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® “So, why did the Cousots do it that way?”
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® Frustration with the standard recipe.
® How do you prove it sound?

® A posteriori proof technique.
® Why would you want to use it!

® Better speed, better precision.




Qutline

® Review standard recipe.
® Find annoyances.

® Get rid of them.




The Standard Recipe

Define concrete state-space: L

Define concrete semantics: f : L — L

A

Define abstract state-space: L

Define abstraction map: « : L — L

A

Define abstract semantics: f: L — L

Prove f simulates f under .
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Concrete Semantics

State = Instruction x Store

f([v := mallocQ]:1,0)

a’ = alloc(¢) = max(range(o)) + 1




Abstract Semantics

/\ /\

State = Instruction x Store

f([v := mallocQ]:4,6) = (i,6[v — al)

/\

a = alloc(¢) (from some finite set)




What to allocate?

® Abstract addresses = Scarce resource
® Avoid over-allocation: Good for speed

® Avoid under-allocation: Good for precision
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Example: Under-allocation




Example: Under-allocation
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Allocation heuristics

Observation: Objects from like contexts act alike.




Allocation heuristics

Observation: Objects from like contexts act alike.

/\

Example:  alloc([lab:...] :¢,.) = lab
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The Issue

alloc(_,0) = max(range(o)) + 1

alloc([lab : ... :7,.) = lab

What abstraction map will work here!?
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. X := malloc()
B : v := malloc()

c=[x—=1,y 2]

oaddr = [1A, 2 — B]
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Example

malloc()
malloc()

c=[x—=22,y 21]

oaddr = [2—A, 1 — B]
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Standard Solution

Change the concrete semantics!
Addr =N x Lab
alloc([[lab : ...],0) = (max(range(c)q1) + 1, lab)

af_, lab) = lab
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Another problem:
Reuristics sometimes
make stupid decisions

Why not adapt on the fly?
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Example: Greedy Strategy

Heuristic says, “Allocate a2, and bind 3.

)

Adaptive allocator says, “Just use a;.”




Dynamic Optimization

Given m abstract addresses,
how should they be allocated
to maximize precision!?




So, why not!

Can’t within confines of standard recipe.

(Counter-example in paper.)




Making it so



Making it so

® Factor allocation out of semantics.
® Make allocation nondeterministic.

® Prove nondeterministic allocation sound.




Locative = Address

(But also times, bindings, contours, etc.)




Factoring out allocation




f : State — State
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F' : State — Loc — State




N\ /\

f : State — 2§ME

O




f : State — 2§t&£




a\ /\

f . State — 2§m£

O




/\

F - State — 25\00—)@&’;
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/\

F': State — 2Loc—State




/\

F': State — 2Loc—State




Nondeterministic

Abstract Interpretation




Nondeterministic
Abstract Interpretation

® Sealed abstract transition graphs.
® Factored abstraction maps.

® A posteriori soundness condition.




Transition Graphs

® Nodes = States

® Edge = Transition labeled by chosen locative




Sealed Graphs

Graph is sealed under factored semantics iff
every state has an edge to cover every transition.
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Proving Sealed

Graphs Sound




Factoring Abstraction

o : State — S/tcae




Factoring Abstraction

o : State — S/tcae

B : (Loc — fO\c) — (State — %)
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Dependent Simulation
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A Posteriori Theorem

Dependent simulation = Abstraction always exists




Proof Highlights

® Reduces to existence of locative abstractor.

® Construct abstractor as limit of sequence:

. 1
CVLOC — llm aLOC
1— N




More in the paper

® Nondeterministic CFA: dCFA.

® More on greedy adaptive allocation.

® Discussion of global precision sensitivity.




Ongoing Work

® Empirical trials: |.5x - 3x space, time savings
® Genetic algorithms

® Probabilistic allocation




So...

® Stop changing concrete semantics.
® | ook beyond context for allocation.

® Don'’t allocate context if bad for precision.




Thanks, y’all




