma of this soundness
proof is a theorem demonstrating that the abstraction relation is
preserved under a single transition:

Theorem 3.1 (Soundness). If:

ς ⇒ ς ′ and α(ς) v ς̂ ,
then there exists an abstract state ς ′ such that:

ς̂ ; ς̂ ′ and α(ς ′) v ς̂ ′.

Or, diagrammatically:1

ς
(⇒) //

v◦α

��

ς ′

v◦α

��
ς̂

(;)
// ς̂

Proof. Because the transition relations will be defined in a case-
wise fashion, a proof of this form is easiest when factored into the
same cases. There is nothing particularly interesting about the cases
of this proof, so they are omitted.

3.3 State-spaces
Figure 2 describes the state-space of the concrete semantics, and
Figure 3 describes the abstract state-space. In both semantics,
there are five kinds of states: head evaluation states, tail evaluation
states, closure-application states, continuation-application states,
and store-assignment states. Evaluation states evaluate top-level
syntactic arguments in the current expression into semantic val-
ues, and then transfer execution based on the type of the current

1 The dotted line means “there exists a transition.”

expression: calls move to closure-application states; simple expres-
sions return by invoking the current continuation; let expressions
move to another evaluation state for the arm; and set! terms move
directly to a store-assignment state.

Every state contains a time-stamp. These are meant to increase
monotonically during the course of execution, so as to act as a
source of freshness where needed. In the abstract semantics, time-
stamps encode a bounded amount of evaluation history, i.e., con-
text. (They are exactly Shivers’s contours in k-CFA [26].)

The semantics make use of a binding-factored environment [18,
20, 26] where a variable maps to a binding through a local envi-
ronment (β), and a binding then maps to a value through the store
(σ). That is, a binding acts like an address in the heap. A binding-
factored environment is in contrast to an unfactored environment,
which takes a variable directly to a value. We use binding-factored
environments because they simplify the semantics of mutation and
make abstract interpretation more direct.

A return point (rp) is an address in the store that holds a con-
tinuation. A continuation, in turn, contains an variable awaiting the
assignment of a value, an expression to evaluate next, a local en-
vironment in which to do so, a pointer to the continuation beneath
it, and a mark to hold annotations. The set of marks is unspecified
for the moment, but for the sake of finding dependences, the mark
should at least encode all of the procedures for whom this continu-
ation is acting as a return point.2

In order to allow polyvariance to be set externally [26] as in k-
CFA, the state-space does not implicitly fix a choice for the set of
times (contours) or the set of return points.

The most important property of an abstract state is that its
stack is exposed: the analysis can trace out all of the continuations
reachable from a state’s current return point. This stack-walking is
what ultimately drives the dependence analysis.

Abstraction map The explicit state-space definitions also allow
us to formally define the abstraction map α : State → Ŝtate
in terms of an overloaded family of interior abstraction functions,
| · | : X → X̂:

α(e, β, σ, rp, t) = (e, |β|, |σ|, |rp|, |t|)
α(χ,~v, σ, rp, t) = (|χ|, |~v|, |σ|, |rp|, |t|)

α(κ, v, σ, t) = (|κ|, |v|, |σ|, |t|)
α(~a,~v,Eval) = (|~a|, |~v|, α(Eval))

|β| = λv.|β(v)|

|σ| = λâ.
G
|a|=â

|σ(a)|

|〈v1, . . . , vn〉| = 〈|v1|, . . . , |vn|〉
|(lam, β)| = {(lam, |β|)}

|(u, e, β, rp,m)| = {(u, e, |β|, |rp|, |m|)}

|a| is fixed by the polyvariance
|m| is fixed by the context-sensitivity.

Injectors With respect to the explicit state-space definitions, we
can now define the concrete state injector:

I[[e]] = ([[e]], [], [], rp0, t0),

2 Tail-called procedures share return points with their calling procedure.



ς ∈ State = Eval + ApplyFun + ApplyKont + SetAddrs
Eval = EvalHead + EvalTail
EvalHead = Exp× BEnv × Store ×Kont × Time
EvalTail = Exp× BEnv × Store × RetPoint × Time
ApplyFun = Clo ×Val∗ × Store × RetPoint × Time
ApplyKont = Kont ×Val × Store × Time
SetAddrs = Addr∗ ×Val∗ × EvalTail

β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Val

a ∈ Addr = Bind + RetPoint
b ∈ Bind = Var × Time

v ∈ Val = Clo + Kont
χ ∈ Clo = Lam× BEnv
κ ∈ Kont = Var × Exp× BEnv × RetPoint ×Mark

rp ∈ RetPoint = a set of addresses for continuations
m ∈ Mark = a set of stack-frame annotations
t ∈ Time = an infinite set of times

Figure 2. State-space for the concrete semantics.

ς̂ ∈ Ŝtate = Êval + ̂ApplyFun + ̂ApplyKont + ̂SetAddrs

Êval = ̂EvalHead + ̂EvalTail
̂EvalHead = Exp× B̂Env × Ŝtore × K̂ont × T̂ime
̂EvalTail = Exp× B̂Env × Ŝtore × ̂RetPoint × T̂ime
̂ApplyFun = dClo ×dVal

∗
× Ŝtore × ̂RetPoint × T̂ime

̂ApplyKont = K̂ont ×dVal × Ŝtore × T̂ime
̂SetAddrs = Âddr

∗
×dVal

∗
× ̂EvalTail

β̂ ∈ B̂Env = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ dVal

â ∈ Âddr = B̂ind + ̂RetPoint

b̂ ∈ B̂ind = Var × T̂ime

v̂ ∈ dVal = P(dClo + K̂ont)

χ̂ ∈ dClo = Lam× B̂Env

κ̂ ∈ K̂ont = Var × Exp× B̂Env × ̂RetPoint × M̂ark

brp ∈ ̂RetPoint = a set of addresses for continuations
m̂ ∈ M̂ark = a set of stack-frame annotations
t̂ ∈ T̂ime = a finite set of times

Figure 3. State-space for the abstract semantics.



and the abstract state injector:

Î[[e]] = ([[e]], [], [], brp0, t̂0).

Partial order We can also define the partial ordering on the ab-
stract state-space explicitly:

(e, β̂, σ̂, brp, t̂) v (e, β̂, σ̂′, brp, t̂) iff σ̂ v σ̂′

(χ̂, ~̂v, σ̂, brp, t̂) v (χ̂, ~̂v′, σ̂′, brp, t̂) iff ~̂v v ~̂v and σ̂ v σ̂′

(κ̂, v̂, σ̂, t̂) v (κ̂, v̂′, σ̂′, t̂) iff v̂ v v̂′ and σ̂ v σ̂′

(~̂a, ~̂v, ς̂) v (~̂a, ~̂v, ς̂ ′) iff ς̂ v ς̂ ′

σ̂ v σ̂′ iff σ̂(â) v σ̂′(â)

for all â ∈ dom(σ̂)

〈v̂1, . . . , v̂n〉 v 〈v̂′1, . . . , v̂′n〉 iff v̂i v v̂′i for 1 ≤ i ≤ n
v̂ v v̂′ iff v̂ ⊆ v̂′.

3.4 Auxiliary functions
The semantics require one auxiliary function to ensure that the
forthcoming transition relation is well-defined. The semantics
make use of the concrete argument evaluator: E : Arg × BEnv ×
Store ⇀ Val :

E([[lam]], β, σ) = ([[lam]], β)

E([[u]], β, σ) = σ(β[[u]]),

and its counterpart, the abstract argument evaluator: Ê : Arg ×
B̂Env × Ŝtore ⇀ dV al:

Ê([[lam]], β̂, σ̂) = {([[lam]], β̂)}
Ê([[u]], β̂, σ̂) = σ̂(β̂[[u]]).

Given an argument, an environment and a store, these functions
yield a value.

3.5 Parameters
There are three external parameters for this analysis, expressed
in the form of three concrete/abstract function pairs. The only
constraint on each of these pairs is that the abstract component must
simulate the concrete component.

The continuation-marking functions annotate the top of the
stack with dependence information:

mark [ : Clo × State → Kont → Kont

mark ] : dClo× Ŝtate→ K̂ont→ K̂ont.

Without getting into details yet, a reasonable candidate for the set
of abstract marks is the power set of λ-terms: M̂ark = P(Lam).

The next-contour functions are parameters that dictate the poly-
variance of the heap, where the heap is the portion of the store that
holds bindings:

succ[ : State → Time

succ] : Ŝtate→ T̂ ime.

For example, in 0CFA, set of times is a singleton: T̂ ime = {t̂0}.
The next-return-point-address functions will dictate the poly-

variance of the stack, where the stack is the portion of the store that
holds continuations. In fact, there are two pairs of these functions,

one to be used for ordinary let-form transitions:

alloca[ : State → RetPoint

alloca] : Ŝtate→ ̂RetPoint,

and another pair to be used for non-tail application evaluation:

alloca[ : Clo × State → RetPoint

alloca] : dClo× Ŝtate→ ̂RetPoint.

For example, in 0CFA, the set of return points is the set of expres-
sions: RetPoint = Exp, and first allocation function yields the
current expression, while the second allocation function yields the
λ-term inside the closure.

We will explore marks and marking functions in more detail
later. In brief, the polyvariance functions establishes the trade-off
between speed and precision for the analysis. For more detailed
discussion of choices for polyvariance, see [17, 26].

3.6 Return
In a return state, the machine has reached the body of a λ term, a
let form or a set! form, and it is evaluating an argument term to
return: x. The transition evaluates the syntactic expression x into
a semantic value v in the context of the current binding environ-
ment β and the store σ. Then the transition finds the continuation
awaiting the value of this expression: κ = σ(rp). In the subsequent
application state, the continuation κ receives the value v. In every
transition, the time-stamp is incremented from time t to succ[(ς).

ς∈EvalTailz }| {
([[x]], β, σ, rp, t)⇒

ς′∈ApplyKontz }| {
(κ, v, σ, t′) ,

where κ = σ(rp)

v = E([[x]], β, σ)

t′ = succ[(ς).

As will be the case for the rest of the transitions, the abstract
transition mirrors the concrete transition in structure, with subtle
differences. In this case, it is worth noting that the abstract transi-
tion nondeterministically branches to all possible abstract continu-
ations:

ς̂∈ ̂EvalTailz }| {
([[x]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂ApplyKontz }| {
(κ̂, v̂, σ̂, t̂′) ,

where κ̂ ∈ σ̂( brp)

v̂ = Ê([[x]], β̂, σ̂)

t̂′ = succ](ς̂).

3.7 Application evaluation: Head call
From a “head-call” (i.e., non-tail) evaluation state, the transition
first evaluates the syntactic arguments f, x1, . . . , xn into semantic
values. Then, the supplied continuation is marked with information
about the procedure being invoked and then inserted into the store



at a newly allocated location: rp′.

ς∈EvalHeadz }| {
([[(f x1 · · ·xn)]], β, σ, κ, t)⇒

ς′∈ApplyFunz }| {
(χ, 〈v1, . . . , vn〉, σ′, rp′, t′) ,

where vi = E([[xi]], β, σ)

t′ = succ[(ς)

χ = E([[f ]], β, σ)

rp′ = alloca[(χ, ς)

σ′ = σ[rp′ 7→ mark [(χ, ς)(κ)].

In the abstract transition, execution nondeterministically branches
to all abstract procedures:

ς̂∈ ̂EvalHeadz }| {
([[(f x1 · · ·xn)]], β̂, σ̂, κ̂, t̂) ;

ς̂′∈ ̂ApplyFunz }| {
(χ̂, 〈v̂1, . . . , v̂n〉, σ̂′, brp′, t̂′) ,

where v̂i = Ê([[xi]], β̂, σ̂)

t̂′ = succ](ς̂)

χ̂ ∈ Ê([[f ]], β̂, σ̂)brp′ = alloca](χ̂, ς̂)

σ̂′ = σ̂ t [ brp′ 7→ mark ](χ̂, ς̂)(κ̂)].

3.8 Application evaluation: Tail call
From a tail-call evaluation state, the transition evaluates the syn-
tactic arguments f, x1, . . . , xn into semantic values. At the same
time, the current continuation is marked with information from the
procedure being invoked:

ς∈EvalTailz }| {
([[(f x1 · · ·xn)]], β, σ, rp, t)⇒

ς′∈ApplyFunz }| {
(χ, 〈v1, . . . , vn〉, σ′, rp, t′) ,

where vi = E([[xi]], β, σ)

t′ = succ[(ς)

χ = E([[f ]], β, σ)

σ′ = σ[rp 7→ mark [(χ, ς)(σ(rp))].

In the abstract transition, execution nondeterministically branches
to all abstract procedures, and all of the current abstract continua-
tions are marked:

ς̂∈ ̂EvalTailz }| {
([[(f x1 · · ·xn)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂ApplyFunz }| {
(χ̂, 〈v̂1, . . . , v̂n〉, σ̂′, brp, t̂′) ,

where v̂i = Ê([[xi]], β̂, σ̂)

t̂′ = succ](ς̂)

χ̂ ∈ Ê([[f ]], β̂, σ̂)

σ̂′ = σ̂[ brp 7→ mark ](χ̂, ς̂)(σ̂( brp))].

3.9 Let-binding applications
If a let-form is evaluating an application term, then the machine
state creates a new continuation κ set to return to the body of the
let-expression, e′. (The mark in this continuation is set to some
default, empty annotation, m0.) Then, the transition moves on to
a head-call evaluation state. So, assuming the expression e is a

function application:

ς∈EvalTailz }| {
([[(let ((u e)) e′)]], β, σ, rp, t)⇒

ς′∈EvalHeadz }| {
([[e]], β, σ, κ, t′) ,

where t′ = succ[(ς)

κ = (u, [[e′]], β, rp,m0).

The abstract transition mirrors the concrete transition:

ς̂∈ ̂EvalTailz }| {
([[(let ((u e)) e′)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂EvalHeadz }| {
([[e]], β̂, σ̂, κ̂, t̂′) ,

where t̂′ = succ](ς̂)

κ̂ = (u, [[e′]], β̂, brp, m̂0).

3.10 Let-binding non-applications
From a let-binding evaluation state where the expression is not
an application, the transition creates a new continuation κ set to
return to the body of the let expression, e′. After allocating a
return point address rp′ for the continuation, the transition inserts
the continuation into the new store, σ′.

ς∈EvalTailz }| {
([[(let ((u e)) e′)]], β, σ, rp, t)⇒

ς′∈EvalTailz }| {
([[e]], β, σ′, rp′, t′) ,

where t′ = succ[(ς)

κ = (u, [[e′]], β, rp,m0)

rp′ = alloca[(ς)

σ′ = σ[rp′ 7→ κ].

The abstract transition mirrors the concrete transition, except
that the update to the store happens via joining (t) instead of
shadowing:

ς̂∈ ̂EvalTailz }| {
([[(let ((u e)) e′)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂EvalTailz }| {
([[e]], β̂, σ̂′, brp′, t̂′) ,

where t̂′ = succ](ς̂)

κ̂ = (u, [[e′]], β̂, brp, m̂0)brp′ = alloca](ς̂)

σ̂′ = σ̂ t [ brp′ 7→ {κ̂}].

3.11 Binding mutation
From a set!-mutation evaluation state, the transition looks up the
new value v, finds the address a = β[[u]] of the variable and then
transitions to an address-assignment state.

ς∈EvalTailz }| {
([[(set! u x e)]], β, σ, rp, t)⇒

ς′∈SetAddrsz }| {
(〈a〉, 〈v〉, ([[e]], β, σ, rp, t′)) ,

where t′ = succ[(ς)

v = E([[x]], β, σ)

a = β[[u]].



Once again, the abstract transition directly mirrors the concrete
transition:

ς̂∈ ̂EvalTailz }| {
([[(set! u x e)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂SetAddrsz }| {
(〈â〉, 〈v̂〉, ([[e]], β̂, σ̂, brp, t̂′)) ,

where t̂′ = succ](ς̂)

v̂ = Ê([[x]], β̂, σ̂)

â = β̂[[u]].

3.12 Continuation application
The continuation-application transitions move directly to address-
assignment states:

ς∈AppKontz }| {
(κ, v, σ, t)⇒

ς∈SetAddrsz }| {
(〈a〉, 〈v〉, ([[e]], β′, σ, rp, t′)) ,

where t′ = succ[(ς)

κ = (u, [[e]], β, rp,m)

a = (u, t′)

β′ = β[u 7→ a].

The abstract exactly mirrors the concrete:

ς̂∈ ̂AppKontz }| {
(κ̂, v̂, σ̂, t̂) ;

ς̂∈ ̂SetAddrsz }| {
(〈â〉, 〈v̂〉, ([[e]], β̂′, σ̂, brp, t̂′)) ,

where t̂′ = succ](ς̂)

κ̂ = (u, [[e]], β̂, brp, m̂)

â = (u, t̂′)

β̂′ = β̂[u 7→ â].

3.13 Procedure application
Procedure-application states also move directly to assignment
states, but the transition creates an address for each of the formal
parameters involved:

ς∈ApplyFunz }| {
(χ,~v, σ, rp, t)⇒

ς′∈SetAddrsz }| {
(~a,~v, ([[e]], β′, σ, rp, t′)) ,

where χ = ([[(λ (u1 · · ·un) e)]], β)

t′ = succ[(ς)

ai = ([[ui]], t
′)

β′ = β[[[ui]] 7→ ai].

Once again, the abstract directly mirrors the concrete:

ς̂∈ ̂ApplyFunz }| {
(χ̂, ~̂v, σ̂, brp, t̂) ;

ς̂′∈ ̂SetAddrsz }| {
(~̂a, ~̂v, ([[e]], β̂′, σ̂, brp, t̂′)) ,

where χ̂ = ([[(λ (u1 · · ·un) e)]], β̂)

t̂′ = succ](ς̂)

âi = ([[ui]], t̂
′)

β̂′ = β̂[[[ui]] 7→ âi].

3.14 Store assignment
The store-assignment transition assigns each address ai its corre-
sponding value vi in the store:

ς∈SetAddrsz }| {
(~a,~v, ([[e]], β, σ, rp, t))⇒

ς′∈EvalTailz }| {
([[e]], β, σ′, rp, t′) ,

where σ′ = σ[ai 7→ vi]

t′ = succ[(ς).

In the abstract transition, the store is modified with a join (t)
instead of over-writing entries in the old store. Soundness requires
the join because the abstract address could be representing more
than one concrete address—multiple values may legitimately reside
there.

ς̂∈ ̂SetAddrsz }| {
(~̂a, ~v, ([[e]], β̂, σ̂, brp, t̂)) ;

ς̂′∈ ̂EvalTailz }| {
([[e]], β̂, σ̂′, brp, t̂′) ,

where σ̂′ = σ̂ t [âi 7→ v̂i]

t̂′ = succ](ς̂).

4. Computing data dependence from the stack
Against the backdrop of the abstract interpretation, we can define
how to extract dependence information from an individual state.
Harrison’s principle calls for marking each stack frame with the
procedure being invoked, and then, looking at the stack of each
state to determine the dependents of any resource being accessed
in that state.

The simplest possible marking function uses a set of λ terms for
the mark:

Mark = M̂ark = P(Lam).
In this case, we end up with an analysis function that tags continu-
ations with the λ term from the currently applied closure. The de-
fault mark is the empty set: m0 = m̂0 = ∅. The concrete marking
function is then:

mark [(([[lam]], β), ς)(κ) = (uκ, eκ, βκ, rpκ,mκ ∪ {[[lam]]}),

which means that the abstract marking function is:

mark ](([[lam]], β̂), ς̂)(κ̂) = (uκ̂, eκ̂, β̂κ̂, brpκ̂, m̂κ̂ ∪ {[[lam]]}).

To compute the dependence graph, we need a function which
accumulates all of the marks for a given state, and then we’ll
need functions to compute the resources read or written by that
state. To accumulate the marks for a given state, we need to walk
the stack. Toward this end, we can build an adjacency relation on
continuations, (→ς̂) ⊆ K̂ont× K̂ont:

(u, [[e]], β̂, brp, m̂)→ς̂ κ̂ iff κ̂ ∈ σ̂ς̂( brp).

We can then use the function Ŝ : Ŝtate → P(Ĉont) to find the
set of continuations reachable in the stack of a state ς̂:

Ŝ(ς̂) = {κ̂ | κ̂ς̂ →∗ς̂ κ̂}.

Using this reachability function, the function M̂ : Ŝtate →
M̂ark computes the aggregate mark on the stack:

M̂(ς̂) =
[

κ̂∈Ŝ(ς̂)

m̂κ̂.

Using the aggregate mark function, we can construct the depen-
dence graph. For each abstract state ς̂ visited by the interpretation,
every item in the set M̂(ς̂) has a read dependence on every abstract



address read (via the evaluator Ê), and a write dependence for any
address which is the destination of a set! construct. The function
R̂ : Ŝtate → P(Âddr) computes the set of abstract addresses
read by each state:

R̂([[x]], β̂, σ̂, brp, t̂) = Â(β̂)〈x〉
R̂([[(f x1 · · ·xn)]], β̂, σ̂, brp, t̂) = Â(β̂)〈f, x1, . . . , xn〉
R̂([[(f x1 · · ·xn)]], β̂, σ̂, κ̂, t̂) = Â(β̂)〈f, x1, . . . , xn〉

R̂([[(let ((u e)) e′)]], β̂, σ̂, brp, t̂) = Â(β̂)〈e〉
R̂([[(set! u x e)]], β̂, σ̂, brp, t̂) = Â(β̂)〈x〉,

where the function Â : B̂Env → Exp∗ → P(Âddr) computes
the addresses immediately read by expressions:

Â(β̂)〈〉 = ∅

Â(β̂)〈e〉 =

(
{β̂(e)} e ∈ Var

∅ otherwise

Â(β̂)〈e1, . . . , en〉 = Â(β̂)〈e1〉 ∪ . . . ∪ Â(β̂)〈en〉,

and, for all inputs where the function R̂ is undefined, it yields the
empty set.

The function Ŵ : Ŝtate → P(Âddr) computes the set of
abstract addresses written by a state:

Ŵ([[(set! u x e)]], β̂, σ̂, brp, t̂) = {β̂(u)},

and for undefined inputs, the function Ŵ yields the empty set.

5. Context-sensitive dependence analysis
It may be the case that a procedure accesses different addresses
based on where and/or how it is called. The analysis can discrim-
inate among context-sensitive dependences by enriching the infor-
mation contained within marks to include context.

For example, the mark could also contain the site from which
the procedure was called:

M̂ark = P(Lam× Exp).

Then, if a procedure is called from different call sites, the depen-
dences at each call site will be tracked separately.

Example In the following code:

(define a #f)
(define b #f)

(define (write-a) (set! a #t 0))
(define (write-b) (set! b #t 1))

(define (unthunk f) (f))

(unthunk write-a) ; write-dependent on a
(unthunk write-b) ; write-dependent on b

there are two calls to the function unthunk. Without including con-
text information in the marks, both calls to unthunk will be seen
as having a write-dependence on both the addresses of a and b. By
including context information, it sees that unthunk writes to the
address of a in the first call, and to the address of b in the second
call, which means that both calls to the function unthunk could
actually be made in parallel. 2

As the prior example demonstrates, it is possible to have a
context-sensitive dependence analysis while still having a context-
insenstive abstract interpretation.

Alternatively, the context-sensitivity of the dependence analysis
could be synchronized with the context-sensitivity of the stack:

M̂ark = P(Lam× ̂RetPoint),

or of the heap:

M̂ark = P(Lam× T̂ ime).

6. Abstract garbage collection
The non-recursive, small-step nature of the semantics given here
ensures its compatibility with abstract garbage collection [20]. Ab-
stract garbage collection removes false dependences that arise from
the monotonic nature of abstract interpretation. Without abstract
garbage collection, two independent procedures which happen to
invoke a common library procedure may have their internal con-
tinuations, and hence their dependencies, merged. Moreover, the
arguments to that library procedure will appear to merge as well.
Abstract garbage collection collects continuations and arguments
between invocations of the same procedure, cutting off this chan-
nel for spurious cross-talk.

To implement abstract garbage collection for this analysis, we
define a garbage collection function on evaluation states:

Γ̂(ς̂) =

(
(e, β̂, σ̂|R̂eaches(ς̂), brp, t̂) ς̂ = (e, β̂, σ̂, brp, t̂)
(e, β̂, σ̂|R̂eaches(ς̂), κ̂, t̂) ς̂ = (e, β̂, σ̂, κ̂, t̂),

where the function R̂eaches : Ŝtate → P(Âddr) finds all of the
addresses reachable from a particular state:

R̂eaches(ς̂) = {â : â0 ↪→∗σ̂ς̂
â and â0 ∈ R̂oots(ς̂)},

and the relation (↪→) ⊆ Âddr× Ŝtore× Âddr determines which
addresses are adjacent in the supplied store:

â ↪→σ̂ â
′ iff â′ ∈ ̂Touches(σ̂(â)),

and the overloaded function ̂Touches determines which addresses
are touched by a particular abstract value:

̂Touches(v̂) = {â | ŷ ∈ v̂ and â ∈ ̂Touches(ŷ)}
̂Touches(lam, β̂) = range(β̂)

̂Touches(u, e, β̂, brp, m̂) = range(β̂) ∪ { brp}.
7. Implementation
The latest implementation of this analysis for a macroless subset
of Scheme is available as part of the Higher-Order Flow Analy-
sis (HOFA) toolkit. HOFA is generic Scheme-based static analy-
sis middle-end currently under construction. The latest version of
HOFA is available online:

http://ucombinator.googlecode.com/

Figure 4 contains an example of a dependence diagram for the
Solovay-Strassen cryptographic benchmark.

8. Related work
The small-step semantics for dependence analysis are related to
the small-step semantics for ΓCFA for continuation-passing style
(CPS) [17]. In fact, care was taken during this transfer to ensure
that both abstract garbage collection and abstract counting are just
as valid for these semantics. The notion of store-allocated con-
tinuations is reminiscent of SML/NJ’s stack-handling [2], though
because we do not impose an ordering on addresses, we could
be modeling either stack-allocated continuations or store-allocated
continuations. As these semantics demonstrate, changing from CPS
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Figure 4. Solovay-Strassen benchmark dependence graph

to direct-style adds complexity in the form of additional transi-
tion rules. Midtgaard and Jensen have also recently published a
small-step semantics of ANF for 0CFA [16]; our work shows that
small-step semantics can be used for k-CFA under a direct abstrac-
tion. This dependence analysis exploits the fact that direct-style
programs lead to computations that use the stack in a constrained
fashion: stacks are never captured and restored via escaping con-
tinuations. It is not clear whether Harrison’s principle extends to
programs which use full, first-class continuations to restore popped
stacked frames.

Abstract interpretation [6, 7] has long played a role in program
analysis and automatic parallelization. Bueno et al. [3] used ab-
stract interpretation of logic programs for automatic paralleliza-
tion. Ricci [22] investigated the use of abstract interpretation for
automatic parallelization of iterative constructs. Harrison [12] em-
ployed abstract interpretation is his approach to automatic paral-
lelization of low-level Scheme code.

The notion of continuation marks, a mechanism for annotating
continuations, is due to Clements and Felleisen [4, 5]. Clements
used them previously to show that stack-based security contracts
could be enforced at run-time even with proper tail-call optimiza-
tion [5]. Using continuation marks within an abstract interpreta-
tion is novel. Our work exploits continuation marks for the same
purpose: to retain information otherwise lost by tail-call optimiza-
tion. In this case, the information we retain are the callers and
calling contexts of all procedures that would be on a non-tail-call-
optimized stack.

The idea of computing abstractions of stack behavior in order to
perform dependence analysis appears in Harrison [12]. Harrison’s
work involved using abstract procedure strings to compute possi-
ble stack configurations. However, abstract procedure strings can-
not handle tail calls properly, and they proved a brittle construct in
practice, making the analysis both imprecise and expensive. Might
and Shivers improved upon these drawbacks in their generalization
to frame strings in ∆CFA [19, 21], but in handling tail calls prop-
erly, they removed the ability to soundly detect dependencies. The
analysis presented here simplifies matters because it avoids con-
structing a stack model out of strings, opting to use the actual stack
threaded through the store itself.

At present, this framework does not fully exploit Feeley’s
future construct [8], yet it could if combined with Flanagan and
Felleisen’s work [10] on removing superfluous touches. The mo-
tivating let|| construct may be expressed in terms of futures; that
is, the following:

(let|| ((v e) ...)
body)

could be rewritten as:

(let ((v (future e)) ...)
(begin (touch v) ...
body))

but, the present analysis does not determine if it is safe to remove
the calls to touch, since it does not know if there will be resource
usage conflicts with the continuation. Generalizing this analysis to
CPS should also make it possible to automatically insert future
constructs without the need for calls to touch, since it would be
possible to tell if the evaluation of an expression has a dependence
conflict with the current continuation.

Other approaches to automatic parallelization of functional pro-
grams include Schreiner’s work [24] on detecting and exploiting
patterns of parallelism in list processing functions. Hogen et al [1]
presented a parallelizing compiler which used strictness analysis
and generated an intermediate functional program with a special
syntactic “letpar” construct which indicated that a legal parallel
execution of subexpressions was possible. Parallelizing compil-
ers have been implemented for functional programming languages
such as EVE [15] and SML [23]. More theoretical work in this
space includes [11] and more recently [14].

9. Future work
It tends to be harder to transfer an analysis from CPS to ANF:
CPS is a fundamentally simpler language, requiring no handling
of return-flow in abstract interpretation, and hence, no stack. This
analysis marks a rare exception to that rule, in part because it is
directly focused on working with the stack. Continuation-passing
style can invalidate Harrison’s principle when continuations es-
cape. The two most promising routes for taming these unrestricted
continuations are modifications of ∆CFA [21, 17] and an abstrac-
tion of higher-order languages to push-down automata.
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A. Appendix: Conventions
We make use of the natural meanings for the lattice operation t,
the order relation v and the elements ⊥ and >, i.e., point-wise,
component-wise, member-wise liftings.

The notation f [x1 7→ y1, . . . , xn 7→ yn] means “the function
f , except at point xi, yield the value yi.”

Given a function f : X → Y , we implicitly lift it over a set
S ⊆ X:

f(S) = {f(x) | x ∈ S}.
The function f |X denotes the function identical f , but defined

only over inputs in the set X .


