A posteriori soundness
for nondeterministic

abstract interpretations

Matthew Might (University of Utah)

Panagiotis Manolios (Northeastern University)

Questions you don't

want at your defense

Questions you don't
want at your defense

® “But, why did you prove it that way!”

Questions you don't
want at your defense

® “But, why did you prove it that way!”

® “But, why is that necessary!”

Questions you don't
want at your defense

® “But, why did you prove it that way!”
® “But, why is that necessary!”

® “So, why did the Cousots do it that way?”

Nondeterministic
Abstract Interpretation

® VWhere did it come from?

® How do you prove it sound?

® Why would you want to use it!

Nondeterministic
Abstract Interpretation

® Where did it come from!
® Frustration with the standard recipe.

® How do you prove it sound?

® Why would you want to use it!

Nondeterministic
Abstract Interpretation

® Where did it come from!

® Frustration with the standard recipe.
® How do you prove it sound?

® A posteriori proof technique.

® Why would you want to use it!

Nondeterministic
Abstract Interpretation

® Where did it come from!

® Frustration with the standard recipe.
® How do you prove it sound?

® A posteriori proof technique.
® Why would you want to use it!

® Better speed, better precision.

Qutline

® Review standard recipe.
® Find annoyances.

® Get rid of them.

The Standard Recipe

Define concrete state-space: L

Define concrete semantics: f : L — L

A

Define abstract state-space: L

Define abstraction map: « : L — L

A

Define abstract semantics: f: L — L

Prove f simulates f under .

The A Posteriori Recipe

Define concrete state-space: L

Define concrete semantics: f : L — L

A

Define abstract state-space: L

Define abstract semantics: f : L — L

Execute abstract semantics to obtain ¢/ = f (/).

Define abstraction map: a: L — L

Prove f simulates f under « .

The A Posteriori Recipe

Define concrete state-space: L

Define concrete semantics: f : L — L

A

Define abstract state-space: L

Define abstract semantics: f : L — L

Execute abstract semantics to obtain ¢/ = f (/).

Define abstraction map: a: L — L

/\, .
Prove ¢ simulates [under o .

The A Posteriori Recipe

Define concrete state-space: L

Define concrete semantics: f : L — L

A

Define abstract state-space: L
Define abstract semantics: f : L — oL

Execute abstract semantics to obtain ¢/ = f (/).

Define abstraction map: a: L — L

/\, .
Prove ¢ simulates [under o .

lllustrating the

Standard Recipe

Malloc: The Language

vV := malloc()

Malloc: The Language

lab : v := malloc()

Concrete Semantics

State = Instruction x Store

Concrete Semantics

State = Instruction x Store

fs)=¢

Concrete Semantics

State = Instruction x Store

f([v := mallocQ]:1,0)

Concrete Semantics

State = Instruction x Store

f([v := mallocQ]:1,0)

a’ = alloc(s)

Concrete Semantics

State = Instruction x Store

f([v := mallocQ]:1,0)

a’ = alloc(¢) = max(range(o)) + 1

Abstract Semantics

/\ /\

State = Instruction x Store

f([v := mallocQ]:4,6) = (i,6[v — al)

/\

a = alloc(¢) (from some finite set)

What to allocate?

® Abstract addresses = Scarce resource
® Avoid over-allocation: Good for speed

® Avoid under-allocation: Good for precision

Example: Over-allocation

Example: Over-allocation

O

Example: Under-allocation

Example: Under-allocation

=)
Ean®

Allocation heuristics

Observation: Objects from like contexts act alike.

Allocation heuristics

Observation: Objects from like contexts act alike.

/\

Example: alloc([lab:...] :¢,.) = lab

Annoyance: Soundness

Annoyance: Soundness

The Issue

alloc(_,0) = max(range(o)) + 1

alloc([lab : ... :7,.) = lab

What abstraction map will work here!?

Example

. X := malloc()
B : v := malloc()

c=[x—=1,y 2]

oaddr = [1A, 2 — B]

Example

malloc()
malloc()

c=[x—=1,y 2]

oaddr = [1A, 2 — B]

Example

malloc()
malloc()

c=[x—=22,y 21]

oaddr = [1A, 2 — B]

Example

malloc()
malloc()

c=[x—=22,y 21]

oaddr = [2—A, 1 — B]

Standard Solution

Change the concrete semantics!

Standard Solution

Change the concrete semantics!

Addr = N

alloc(_,0) = max(range(o)) + 1

Standard Solution

Change the concrete semantics!

Addr = N x Lab

alloc([[lab : ...],0) = (max(range(c)q1) + 1, lab)

Standard Solution

Change the concrete semantics!
Addr =N x Lab
alloc([[lab : ...],0) = (max(range(c)q1) + 1, lab)

af_, lab) = lab

Another problem:

Heuristics sometimes
make stupid decisions

Another problem:
Reuristics sometimes
make stupid decisions

Why not adapt on the fly?

Example: Greedy Strategy

Heuristic says, “Allocate a1, and bind 4.”

o)

Example: Greedy Strategy

Heuristic says, “Allocate a1, and bind 4.”

Example: Greedy Strategy

Heuristic says, “Allocate a1, and bind 4.”

Adaptive allocator says,“Try (a1) first.”

Example: Greedy Strategy

Heuristic says, “Allocate a1, and bind 4.”

Adaptive allocator says,“Try (a1) first.”

Example: Greedy Strategy

Heuristic says, “Allocate a2, and bind 3.

Qo

Example: Greedy Strategy

Heuristic says, “Allocate a2, and bind 3.

Example: Greedy Strategy

Heuristic says, “Allocate a2, and bind 3.

Adaptive allocator says, “Just use a;.”

Example: Greedy Strategy

Heuristic says, “Allocate a2, and bind 3.

)

Adaptive allocator says, “Just use a;.”

Dynamic Optimization

Given m abstract addresses,
how should they be allocated
to maximize precision!?

So, why not!

Can’t within confines of standard recipe.

(Counter-example in paper.)

Making it so

Making it so

® Factor allocation out of semantics.
® Make allocation nondeterministic.

® Prove nondeterministic allocation sound.

Locative = Address

(But also times, bindings, contours, etc.)

Factoring out allocation

f : State — State

o

f : State — State

O)

f : State — State

O

F' : State — Loc — State

o

F' : State — Loc — State

O

F' : State — Loc — State

N\ /\

f : State — 2§ME

O

f : State — 2§t&£

a\ /\

f . State — 2§m£

O

/\

F - State — 25\00—)@&’;

O

/\

F': State — 2Loc—State

/\

F': State — 2Loc—State

Nondeterministic

Abstract Interpretation

Nondeterministic
Abstract Interpretation

® Sealed abstract transition graphs.
® Factored abstraction maps.

® A posteriori soundness condition.

Transition Graphs

® Nodes = States

® Edge = Transition labeled by chosen locative

Sealed Graphs

Graph is sealed under factored semantics iff
every state has an edge to cover every transition.

Example: Unsealed Graph

Example: Unsealed Graph

Proving Sealed

Graphs Sound

Factoring Abstraction

o : State — S/tcae

Factoring Abstraction

o : State — S/tcae

B : (Loc — fO\c) — (State — %)

Dependent Simulation

Dependent Simulation

Dependent Simulation

14

Dependent Simulation

Dependent Simulation

A Posteriori Theorem

Dependent simulation = Abstraction always exists

Proof Highlights

® Reduces to existence of locative abstractor.

® Construct abstractor as limit of sequence:

. 1
CVLOC — llm aLOC
1— N

More in the paper

® Nondeterministic CFA: dCFA.

® More on greedy adaptive allocation.

® Discussion of global precision sensitivity.

Ongoing Work

® Empirical trials: |.5x - 3x space, time savings
® Genetic algorithms

® Probabilistic allocation

So...

® Stop changing concrete semantics.
® | ook beyond context for allocation.

® Don'’t allocate context if bad for precision.

Thanks, y’all

