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Abstract

Any analysis of higher-order languages must grapple with the tri-facetted nature of λ. In
one construct, the fundamental control, environment and data structures of a language meet
and intertwine. With the control facet tamed nearly two decades ago, this work brings the
environment facet to heel, defining the environment problem and developing its solution: en-
vironment analysis. Environment analysis allows a compiler to reason about the equivalence
of environments, i.e., name-to-value mappings, that arise during a program’s execution. In
this dissertation, two different techniques—abstract counting and abstract frame strings—
make this possible. A third technique, abstract garbage collection, makes both of these
techniques more precise and, counter to intuition, often faster as well. An array of optimiza-
tions and even deeper analyses which depend upon environment analysis provide motivation
for this work.

In an abstract interpretation, a single abstract entity represents a set of concrete entities.
When the entities under scrutiny are bindings—single name-to-value mappings, the atoms
of environment—then determining when the equality of two abstract bindings infers the
equality of their concrete counterparts is the crux of environment analysis. Abstract counting
does this by tracking the size of represented sets, looking for singletons, in order to apply
the following principle:

If {x} = {y}, then x = y.

Abstract frame strings enable environmental reasoning by statically tracking the possible
stack change between the births of two environments; when this change is effectively empty,
the environments are equivalent. Abstract garbage collection improves precision by inter-
mittently removing unreachable environment structure during abstract interpretation.
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Chapter 1

Thesis

Anything that gives us new knowledge gives
us an opportunity to be more rational.

— Herbert Simon

Environment analysis is feasible and useful for higher-order languages.1

1Supporting documentation attached.
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Chapter 2

Overview

This dissertation defines the environment problem for higher-order languages, provides two
distinct environment analyses as solutions, develops a precision-enhancing technique orthog-
onal to both, reviews applications and evaluates the aforementioned against related work.
For each analysis, proofs of correctness are provided and, where possible, consolidated in
their own sections within each chapter. Reading the proofs is not required for under-
standing or implementing these analyses. Fourty-four worked examples with discussion
are spread throughout the document, and each is designed to concretely illustrate an idea or
to reveal an otherwise hidden nuance. At the end of each chapter containing a novel anal-
ysis (Chapters 6, 7, 8), there is a section on optional improvements and techniques; these
sections are not required for developing an understanding of the analysis, but implementors
are advised pay attention to them.

Chapter 3 presents facets of the environment problem in an informal context, using
examples to motivate both understanding and importance.

Continuation-passing style (CPS) (Chapter 4) is the specific higher-order language ana-
lyzed in this dissertation. The minimalism and expressiveness of CPS reduces the presenta-
tion of these analyses to no more than the most essential ingredients. Abstract interpreta-
tions of a single concrete CPS machine (Section 4.3) reify both the environment problem and
its solutions. [Chapter 9 extends the environment analyses to common language constructs
which are otherwise desugared in the minimalist presentation of CPS.]

The technical backbone of this dissertation comes in four components:

• Chapter 5: k-CFA. An operational reformulation of Shivers’ higher-order control-flow
analysis, k-CFA [37], acts as the foundation of environment analysis. k-CFA serves a
dual role in this dissertation, providing both

1. the setting in which the environment problem is defined,

2. and the point from which environment analyses are evolved.

• Chapter 6: ΓCFA. Augmenting k-CFA with the novel technique of abstract garbage
collection leads to a more precise flow analysis—ΓCFA. During abstract interpretation,
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ΓCFA prunes unreachable structure from abstract machine states. This leads to better
precision in both higher-order flow analysis and environment analysis.

• Chapter 7: µCFA. Augmenting k-CFA with the novel technique of abstract counting
leads to µCFA, a straightforward environment analysis. By counting the concrete
counterparts to abstract resources, the analysis can detect when may-equal information
becomes must-equal information.

• Chapter 8: ∆CFA. Extending k-CFA with a novel theory of frame strings enables
the static recovery of program stack behavior. Combined with an environment theory
linking stack change to environment structure, the resultant analysis, ∆CFA, becomes
an environment analysis. Given ∆CFA’s technical complexity, clients of envi-
ronment analysis should focus their efforts first on abstract counting and
abstract garbage collection. ∆CFA is recommended only if the task at hand
requires additional precision.

The remainder of the dissertation reviews applications of environment analysis (Chap-
ter 10), proves the correctness of an inlining transformation based upon environment analysis
(Section 10.7), describes issues arising in implementation (Chapter 11), qualitatively (Chap-
ter 12) and quantitatively (Chapter 13) evaluates related work, and concludes with directions
on future work in environment analysis (Chapter 14).

2.1 Contributions

This dissertation makes the following contributions:

• A unified framework for environment analysis of higher-order programs.

• A formal and rigorous development of the concept of abstract garbage collection, a
technique for making more efficient use of resources in the abstract.

• A formal and rigorous development of the concept of abstract counting, a technique
that allows the equality of concrete elements to be inferred from the equality of abstract
elements.

• A formal and rigorous development of the concept of frame strings and an associated
abstraction that derives environment structure from stack behavior.

• A proof of total correctness for an environment-analysis-driven optimization, super-β
inlining.
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Chapter 3

The environment problem

Symbols provide distal access to knowledge-
bearing structures that are located physically
elsewhere within the system.

— Allen Newell

Few concepts in programming are more basic than the idea of associating a name with a
value. During a program’s execution, environments mapping many names (e.g., x, foo) to
values (e.g., 3, 0xff12a1) are created, captured, extended, restored, mutated and destroyed.
A binding—the atomic unit of environment—is an individual mapping from one name to
one value. The central focus of this dissertation is the static analysis of bindings and envi-
ronments.

Example For example, moving into the body of the Lisp-style let statement:

(let ((v 3)) ...)

extends the current environment with the binding v 7→ 3. When the let expression finishes,
the current environment contracts, removing this binding. (More precisely, the environment
from before the binding to the variable x is restored.) 2

Example Alternatively, evaluation of the λ term in the fragment:

(let ((v 3))

(λ (x) (+ x v)))

captures the binding v 7→ 3 in the resulting closure’s environment. 2

The term environment problem is a reference to the obstacle that a program analyzer
or optimizer faces when confronted with insufficient knowledge about relationships between
environments. An environment analysis, therefore, is a mechanism for reasoning, statically,
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about relationships between environments. More specifically, an environment analysis should
be able to conservatively compute, between any two environments, which bindings within
them must be equal. More formally, given two environments mapping variables to values, ρ1

and ρ2, an environment analysis must approximate the set of variables on which they agree:

{v : ρ1(v) = ρ2(v)}.

An object-oriented aside In an object-oriented setting, must-alias analysis is a kind of
environment analysis—when must-alias analysis is reduced to approximating the set of fields
for which two objects, o1 and o2, must agree:

{f : o1.f = o2.f}.

In fact, by encoding objects as closures, environment analysis computes this must-alias
analysis. As a proof sketch, note that a class can be Church-encoded [8] as its constructor;
for instance, the following class:

class A {

field1 ;

method1 (args1 ...) { body1 }

}

becomes:

(define A

(λ (field1 method1)

(λ (action)

(action

(λ (val) (set! field1 val))

(λ () field1)

(λ () method1)))))

(define A:new

(λ (field1)

(A field1

(λ (this args1 ...) body1))))

(define A:method1

(λ (on-set-field1 on-field1 on-method1)

(on-method1)))

Now, an invocation of o.method1(args ...) would become:

((o A:method1) o args ...)
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In practice, such an encoding is not necessary, as the environment analyses described in
this dissertation have analogous (must-alias) formulations for object-oriented and procedu-
ral languages. 2

Before we can tackle the environment problem, however, we’ll have to tackle its meta-
problem: how do we single out which “two environments” we are talking about? After
all, environments are a dynamic structure: an arbitrary number of them can arise at run-
time. Yet, environment analysis is static in nature. This means that a solution to the
environment problem must include a way of statically distinguishing which pair (or set of
pairs) of environments is under scrutiny for the task at hand.

Example To get a feel for the scope of this meta-problem, consider how many environments
(of the form [x 7→ 〈some number〉]) arise during the execution of the function f in the
following:

(define (f x) (f (+ x 1)))

(f 0)

The longer this code runs, the more environments it creates, e.g., [x 7→ 0], [x 7→ 19279]. 2

A good place to start when tackling this meta-problem of distinguishing environments is
with the parent of environment analysis—higher-order control-flow analysis and its standard
formulation of k-CFA [37]. In fact, environment analysis is, at heart, a response to k-CFA’s
limitations. k-CFA approximates the set of values which can flow to any given expression.
Because closures, which contain environments, are values, a flow analysis must also find a
way to compute a finite summary of environments. 0CFA [36], for instance, does this by
lumping all environments together into a single abstract environment.

Because environments are merged together, neither 0CFA nor any other higher-order
control-flow analysis can reason about equivalence between environments. If a flow analysis
were to select two environments, at best it might be able to reason that some variable, say
x, maps to an integer in each; but flow analysis cannot say that the binding for x found in
one is equivalent to the binding for x found in the other.

Example Given three environments, ρ1 = [x 7→ 1], ρ2 = [x 7→ 2] and ρ3 = [x 7→ 3], all three
could become the same environment, e.g., ρ̂ = [x 7→ integer ], during an analysis. Thus,
when comparing the abstract environment ρ̂ to itself, the analysis has no way to determine
whether it is comparing ρ1 to ρ1, or ρ1 to ρ2, or ρ2 to ρ3, etc. Whenever questioned as to
whether the concrete environments represented by some abstracts environments ρ̂1 and ρ̂2

are equal, k-CFA has two possible answers: “maybe” (if ρ̂1 = ρ̂2) or “definitely not” (if
ρ̂1 6= ρ̂2). 2

Ultimately, this meta-problem of selecting environments finds solution in the framework
of Shivers’ original k-CFA [37]. The first step toward this solution is to reference bindings,
the atoms of environments, instead of environments themselves. Thus, instead of speaking
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about sets of environments, we refer to sets of bindings, e.g., the set of all bindings to the
variable x made while calling the function foo. Then we can ask questions about binding
equivalence, e.g., are all bindings to the variable x that were bound while calling foo in
machine state ς equal to one another? A precise solution to the remainder of this meta-
problem must await a reconstruction of k-CFA. With k-CFA comes a means for formally
selecting sets of bindings under some context (Section 5.5).

At this point, we shift gears to look at examples that highlight specific facets of the
environment problem and environment analysis.

Example Although this dissertation is concerned with the challenges of higher-order pro-
grams, it’s instructive to keep in mind that first-order programs are covered as a special case.
Consider the following curly-brace code for non-tail-recursive factorial:

int fact (int n) {

if (n == 0)

return 1 ;

else

return n * fact(n-1) ;

}

There is only one variable n in this program. Over the course of evaluating the expression
fact(3), however, four different bindings to this name arise: n 7→ 3, n 7→ 2, n 7→ 1 and
n 7→ 0. All four bindings will be simultaneously live, and clearly, none of these bindings are
equal to one another. 2

Example Now, consider the following non-tail-recursive code for summing over an array:

int sum (int[] array, int len, int i) {

if (i >= len)

return 0 ;

else

return array[i] + sum(array,len,i+1) ;

}

When executing the expression sum(a,length(a),0) for an array of length two, we do not
necessarily get:

3 environments × 3 bindings/environment = 9 bindings.

Instead, we have array 7→ 〈some array〉, len 7→ 〈some integer〉, i 7→ 0, i 7→ 1, and i 7→ 2.
Although one might choose to view the bindings to the parameters array and length as
three different instances for each, they are clearly equivalent to one another. In fact, they
are so equivalent to one another that a compiler could allocate them statically, as in:
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int[] array ;

int len ;

int sum (int i) {

if (i >= len)

return 0 ;

else

return array[i] + sum(i+1) ;

}

in which case, any call to the function sum must put its first two arguments into the globals
array and len; for example:

array = a ;

len = length(a) ;

sum(0) ;

This transform, globalization, is but one of the optimizations powered by an environment
analysis. 2

Example To see why environment analysis requires precise reasoning about environments,
consider the following code:

(let ((f (λ (x h) (if (zero? x)

(h)

(λ () x)))))

(f 0 (f 3 #f)))

In this code, only closures over the term (λ () x) flow to the call site (h). k-CFA can
readily detect this fact. An optimizing compiler should consider whether or not it is safe to
inline this λ term. At first glance, this seems legal, given that the free variable x is still in
scope at the point of inlining. However, the environment captured by the closure, [x 7→ 3],
is not the environment present at the call site, [x 7→ 0]. Inlining, in this case, would be
like replacing the thunk (λ () 3) with the thunk (λ () 0). This is clearly incorrect. By
itself, k-CFA cannot prove whether the environment is the same or not; hence, k-CFA will
conservatively rule all such inlinings potentially unsafe. 2

Example Consider the fragment:

(f i)

and some environment—let’s call it ρ—that exists here during execution. Suppose that this
environment ρ maps the variable f to a closure over the term λ42 in some environment, ρ′.
Further, suppose this term λ42 is:
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(λ (k)

(print (array-ref a k)))

It would be efficiency-enhancing if the compiler could prove that the index k will always be
in bounds for the array a. Unfortunately, from the information inside the closure alone, this
is not possible. If, however, the call to the application (f i) had been wrapped in a bounds
check, as in:

(if (< i (array-length a))

(f i))

Then the compiler can ask whether the binding for the variable a inside the current envi-
ronment ρ is equivalent to the binding for the variable a inside the closure’s environment
ρ′, i.e., whether ρ[[a]] = ρ′[[a]] or not. In other words, the compiler is asking whether the
dynamically-scoped environment for variable a would be equivalent to the lexically-scoped
environment for variable a. If this condition holds for every possible call at run-time, then
the compiler has determined that the access is within bounds, and hence, it may remove a
dynamic check.

Logic-flow analysis [24], a client of environment analysis, can make this realization di-
rectly.

Even without such sophistication, if the flow set for the function term f could be narrowed
to a single λ term, e.g. {λ42}, then the safety of the access would be lexically apparent
through a super-β inlining [26, 27, 37] of the closure, to produce the following code:

(if (< i (array-length a))

(print (array-ref a i)))

Even if the flow set cannot be narrowed to closures over a single λ term, lightweight closure
conversion [42] may yet still be able to make this safety lexically apparent. 2
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Chapter 4

Continuation-passing style

Continuation-passing style λ calculus (CPS) is the higher-order language over which the
forthcoming environment analyses operate [32, 41]. Given that CPS is well-suited as an in-
termediate representation for compiling higher-order functional languages, such as Scheme,
ML and Haskell, these analyses inherit the same widespread applicability. (It’s worth point-
ing out that it is entirely possible, even if less orthodox, to compile a program in C or Java
through CPS with no loss of efficiency.)

The CPS described in this chapter is as minimal as possible while remaining Turing-
complete. Chapter 9 extends this CPS with features frequently found in real programming
languages. Section 8.1 revisits CPS once again in light of a syntactic partitioning; it also
contains a direct-style-to-CPS conversion function that may aid in understanding.

This chapter begins with an informal description of CPS, continues with a concrete,
operational semantics and concludes with a series of theorems regarding the behavior of
these semantics. Later, the development of environment analyses becomes, for the most
part, just carefully tuned abstract interpretations of these semantics.

Three constraints make up the contract for a program written in CPS:

1. Functions never return—all calls in CPS are tail calls.

2. Where a function in the familiar direct-style would return, a CPS function invokes the
current continuation on the return value.

3. When calling a function, the caller supplies a continuation procedure, p, to be invoked
by the callee with its “return” value. Thus, the continuation p must encode the whole
future of the computation that is to take place once the callee has finished.

Example In CPS, the non-tail-recursive factorial function becomes:
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(define (fact n return)

(if-zero n

(return 1)

(- n 1 (λ (n-1)

(fact n-1 (λ (n-1!)

(* n n-1! return)))))))

The procedure return is the continuation provided by the caller of the function fact. The
operators - and * also now take an extra argument—the current continuation—which they
will invoke upon completion. 2

Example The CPS version of tail-recursive factorial is:

(define (fact n result return)

(if-zero n

(return result)

(* n result (λ (n*result)

(- n 1 (λ (n-1)

(fact n-1 n*result return)))))))

It’s worth noting that the final, recursive call to fact will invoke the same return contin-
uation passed in by the external call to fact. 2

With CPS, several useful properties come for free:

• All control constructs—call, return, tail call, iteration, sequencing, conditionals, switches,
exceptions, coroutines, continuations, etc.—transform into a common construct: call
to λ. An analysis over CPS need handle only this one general case.

• Control is reified as data. By making the arbiters of control into explicit continuation
objects, an analysis meant to reason about data gains the ability to reason about
control. In some analyses, such as ΓCFA (Chapter 6), the effects of this shift in
perspective are nontrivial—for instance, program control structure becomes eligible
for garbage collection.

• State-machine semantics. The state-machine-like character of CPS evaluation permits
a simple, direct abstract interpretation. This simplicity makes it effortless to dissect a
state and examine the environments within it.

• Invariance under reduction strategy. Because CPS fixes the order of evaluation, call-by-
name and call-by-value evaluation of CPS semantics are identical [32]. The strictness
or laziness of the input language is decided by the transform to CPS, rather than
the evaluation of CPS. Thus, an analysis that works on CPS handles both lazy and
applicative languages.
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pr ∈ PR = LAM

v ∈ VAR ::= identifier
REF ::= v `

lam ∈ LAM ::= (λ (v1 · · · vn) call)`

e, f ∈ EXP = REF + LAM

call ∈ CALL ::= (f e1 · · · en)`

` ∈ LAB = a set of labels

Figure 4.1: Grammar for pure, multi-argument CPS

None of these properties are unique to CPS. That is, with some effort, each of them could be
welded onto direct-style or SSA semantics. The compelling difference between CPS and these
other representations is that the aforementioned properties come not by adding machinery—
but by taking it away.

4.1 Syntax

Figure 4.1 provides a simple grammar for the multi-argument variant of the continuation-
passing style λ calculus. This grammar enforces the core stricture of CPS: function call is
a one-way control transfer, and does not return. Four term rules and one annotation rule
comprise this grammar:

• Labels from the set LAB are attached to each term in the program. Between any two
terms, labels must be distinct. Most of the machinery to come does not need these
labels, so they will often be omitted when writing out CPS terms.

• Variables from the set VAR appear in two places: as formal parameters in λ terms and
as references. When used as references, they come from the set REF and carry labels.

• λ terms from the set LAM denote anonymous functions. Each has a sequence of
formal parameters v1, . . . , vn plus a call expression call for its body. In the forthcoming
semantics, these will evaluate to lexical closures: the meaning of a free variable inside
the λ term is its value at the time of closure creation.

• Expressions from the set EXP can be either a reference or a λ term. In CPS, expressions
must be trivially evaluable, i.e. their evaluation must halt. Closure creation and
variable lookup are both constant-time operations.

• Call sites from the set CALL are applications of a function expression f to a sequence
of arguments e1, . . . , en.
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• A program pr from the set PR is a λ term which accepts the top-level halt continuation:
(λ (halt) call).

Note From this point forward, unless otherwise stated, assume that any program under
analysis is alphatised—that no two formal parameters are identical.1 To clarify, it is permis-
sible to use a variable twice or more as a reference. This alphatisation requirement is not a
hard one: the analyses presented later are sound without it; precision, however, may be lost.

This grammar differs from a direct-style grammar in that:

• the body of every λ term is a call;

• every call appears as the body of a λ term;

• and, all function and argument parameters are trivial non-call expressions.

Example In CPS, several control primitives which have no representation in direct-style
admit an explicit form, such as the Scheme-style call/cc:

call/cc
def
= (λ (f cc) (f (λ (x k) (cc x)) cc))

and, assuming appropriate side-effecting primitives, C-style setjmp and longjmp:

setjmp
def
= (λ (env cc)

(set-cell! env (λ (val k’) (cc val)) (λ ()

(cc 0))))

longjmp
def
= (λ (env val cc)

(get-cell env (λ (reset)

(reset val cc))))

Or, by changing signatures, it’s possible to have purely functional setjmp/longjmp:

setjmp-purefun
def
= (λ (cc) (cc cc))

longjmp-purefun
def
= (λ (env val cc) (env val))

2

4.1.1 Syntactic functions

The function free : (EXP ∪ CALL)→ P(VAR) maps a term to the free variables appearing
in that term, e.g., free[[(λ (v) (f v))]] = {[[f]]}. The function Bpr : LAB → P(VAR) maps
a label on a λ term in program pr to the variables bound by that term.

1For example, (λ (x) (λ (x) (x x))) is not alphatised, whereas (λ (y) (λ (x) (x x))) is.
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ς ∈ State = Eval + Apply
Eval = CALL× BEnv × Conf × Time
Apply = Proc × D∗ × Conf × Time

c ∈ Conf = VEnv
ve ∈ VEnv = Bind ⇀ D
b ∈ Bind = VAR × Time
β ∈ BEnv = VAR ⇀ Time

d ∈ D = Val
val ∈ Val = Proc

proc ∈ Proc = Clo + {halt}
clo ∈ Clo = LAM × BEnv

t ∈ Time = an infinite, ordered set of times

Figure 4.2: Domains for the state-space of CPS

4.2 Concrete state-space

Figure 4.2 contains the domains comprising the state-space for the forthcoming concrete
semantics. These domains have been preemptively factored to support future extensions
(e.g. primitives, conditionals, letrec, a store) and abstractions of the concrete semantics.

The reader is advised to first skim the following discussion of the structure of these
domains, skim the transition rules given in the next section and then re-read both. Because
these domains are not mutually recursive, the following discussion of their structure takes
place in “bottom-up” fashion.

• Time-stamps from the set Time are affixed to every concrete state. In the forthcoming
concrete semantics, each state-to-state transition is obligated to increment this time.
The exact structure of the set Time is left unspecified; the only constraint between a
time t from one state and the time t′ in its successor state is that the time t is “less
than” the time t′. For simply giving a meaning to programs, the naturals N suffice
for the set Time. The only compelling reason not to use the naturals, in fact, is
theoretical: alternate choices simplify proofs of soundness for the upcoming abstract
interpretations [37].

The current time-stamp also provides a reliable source of freshness. That is, mixing
the current time-stamp into a structure ensures the structure’s uniqueness. This is
what ensures the freshness of bindings.

(In other flow-analytic settings, the set Time is known as the concrete contour set.)

• Bindings from the set Bind are variable-time pairs. The connotation of the binding
(v, t) is “the variable v when bound at time t.” In effect, a binding is an entity that
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represents a specific instance of variable.

For instance, in the program:

(define (f x) (f (+ x 1)))

(f 0)

there are an infinite number of bindings to x, each made at a different time, and each
associated with a different value.

Of importance in environment analysis is that a binding is an indirect way to refer to
a value, much like a pointer. For example, the value of the binding ([[x]], 3) could (in
theory) be found by going back to machine state 3 and looking at the value that x

received there. We can make value-blind judgments like: “The value of binding ([[x]], 3)
is equal to the value of binding ([[x]], 4).” Compare this to another, more familiar,
value-blind judgment like: “The value at address 0xFACEBEEF is equal to the value
at address 0xCAFEBABE.”

As an example, in the program:

(define (f x) (f x))

(f 0)

each binding to the variable x is distinct, but the values of all these bindings are equal.

As bindings are the atoms of environments, reasoning about relationships between
(the values referred to by) bindings permits reasoning about relationships between
environments.

• Instead of mapping variables to values, a binding environment from the set BEnv maps
a variable to a time—the time in which it was bound. Thus, for some binding environ-
ment β, the binding (v, β(v)) connotes the value for this variable in this environment.
Shortly, we’ll add the machinery to convert this connotation into its denotation.

• With binding environments, closures in the set Clo can be formed. A closure (lam, β)
is a λ term-binding environment pair. The binding environment β uniquely determines
the value of the free variables found in the term lam.

• In pure CPS, there are only two kinds of procedures in the set Proc: closures and a
halt continuation. Execution terminates when the halt continuation is reached.

• The minimalism of this CPS also means that there is only one kind of value in the set
Val : procedures. In this concrete machine, the set of denotable values D is exactly this
same set. (These sets are pre-factored with abstraction in mind. In the next chapter,
the abstract counterpart to the set D is the power set of the abstract counterpart to
Val .)
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• The set of value environments, VEnv , is a set of maps from bindings to values. Inside
each state, there is exactly one value environment, ve, which serves as the master record
for assigning bindings to their values. As execution progresses, this environment will
grow monotonically. Each time a binding is made, a new entry maps that binding to
its associated value.

• In each state, the configuration component from the set Conf contains only the value
environment. Later, traditional heap-like structures such as a store will be added to
the configuration. Novel structures, such as measures and logs, which act “kind of
like” a store, will also be added to the configuration.

Mechanically, the value environment, which maps bindings to values, behaves like a
store in the follow sense:

– Bindings act like locations in a location-to-value store.

– If one were to implement an interpreter for CPS, the value environment could be
separated out as a global, side-effected table.

Viewed as a structure living in the heap, another possible interpretation of the value
environment is as the program stack: like the stack, it has slots for arguments bound
during function call. In this interpretation, the set Time could be seen as a set of
frame pointers. Looking up the binding (v, t) in the value environment ve is analogous
to retrieving the value from offset v at the frame pointed to by t.

Of course, in the most literal interpretation of CPS, this stack is never popped.

• The set State is the state-space traversed by the program execution. Within it, there
are two kinds of states: Eval states and Apply states. Both kinds of state share some
common structure: a configuration c and a current time-stamp t . In an Eval state,
execution has reached a call site call in some binding environment β for free variables; in
this state, the task waiting to be performed is the evaluation of the function expression
and the arguments found at the call site. In an Apply state, execution has reached the
application of a procedure proc to a vector of argument values d; in this state, the task
is to make bindings for the formals of the procedure in the procedure’s environment. In
the forthcoming concrete semantics, execution will bounce in tick-tock fashion between
Eval states and Apply states.

4.3 Concrete semantics

The simplicity of the syntax lends itself to parsimony in the semantics: there are only two
transition rules (Figure 4.3). In each rule, a state ς transitions to a new state ς ′. Both
rules immediately increment the time-stamp to the next time t ′ using the successor function
succ : State×Time → Time. The successor function is allowed to examine the current state
when deciding on the next time. (Of course, if the set Time were the naturals, this state
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information isn’t required.) The following condition formally characterizes the constraint on
the next-time function succ:

t < succ(ς, t).

In the Eval -to-Apply transition, the function expression f is evaluated into the procedure
proc, and then each argument expression ei is evaluated into the value di. The argument
evaluator A : EXP × BEnv × VEnv ⇀ D takes an expression to its value in a factored
environment (β, ve):

A(v, β, ve)
def
= ve(v, β(v))

A(lam, β, ve)
def
= (lam, β).

Value lookup for variables is a two-stage process. First, the evaluator A finds the binding
b = (v, β(v)) for the variable v in the local environment β. Next, it finds the value associated
with this particular binding in the value environment: ve(b). When the argument expression
is a λ term, the argument evaluator A simply returns a closure over the λ term in the current
environment β.

Example Suppose the current state ς is the Eval state (call , β, ve, t), where:

call = [[(f (λ (x c) (c x)) k)]]

β[[f]] = t1

β[[k]] = t0

ve([[k]], t0) = halt

ve([[f]], t1) = proc.

Then, the subsequent apply state is:

(proc, 〈([[(λ (x c) (c x))]], β), halt〉, ve, succ(ς, t)).

2

In the Apply-to-Eval transition, execution moves into the site call from the body of the
closure’s λ term. The new binding environment β′ is the environment found within the
closure but extended with bindings for the formal parameters of the λ term. The new value
environment ve ′ contains fresh entries for the new bindings.

The program-to-state injector I : PR → State takes a program pr accepting the halt
continuation to an initial state:

I([[(λ (halt) call)]])
def
= (([[(λ (halt) call)]], []), 〈halt〉, [], t0).

Program execution terminates in states where the halt continuation is applied, i.e., states
of the form:

(halt , 〈d〉, ve, t),
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([[(f e1 · · · en)]], β, ve, t)⇒ (proc,d, ve, t ′), where:

t ′ = succ(ς, t)

proc = A(f, β, ve)

di = A(ei, β, ve)

(([[(λ (v1 · · · vn) call)]], β),d, ve, t)⇒ (call , β′, ve ′, t ′), where:

t ′ = succ(ς, t)

β′ = β[vi 7→ t ′]

bi = (vi, t
′)

ve ′ = ve[bi 7→ di]

Figure 4.3: Concrete transitions ς ⇒ ς ′ for CPS

are final. The meaning of a program is whatever value (if any) gets passed to the halt
continuation.

It’s worth distinguishing three other kinds of terminal states:

• Mismatched arguments A mismatched arguments stuck state is an Apply state in
which the number of arguments supplied does not match the number of arguments
required. This is a result of programmer error.

• Undefined variable An undefined-variable stuck state is an Eval state in which a
variable argument is not in the domain of the current environment β. This can happen
only if the top-level program has a free variable, also a programmer error.

• Corrupted environment A corrupted-environment stuck state is an Eval state in
which a required binding is not in the domain of the global value environment ve. It
must be proven that such a state will never be reached.

Finally, it’s useful while demonstrating the soundness of upcoming analyses to define the
set of states visited by a program pr with the visited states function V : PR → P(State):

V(pr)
def
= {ςrealizable : I(pr)⇒∗ ςrealizable}.

4.3.1 Handling external input

The concrete machine just described appears to handle only a single execution of a machine.
User input, which leads to non-deterministic behavior, is integrable with this framework
through two mechanisms: arguments to the program itself, and I/O primitives.
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To supply arguments to the program, the input function extends easily to accept argu-
ments to the top-level λ term, Iargs : PR × D∗ → State:

Iargs([[(λ (v1 · · · vn halt) call)]], 〈d1, . . . dn〉)
def
=

(([[(λ (v1 · · · vn halt) call)]], []), 〈d1, . . . , dn, halt〉, [], t0).

Previewing forthcoming analyses via abstract interpretation, in the abstract, each of the
external arguments are simply taken to be unknown values, i.e., >.

Instead of or in addition to top-level arguments, adding an input tape built from a
sequence of denotable values—D∗—to each machine state allows for I/O primitive operations
(Chapter 9) that can read the tape. Once again, the forthcoming analyses can treat this tape
as a sequence of unknowns, i.e., >. Alternatively, the tape can be left off, in which case the
concrete semantics will non-deterministically branch upon reaching an input primitive. Both
approaches to handling I/O primitives are inherently sound under the forthcoming analyses.

4.4 Properties of the CPS machine

Only a subset of the state-space State is actually realizable from any given input program.
Much of the state-space, in fact, is not realizable by any program. Later theorems are made
possible by capturing the essential properties that must hold for all realizable states. These
theorems and proofs may aid intuition regarding the operation of the concrete CPS machine,
but understanding them is not required in order to implement an environment analysis.

The theme for this section has a two-part refrain:

1. Define a property P ⊆ State on states.

2. Prove that P is preserved across state-to-state transition.

For each property P , the trivial base-case proof of P (I(pr)) is omitted.

4.4.1 Lexical safety

We asserted that only a free variable in the program could lead to an undefined-variable
stuck state. To prove this claim, the first property we define on a single state is lexical
safety. A state is lexically safe if all binding environments found within it contain entries for
the variables required:

Definition 4.4.1 (Lexically safe) A state ς is lexically safe iff for each closure (lam, β)
found in range(veς), free(lam) ⊆ dom(β), and:

• if ς = (call , β, ve, t), then free(call) ⊆ dom(β),

• and if ς = (proc,d, ve, t), then for each closure (lam, β) found in {proc, d1, . . . , dn},
free(lam) ⊆ dom(β).
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By showing that lexical safety is preserved across transition, a program with no free variables
cannot lead to an undefined variable stuck state:

Theorem 4.4.2 (Preservation of lexical safety) If a state ς is lexically safe and the
transition ς ⇒ ς ′ is legal, then the subsequent state ς ′ is also lexically safe.

Proof. By cases on the type of transition. (Either Eval to Apply or Apply to Eval .) 2

Because lexical safety also makes a statement about the structure of environments, it will
be useful in proving the correctness of environment analyses.

4.4.2 Reachable bindings

Before exploring the next few properties of realizable machine states, we need to formalize
the concept of the set of bindings reachable from a state. Given the store-like nature of the
value environment, an obvious use for this notion would be garbage collection, and in fact,
later on, it is used precisely for this purpose. At present, the concept of reachable bindings
has an important role to play in defining the soundness of a state.

Before we can define reachability, we need to formalize the notion of a value or a state
touching a binding, according to the function T : (D + State)→ P(Bind):

Definition 4.4.3 (Touching) The set of bindings touched by a value d is the set T (d),
where:

T (lam, β)
def
= {(v, β(v)) : v ∈ free(lam)}

T (halt)
def
= {},

and the set of bindings touched by a state ς is the set T (ς), where:

T (call , β, ve, t)
def
= {(v, β(v)) : v ∈ free(call)}

T (proc,d, ve, t)
def
= T (proc) ∪ T (d1) ∪ · · · ∪ T (dn).

Example Consider the closure:

([[(λ (k) (k x))]], [[[x]] 7→ t0, [[y]] 7→ t1]).

The closure touches the binding ([[x]], t0), while the binding ([[y]], t1) cannot possibly be deref-
erenced by this closure. 2

33



Example The touching relation allows a value environment ve to be visualized as a bipartite
graph, e.g.:

b1 22_^]\XYZ[proc1
ss

b2

77ooooooooooooo _^]\XYZ[proc2

ww
b3

//_^]\XYZ[proc3

b4
//_^]\XYZ[proc4

Here, the dotted lines represent touching, the solid lines represent dereferencing a binding,
and the double boxes represent bindings touched by a state. 2

An adjacency relation ;c ⊆ Bind × Bind parameterized with a configuration links
bindings directly to bindings:

btoucher ;ve btouched iff btouched ∈ T (ve(btoucher)).

With this, the set of bindings reachable from a state becomes the transitive closure over
the adjacency relation ; starting with the bindings touched by the state:

Definition 4.4.4 (Reachable bindings) The set of bindings reachable from a state ς is:

R(ς)
def
= {breached : broot ;∗

veς
breached}.

(Note: we often use the subscripted component notation, e.g., veς , to pull components out
of a state; in effect ς = (. . . , veς , tς).)

4.4.3 Temporal consistency

With reachability in place, temporal consistency becomes the next property to preserve across
transition. Temporal consistency means that no time from the “future” will ever be found
inside the current state.

Definition 4.4.5 (Temporally consistent) A state ς is temporally consistent if no
binding time found in the set R(ς) is higher than the state’s current time-stamp, tς .

Temporal consistency is preserved across transition:

Theorem 4.4.6 (Temporal consistency across transition) If a state ς is temporally
consistent, and the transition ς ⇒ ς ′ holds, then the subsequent state ς ′ is also temporally
consistent.

34



Proof. By cases on the type of transition. 2

Temporal consistency is what ensures the monotonic growth of the value environment
ve across transitions. Without temporal consistency, there would be the possibility that a
“fresh” binding (v, t ′) might overwrite an existing entry in the value environment ve.

4.4.4 Configuration safety

Reachability also permits the definition of configuration safety:

Definition 4.4.7 (Configuration-safe) A state ς is configuration-safe iff every reach-
able binding is in the domain of the value environment, or formally:

R(ς) ⊆ dom(veς).

The preservation of configuration safety across transition is shown next.

4.4.5 Sound states

Combining all three properties, we get concrete soundness :

Definition 4.4.8 (Sound) A state ς is sound iff it is:

1. lexically safe,

2. temporally consistent,

3. and configuration-safe.

Soundness is important because it rules out a corrupted-environment error:

Theorem 4.4.9 Sound states are not corrupt. That is, if a state ς is sound, then either

• the transition ς ⇒ ς ′ is legal,

• the state ς is a final state, or

• the state ς is stuck, but not corrupt.

Proof. By the definitions. 2

By showing that soundness is preserved across transition, the possibility of a corrupt
state is eliminated:

Theorem 4.4.10 (Preservation of soundness across transition) If a state ς is sound
and the transition ς ⇒ ς ′ is legal, then the subsequent state ς ′ is also sound.
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Proof. Lexical safety and temporal consistency have already been shown. We focus on
configuration safety. Assume the state ς is sound and the transition ς ⇒ ς ′ holds. We divide
into cases on the type of state ς.

• Case ς = ([[(f e1 · · · en)]], β, ve, t): Let the new state ς ′ be (proc,d, ve, t ′). We must
show that:

R(ς ′) ⊆ dom(ve).

By the soundness of the state ς, this reduces to showing that R(ς ′) ⊆ R(ς). Choose a
binding b∗ in the set R(ς ′); we’ll prove that this binding is also in the set R(ς).

Let 〈b0, b1, . . . , bn〉 be a path through the relation ;∗
ve such that b0 ∈ T (ς ′) and bn = b∗.

The new state ς ′ can touch the binding b0 in one of two ways—as a member of the
set T (proc), or as a member of the set T (di) for some i. Without loss of generality,
assume it was through the closure proc. We know that proc = A(f, β, ve) = (lam, β′).
We branch into the sub-cases induced by the definition of the evaluator A.

– Sub-case f is a variable: In this case, the variable f is in free(call), and hence,
the binding (f, β(f)) is in the set of touched bindings T (ς). From the fact that
b0 ∈ T (ve(f, β(f))), we have that (f, β(f)) ;ve b0, and hence, we also have that
〈(f, β(f)), b0, . . . , bn〉 is a valid path which puts b∗ in R(ς).

– Sub-case f is a λ term: Let b0 be (v0, t0). We know that the variable v0 is in the
set free(lam). Because free(lam) ⊆ free(call), the binding (v0, t0) must also be in
T (ς). Hence, 〈b0, . . . , bn〉 is a valid path which puts b∗ in R(ς).

• Case ς = (([[(λ (v1 · · · vn) call)]], β),d, ve, t): In this case, let the new state ς ′ be
(call , β′, ve ′, t′). We must show that:

R(ς ′) ⊆ dom(ve ′).

Choose a binding b∗ in the set R(ς ′); we’ll show this binding is also in the set dom(ve ′).
We divide into cases on the freshness of the binding b∗.

– Sub-case The binding b∗ is fresh: Then, the binding time in b∗ is the new time,
t′. From the definition of the transition ⇒, it is clearly in the domain of the new
global environment ve ′.

– Sub-case The binding b∗ is not fresh: We’ll show that this binding was also in
the domain of the old environment ve by finding that the binding was also reach-
able from the old state ς. The rest of this case then follows from the fact that
dom(ve) ⊆ dom(ve′). Let 〈b0, . . . , bn〉 be a path through the relation ;ve′ which
puts the binding b∗ in the set R(ς ′).

1. First, we’ll show that either b0 or b1 is in T (ς). Let b0 = (v0, t0).

∗ Suppose v0 ∈ free(call) and this variable v0 is not a bound formal. Then
v0 was also free in the λ term, which means (v0, t0) ∈ T (proc) ⊆ T (ς).
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∗ Suppose alternately that v0 ∈ free(call) and that v0 is a bound for-
mal. Thus, for some argument i, ve ′(v0, t0) = di, which means that
b1 ∈ T (di) ⊆ T (ς).

2. Next, suppose 〈b1, . . . , bn〉 did not form a valid path through ;ve as well. Let
i be the first index such that it is not the case that ve(bi) = ve ′(bi). By the
definition of the transition relation ⇒, it must be the case that the binding
time associated with bi is the new time t′. This implies that either b∗ = b0,
which is a contradiction, or that some time in the middle of the path is the
fresh time t′, which is also a contradiction. Hence, the path must have been
valid through the relation ;ve . Consequently, the binding b∗ is in the set
R(ς), which, by soundness, puts it in the domain of the environment ve.

2
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Chapter 5

Higher-order flow analysis: k-CFA

This chapter describes an abstract interpretation [10, 11] of the concrete CPS semantics from
the previous chapter. Performing this abstraction results in Shivers’ hierarchy of higher-
order flow control-flow analyses, k-CFA [37]. k-CFA then forms both the setting in which
we formulate a more precise definition of the environment problem, and the platform upon
which we construct its solution.

5.1 Abstract interpretation in a nutshell

Previously, we defined the set of states visited by a program: V(pr). To prove the absence
of certain behaviors in a program (for the purpose of optimization, parallelization, security
or otherwise), it would be convenient if we could examine each state individually within the
set V(pr) for the presence of such behaviors.

Of course, the set V(pr) is potentially infinite, but even worse than that, it’s often incom-
putable. Incomputability is the problem that abstract interpretation addresses. Practically
speaking, the purpose of an abstract interpretation [10] is to define an approximate set of
“visitable” states, V∗(pr), such that the following two constraints hold:

1. the visitable set V∗(pr) contains the visited set V(pr), i.e., V∗(pr) ⊇ V(pr),

2. and the visitable function V∗ is computable.

Don’t let the fact that the visited set V(pr) could be infinite make these constraints seem
unsatisfiable. As an existence proof, the following definition trivially satisfies both of them:

V∗(pr) = State.

Starting with this function V∗ as a worst-case bound on precision and a best-case bound on
speed, the game played in abstract interpretation is one of minimizing the difference between
the set V∗(pr) and the set V(pr) while still remaining tractable.

Mechanically, an abstract interpretation involves the creation of a second, abstract se-
mantics. This abstract semantics requires:
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1. an abstract state-space, Ŝtate;

2. a concrete-to-abstract mapping, | · | : State → Ŝtate;1

3. and a meaning function, V̂ : PR → P(Ŝtate).

Example The concrete-to-abstract mapping is often interpreted as transforming a concrete
element into a property that describes it. The canonical example of such a mapping is from
integers to a power set of their sign. In this case, the set of abstract integers would be:

Ẑ def
= P({neg , zero, pos}),

where the mapping | · | : Z→ Ẑ is:

|z| =


{neg} z < 0

{zero} z = 0

{pos} z > 0.

The power set is necessary because performing operations on these abstract values may blur
precision. This mapping induces a natural definition for an abstract addition operator, ⊕.
For example:

{pos} ⊕ {pos} = {pos}
{neg} ⊕ {pos} = {neg, zero, pos}

{neg, pos} ⊕ {zero} = {neg, pos}.
We can use this to conservatively approximate the sign of an arithmetic expressions result;
for example:

|4 + 3| v |4| ⊕ |3| = {pos} ⊕ {pos} = {pos},

which we expect given that 7 is positive. 2

Each abstract state ς̂ from the set Ŝtate represents a set of concrete states. Defining

what’s in that set is most easily done by making the set Ŝtate into a lattice with an ordering
on precision—v. Under this interpretation, the expression a v b can be read as “a is more
precise than b” or “a represents a subset of what b represents.”

Example Returning to the integers example, the order v is simply the relation ⊆. For
example, the set {neg} is more precise than the set {neg, zero}. 2

Using this ordering, the set of concrete states represented by an abstract state ς̂ is de-

scribed through the function Conc : Ŝtate → P(State):

Conc(ς̂)
def
= {ς : |ς| v ς̂}.

1The absolute-value-style notation |x| is read as “the abstraction of x.”
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Example Returning once again to the integers example, applying the concretization function
would yield results like:

Conc{zero} = {0}
Conc{pos} = {z : z > 0}

Conc{neg, zero} = {z : z ≤ 0}.

2

Under the concretization function Conc, the function V̂ induces a function V∗:

V∗(pr)
def
=

⋃
ς̂∈V̂(pr)

Conc(ς̂).

This, in turn, leads to a soundness constraint on the function V̂ :

|V(pr)| v V̂(pr),

where for a set of states Σ, the abstraction function is applied to each member: |Σ| = {|ς| :
ς ∈ Σ}.

Theorem 5.1.1 If |V(pr)| v V̂(pr), then V(pr) ⊆ V∗(pr).

Proof. Assume |V(pr)| v V̂(pr). Choose a state ς from the set V(pr). By the assumption,
there exists an abstract state ς̂ in V̂(pr) such that |ς| v ς̂. By definition, ς ∈ Conc(ς̂). Thus,
ς ∈ V∗(pr). 2

Starting with an operational, transition-based concrete semantics lends itself to a con-
venient strategy for constructing an abstract semantics: an operational, abstract transition

system, encoded as ≈> ⊆ Ŝtate × Ŝtate.2 This leads to a natural definition of the set V̂(pr)
as:

V̂(pr)
def
= {ς̂ : |I(pr)| ≈>∗ ς̂}.

In general, an abstract transition≈> will be constructed to obey the simulation constraint:

Definition 5.1.2 (Simulation constraint) An abstract transition ≈> simulates the con-
crete transition ⇒ if:

Given |ς| v ς̂ and ς ⇒ ς ′, there exists an abstract state ς̂ ′, such that ς̂ ≈> ς̂ ′ and
|ς ′| v ς̂ ′.

2As the symbol suggests, the expression ς̂ ≈> ς̂ ′ might be read as “the abstract state ς̂ transitions
approximately to the state ς̂ ′.”
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Diagrammatically, this relationship looks like:

ς̂
≈> // ς̂ ′

|ς|

v

OO

|ς̂ ′|

v

OO

ς ⇒
//

|·|
OO

ς ′

|·|
OO

The previous soundness constraint on the function V̂ follows from the simulation constraint:

Theorem 5.1.3 If a transition relation ≈> satisfies the simulation constraint, then:

|V(pr)| v V̂(pr).

Proof. Assume that if |ς| v ς̂ and ς ⇒ ς ′, then there exists an abstract state ς̂ ′, such that
ς̂ ≈> ς̂ ′ and |ς ′| v ς̂ ′. We must show that for any state ς ∈ V(pr), there exists an abstract
state ς̂ ∈ V̂(pr) such that |ς| v ς̂. The proof proceeds by induction on the length of the
path over the transition relation ⇒ that puts the state ς in the set V(pr). The base case is
trivial. Fix k. Assume that if I(pr)⇒k ς, then there exists an abstract state ς̂ ∈ V̂(ς) such
that |ς| v ς̂. Now, pick any state ς ′ such that I(pr) ⇒k+1 ς ′. Let ς be the predecessor of
ς ′. Let ς̂ ∈ V̂(pr) be such that |ς| v ς̂. By the simulation constraint, there must exist an
abstract state ς̂ ′ such that |ς ′| v ς̂ ′ and ς̂ ≈> ς̂ ′. Thus, ς̂ ′ ∈ V̂(pr). 2

One final details remains—proving the computability of the function V̂ . For this, it

suffices to make the abstract state-space Ŝtate finite. In doing so, the abstract interpretation
has a finite amount of room in which to run, thereby ensuring eventual termination of the
abstract state-space search.

5.2 Abstract state-space

The abstraction process begins with the abstract domains in Figure 5.1. Each of these
domains is a lattice, with the natural meanings for the order v, the join operator t and the
elements top > and bottom ⊥. (See Appendix A.2 for a definition of the natural meaning.)
Notationally, the abstract counterpart of a concrete domain is the same symbol, except it is
written with a hat on it, e.g., the concrete symbol D becomes the abstract symbol D̂.

Structurally, the concrete and the abstract are similar. Two major differences are worth
discussing:

• The set of abstract times, T̂ime,3 is finite. Each abstract time t̂ now represents a set of
concrete times. Consequently, each abstract binding (v, t̂) represents a set of concrete
bindings.

3Elsewhere [1, 37, 43], this set is known as the abstract contour set.
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ς̂ ∈ Ŝtate = (Êval + Âpply)>⊥
Êval = CALL× B̂Env × Ĉonf × T̂ime

Âpply = P̂roc × D̂∗ × Ĉonf × T̂ime

ĉ ∈ Ĉonf = V̂Env

v̂e ∈ V̂Env = B̂ind → D̂

b̂ ∈ B̂ind = VAR × T̂ime

β̂ ∈ B̂Env = VAR ⇀ T̂ime

d̂ ∈ D̂ = P(V̂al)

v̂al ∈ V̂al = P̂roc

p̂roc ∈ P̂roc = Ĉlo + {halt}
ĉlo ∈ Ĉlo = LAM × B̂Env

t̂ ∈ T̂ime = a finite set of abstract times/contours

Figure 5.1: Domains for the state-space of k-CFA

The simplest possible abstraction then is when the set T̂ime is a singleton; this yields
a 0CFA-level flow analysis.

A context-sensitive abstraction would partition the concrete set Time according to
calling contexts. That is, each call site call induces a set of times. The set of times {t :
call is the call site at time t} captures all of the contexts under which call is evaluated.

In the abstract, choosing T̂ime = CALL yields a 1CFA-level flow analysis.

The soundness of the forthcoming analyses is agnostic to the choice of contour set.
Running time and precision are not. It is worth mentioning that the forthcoming
empirical evaluation (Chapter 13) finds that most of the benefits of an environment
analysis seem to be capturable with a 0CFA contour set, and that running time in-
creases markedly with even a 1CFA contour set.

• Because each abstract binding represents a set of concrete bindings, multiple values
may result when looking up an abstract binding in the abstract value environment.
This means that the set of abstract denotable values D̂ must become a power set.

The concrete and the abstract state-spaces are formally connected by a family of ab-
straction maps | · |α : α→ α̂, with one map for each concrete domain from Figure 4.2. The
subscripted concrete domain α is usually clear from context and therefore omitted. The
notation |x| should be read as “the abstraction of x.” Figure 5.2 defines this abstraction
map. Given the tight correspondence between the structure of the concrete and the abstract
domains, this abstraction is largely a component-wise/element-wise/point-wise map over
concrete objects. For a set S whose elements are abstractable, we define |S| = {|s| : s ∈ S}.
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|(call , β, c, t)|State = (call , |β|, |c|, |t |)
|(proc,d, c, t)|State = (|proc|Proc, |d|, |c|, |t |)

|c|Conf = |c|VEnv

|ve|VEnv = λ(v, t̂).
⊔
|t|=t̂

|ve(v, t)|D

|(v, t)|Bind = (v, |t|)
|β|BEnv = λv.|β(t)|

|d |D = {|d |Val}
|val |Val = |val |Proc

|clo|Proc = |clo|Clo

|halt |Proc = halt

|(lam, β)|Clo = (lam, |β|)

|t |Time = · · ·

Figure 5.2: Concrete to abstract map | · |α : α→ α̂
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5.3 Abstract semantics: k-CFA

The abstract transition relation ≈> (Figure 5.3) is mechanically similar to its concrete coun-
terpart, ⇒. Beside the addition of hats, typographically, the only differences are that the
value environment extension:

ve ′ = ve[bi 7→ di],

has become a value environment join:

v̂e ′ = v̂e t [b̂i 7→ d̂i],

and that the Êval -to-Âpply transition is non-deterministic, using:

p̂roc ∈ Â(f, β̂, v̂e),

instead of:
proc = A(f, β, ve).

The reason we join instead of overwrite is that, again, because times are not fresh, bindings
may not be fresh anymore either, and this means that something may already be at slot b̂i in
the environment v̂e. Overwriting the value at that slot could lead to an under-approximation
of the visited concrete state-space.

Example & preview Consider two different value environments ve1 and ve2, where:

ve1(b1) = d

ve2(b1) = d

ve2(b2) = d .

If |b1| = |b2| = b̂, then both of these environments would abstract to the environment v̂e,
where:

v̂e(b̂) w |d|.
Two scenarios for strong update arise, i.e., scenarios where it is sound to use over-writing
instead of joining in the abstract.

In one scenario, a side-effecting construct like Scheme’s set! (Subsection 7.5.1) over-
writes an old concrete binding b1 with a new value, d ′. When dealing with the first value
environment, ve1, a strong update is legal in the abstract, where:

v̂e ′(b̂) = |d ′|,

because:
|ve2[b1 7→ d ′]| v v̂e ′.

On the other hand, if we were dealing with the second value environment, ve2, then a strong
update would be unsound, because:

|ve1[b1 7→ d ′]| 6v v̂e[b̂1 7→ |d ′|].
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([[(f e1 · · · en)]], β̂, v̂e, t̂) ≈> (p̂roc, d̂, v̂e, t̂′) where:

t̂′ = ŝucc(ς̂ , t̂)

p̂roc ∈ Â(f, β̂, v̂e)

d̂i = Â(ei, β̂, v̂e)

(([[(λ (v1 · · · vn) call)]], β̂), d̂, v̂e, t̂) ≈> (call , β̂′, v̂e ′, t̂′) where:

t̂′ = ŝucc(ς̂ , t̂)

β̂′ = β̂[vi 7→ t̂′]

b̂i = (vi, t̂
′)

v̂e ′ = v̂e t [b̂i 7→ d̂i]

Figure 5.3: Abstract transitions ς̂ ≈> ς̂ ′ for k-CFA

In another scenario for strong update, a new binding b3 has been created such that
|b3| = b̂. In this case, strong update is legal if it is impossible to reference the bindings b1

and b2; that is, if they have become dead from the perspective of garbage collection. Chap-
ter 6 covers the issues involved in proving soundness for strong update in this case. 2

The argument evaluator A abstracts naturally into Â : EXP × B̂Env × V̂Env → D̂:

Â(v, β̂, v̂e)
def
= v̂e(v, β̂(v))

Â(lam, β̂, v̂e)
def
= {(lam, β̂)}.

The program-to-abstract-state injector Î : PR → Ŝtate is the natural abstraction of the
concrete injector I:

Î(lam)
def
= |I(lam)| = ((lam,⊥), 〈{halt}〉,⊥, t̂0).

5.3.1 Setting context-sensitivity: Choosing k

The parameter k in k-CFA determines the context-sensitivity of the analysis. Roughly,
higher context-sensitivity leads to a more fine-grained abstract state-space, and consequently,
better precision, i.e., smaller flow sets. In k-CFA, the last k call sites determine the current
context. Paths to a point in the interpretation that differ in the last k call sites will be
treated distinctly, whereas paths that do not differ are folded together.

The parameter k determines the context-sensitivity by choosing the abstract time suc-
cessor function, ŝucc. In doing so, k-CFA assumes that the set of concrete times is the set
CALL∗, and that the set of abstract times is CALLk.
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In Shivers’ k-CFA [37], the concrete next-time function succ is only invoked in Eval to
Apply transitions. Thus, the concrete successor function would be defined as:

succ((call , β, ve, t), t) = call : t .

The CPS semantics utilized in this dissertation invokes the next-time successor succ on
both Eval and Apply states. Doing so in both kinds of states makes temporal consistency
easier to prove. For the sake of correctness, this change requires some extra i -dotting and
t-crossing. The concrete next-time function will use a wrapper α : Time → Time to denote
that the time has come through a concrete Apply state:

succ((call , β, ve, t), t) = call : α−1(t)

succ((proc,d, ve, t), t) = α(t).

The wrapper function α may simply add a distinct, unused call site to the front of the
sequence, which can then be removed in the next step.

In the abstract, the next-time function ŝucc chooses the last k call sites:

succ((call , β̂, v̂e, t̂), 〈call1, . . . , callk〉) =

last k call sites︷ ︸︸ ︷
〈call , call1, . . . , callk−1〉

succ((p̂roc, d̂, v̂e, t̂), t̂) = t̂.

The last required detail is an abstraction function | · |Time : Time → T̂ime:

|〈call1, . . . , calln〉| = 〈call1, . . . , callk〉
|α〈call1, . . . , calln〉| = 〈call1, . . . , callk〉.

In effect, the abstraction selects the last k call sites.

5.3.2 Computing k-CFA

For k-CFA, there is no need to define “final” states. The simplest way to compute a result for
k-CFA is to construct the set all of the reachable abstract states over chains of the transition
relation ≈>, starting from the initial state, Î(pr):

V̂(pr)
def
= {ς̂reachable : Î(pr) ≈>∗ ς̂reachable}.

Any graph-searching algorithm (e.g., breadth- or depth-first search) is suitable for computing
this set. The soundness theorem in the next section directly implies that:

|V(pr)| v V̂(pr).

Once again, this means that every state in the concrete execution has an approximation in
the set of abstract states traced out by k-CFA.

Of course, in practice, the set V̂(pr) is overly conservative. Shivers [37] devised two
techniques for more quickly computing a set of visitable states in the denotational version
of k-CFA. The next two subsections take a look at the operational analogs to these tech-
niques. Chapter 11 generalizes these techniques to environment analysis in more detail, and
Chapter 13 evaluates the payoff these yield in practice.
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5.3.3 Exploiting configuration monotonicity for early termination

The operational analog to Shivers’ aggressive cut-off algorithm computes the smallest set of
states V̂ ′(pr) such that the following constraints hold:

1. Î(pr) ∈ V̂ ′(pr).

2. For each state ς̂ in V̂ ′(pr), if the transition ς̂ ≈> ς̂ ′ is legal, then there exists a state ς̂ ′′

in V̂ ′(pr) such that the constraint ς̂ ′ v ς̂ ′′ holds.

From a graph-searching perspective, the second condition means that while exploring the
abstract state-space, if the current state ς̂ is more precise than some previously visited state
ς̂∗, i.e., ς̂ v ς̂∗, then termination on that branch of the search is sound: all of the possibilities
that would have been encountered on the current branch have already been covered. It
follows from the monotonicity theorem in the next section that:

|V(pr)| v V̂ ′(pr).

5.3.4 The time-stamp algorithm: configuration-widening

The monotonicity theorem also justifies Shivers’ time-stamp algorithm, as a specific instance
of a more general technique—configuration-widening. Shivers’ time-stamp algorithm single-
threads a global configuration through the entire analysis.

In a purely-functional setting, this means modifying the state-space search by joining the
configuration ĉwork of the state just pulled from the work set with the least upper bound of
all the configurations seen so far:

ĉ∗ =
⊔
{ĉς̂ : ς̂ ∈ Σ̂seen}.

That is, the current configuration is joined with all of the configurations seen thus far.
Simply using a single-threaded global configuration achieves this effect. Configuration-

widening, however, is a more general way to view this technique than a single-threaded
store, and it generalizes to situations where monotonic growth of the configuration across
transition is not guaranteed, and to implementations in languages such as Haskell where a
single-threaded store is not readily available.

5.3.5 An algorithm for k-CFA

Putting together the above techniques leads to an algorithm (Figure 5.4) for computing
Shivers’ original k-CFA.

As an interesting aside, the monotonic growth of the widening configuration ĉ∗ bounds
the running time of this algorithm. This, in turn, lends itself to a sketch of the complexity of

0CFA. In a 0CFA setting, where the set T̂ime is a singleton, binding environments vanish,
and value environments (configurations) become VAR → P(LAM ) mappings. At this point,
we can view a configuration as a bit table recording flow sets, e.g.:
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Σ̂← ⊥ Seen configurations, CALL× B̂Env × T̂ime → Ĉonf .

Ŝtodo ← {Î(pr)} The work list.
ĉ∗ ← ⊥ The widening configuration.
procedure Search()

if Ŝtodo = ∅
return

remove ς̂ ∈ Ŝtodo

if ς̂ ∈ Êval

(call , β̂, ĉ, t̂)← ς̂

ĉseen ← Σ̂[call , β̂, t̂] Configurations seen with this context.
if ĉ v ĉseen

return Search() Done—by monotonicity of ≈>.
ĉ′ ← ĉ t ĉ∗ Widen the current configuration.
ĉ∗ ← ĉ′ Widen the global configuration.

Σ̂[call , β̂, t̂]← ĉ′ Mark the configuration as seen.

ς̂ ← (call , β̂, ĉ′, t̂) Install the widened configuration.

Ŝnext ← {ς̂ ′ : ς̂ ≈> ς̂ ′}
Ŝtodo ← Ŝtodo ∪ Ŝnext

return Search()

Figure 5.4: State-space search algorithm for k-CFA: Search

lam1 lam2 · · · lam`

v1 0 1 · · · 0
v2 1 0 · · · 1
...

...
... · · · ...

vm 0 0 · · · 1

In this example, the flow set for variable v1 is the set {lam2}.

This means that the number of possible configurations is m · `, where m is the number of
variables and ` is the number of λ terms. Once a bit flips to 1 in the widening configuration
ĉ∗, it cannot unflip. If all bits flip to 1 in the widening configuration, the algorithm will
terminate. To determine whether to set a bit to 1, given some widening configuration, the
algorithm may examine at most every call site in the program against this configuration.
If the number of call sites is κ, then the complexity of the algorithm for 0CFA becomes
O(m · ` · κ), or, with n taken to be the number of terms in the program, O(n3).
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5.4 Soundness of k-CFA

With minor modifications, e.g., factoring out the set B̂ind , the abstraction just presented
is an operational reformulation of Shivers’ denotational k-CFA. The proof of correctness
for the operational version of k-CFA is simpler, and therefore merits inclusion. For readers
interested merely in implementing environment analysis, understanding the theorems and
proofs in this section is not necessary.

With an abstraction function, it is possible to define a simulation relation between con-
crete and abstract states:

Definition 5.4.1 (Simulation) The abstract state ς̂ simulates the concrete state ς, writ-
ten S(ς̂ , ς), iff |ς| v ς̂.

The abstraction function also permits a formulation of the two constraints on the concrete
next-time successor function succ : State × Time → Time and its abstract counterpart

ŝucc : Ŝtate × T̂ime → T̂ime. The following simulation constraint is necessary for the
forthcoming correctness theorem:

|ς| v ς̂ and |t | = t̂ =⇒ |succ(ς, t)| = ŝucc(ς̂ , t̂).

The following monotonicity constraint is required for proving the correctness of the early-
termination test:

ς̂1 v ς̂2 and t̂1 = t̂2 =⇒ ŝucc(ς̂1, t̂1) = ŝucc(ς̂2, t̂2).

The correctness of k-CFA boils down to showing that simulation is preserved across
transition:

Theorem 5.4.2 (Simulation under transition) If an abstract state ς̂ simulates the con-
crete state ς and the transition ς ⇒ ς ′ is legal, then there must be an abstract state ς̂ ′ such
that the abstract transition ς̂ ≈> ς̂ ′ is also legal and the subsequent abstract state ς̂ ′ simulates
the subsequent concrete ς ′. Diagrammatically:

ς̂
≈> //

S
��

ς̂ ′

S
��

ς ⇒
// ς ′

Proof. Assume the abstract state ς̂ simulates the concrete state ς and the transition ς ⇒ ς ′

is legal. We divide into cases on the type of the state ς.

• Case ς = ([[(f e1 · · · en)]], β, ve, t). Let ς̂ = (call , β̂, v̂e, t̂). Let ς ′ = (proc,d, ve, t ′). We
must prove the existence of a suitable ς̂ ′ = (p̂roc, d̂, v̂e, t̂′).

This case factors into three obligations:
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– The obligation |di|D v d̂i can be shown directly:

|di|D = |A(ei, β, ve)|D
{By cases on ei ∈ VAR or ei ∈ LAM }
v Â(ei, |β|, |ve|)
v Â(ei, β̂, v̂e)

v d̂i.

– A similar technique shows the existence of a suitable p̂roc. We have that:

|proc|D = |A(f, β, ve)|D
{By cases on f ∈ VAR or f ∈ LAM }
v Â(f, |β|, |ve|)
v Â(f, β̂, v̂e).

Thus, there exists some p̂roc in Â(f, β̂, v̂e) such that |proc|Proc v p̂roc.

– The final obligation |t ′| = t̂′ falls out from the constraints imposed on the functions
succ, ŝucc and | · |Time .

• Case ς = (([[(λ (v1 · · · vn) call)]], β),d, ve, t). Let ς̂ = ((lam, β̂), d̂, v̂e, t̂). Let ς ′ =
(call , β′, ve ′, t ′). We construct a suitable ς̂ ′ = (call , β̂′, v̂e ′, t̂′).

Once more, we have three obligations:

– By the constraints on succ and ŝucc, we have that |t ′| = t̂′.

– From the simulation |ς| v ς̂, we get:

|β′| = |β[vi 7→ t ′]|
= |β||[vi 7→ t ′]|
v β̂[vi 7→ t̂′i]

= β̂′.

– Finally, we show approximation for the value environments:

|ve ′| = |ve[(vi, t
′) 7→ di]|

v |ve| t |[(vi, t ′) 7→ di]|
v v̂e t [(vi, t̂

′) 7→ d̂i]

= v̂e ′.
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The monotonicity theorem is useful in proving the soundness of more advanced techniques
covered later. This theorem implies that if a state ς̂ is more precise than another already
visited state ς̂∗, then the states following the less precise state already approximate whatever
states the more precise state would have reached.

Theorem 5.4.3 (Monotonicity of abstract transition) If ς̂1 v ς̂2 and the transition
ς̂1 ≈> ς̂ ′1 is legal, then a state ς̂ ′2 exists such that the transition ς̂2 ≈> ς̂ ′2 is legal and ς̂ ′1 v ς̂ ′2.
Diagrammatically:

ς̂2
≈> // ς̂ ′2

ς̂1 ≈>
//

v

OO

ς̂ ′1

v

OO

Proof. Assume ς̂1 v ς̂2 and the transition ς̂1 ≈> ς̂ ′1 is legal. The proof is similar in structure
to the previous one. We divide into cases on the type of the state ς̂1.

• Case ς̂1 = ([[(f e1 · · · en)]], β̂1, v̂e1, t̂1).

Let ς̂2 = (call , β̂2, v̂e2, t̂2).

Let ς̂ ′1 = (p̂roc1, d̂1, v̂e1, t̂
′
1).

We must find a suitable ς̂ ′2 = (p̂roc2, d̂2, v̂e2, t̂
′
2).

This case factors into three obligations:

– The obligation d̂1
i v d̂2

i can be shown directly:

d̂1
i = Â(ei, β̂1, v̂e1)

{By cases on ei ∈ VAR or ei ∈ LAM }
v Â(ei, β̂2, v̂e2)

v d̂2
i .

– A similar technique shows the existence of a suitable p̂roc2. We have that:

{p̂roc1} v Â(f, β̂1, v̂e1)

{By cases on f ∈ VAR or f ∈ LAM }
v Â(f, β̂2, v̂e2).

Thus, there exists some p̂roc2 in Â(f, β̂2, v̂e2) such that p̂roc1 v p̂roc2.

– The final obligation follows from t̂′1 = t̂′2, which itself comes from the monotonicity
constraint imposed on the successor function ŝucc.
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• Case ς̂1 = (([[(λ (v1 · · · vn) call)]], β̂1), d̂1, v̂e1, t̂1). Let ς̂2 = ((lam, β̂2), d̂2, v̂e2, t̂2). Let
ς ′1 = (call , β̂′1, v̂e

′
1, t̂

′
1). We construct ς̂ ′2 = (call , β̂′2, v̂e

′
2, t̂

′
2).

Once more, we have three obligations:

– From the monotonicity constraint on ŝucc, we get t̂′1 = t̂′2.

– From the β̂1 v β̂2, we get:

β̂′1 = β̂1[vi 7→ t̂′1]

v β̂2[vi 7→ t̂′2]

= β̂′2.

– Finally, we show approximation for the value environments:

v̂e ′1 = v̂e1 t [(vi, t̂
′
1) 7→ d̂1

i ]

v v̂e2 t [(vi, t̂
′
2) 7→ d̂2

i ]

= v̂e ′2.

2

5.5 The environment problem refined

With k-CFA in place, it is possible to describe the environment problem more precisely. In
its simplest form, the environment problem asks whether the concrete bindings represented
by two abstract bindings are equivalent. With the environment in factored form, equivalence
also factors into two kinds: instance equivalent bindings and value equivalent bindings:

Definition 5.5.1 (Instance equivalence) Two concrete bindings b1 and b2 are instance
equivalent iff they are the same binding, i.e., b1 = b2.

Definition 5.5.2 (Value equivalence) Two concrete bindings b1 and b2 are value equiv-
alent under an environment ve iff they map to the same value, i.e., ve(b1) = ve(b2).

Instance equivalence—a notion made possible only by factoring the environment—is the
level of granularity at which environment analyses reason. Instance equivalence implies
value equivalence, but the reverse is not true.

Even with these definitions, one problem remains—in a practical setting, to which two
concrete bindings are we referring? The abstraction process in k-CFA collapses multiple
concrete bindings together into the same abstract binding. It is unlikely that the concrete

counterparts of even just one abstract binding plucked from the set B̂ind are equal to them-
selves: in fact, if there is more than one concrete counterpart, then they can’t be equal!
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Thus, abstract bindings must be referenced in a setting which narrows their possible coun-
terparts. To help in narrowing the counterparts to these bindings, we will refer to abstract
bindings found within a particular abstract state, and to narrow further, we will consider
only abstract bindings reachable (from the perspective of garbage collection) within that
state.

For instance, an optimizer might select abstract bindings b̂1 and b̂2 in the following
fashion: find a state ς̂ where the call site [[(f · · · )]] is being evaluated, and in which the
flow set for the function f is v̂e ς̂([[f]], β̂ς̂ [[f]]) = {(lam, β̂)}. Choose a variable v that is free
in both the call site call and in the expression lam. Let b̂1 = (v, β̂ς̂(v)) and b̂2 = (v, β̂(v)).
In this case, testing for instance equivalence between b̂1 and b̂2 is effectively asking whether
a dynamically scoped binding for the variable v would be equivalent to the lexically scoped
binding.

Formally, the environment problem reduces to finding a condition P ⊆ B̂ind × B̂ind ×
Ŝtate such that the following statement holds:

Definition 5.5.3 (Environment condition) A predicate P is an environment condi-
tion iff

If |ς| v ς̂; and |b1| = b̂1; and |b2| = b̂2; and b1 and b2 are within dom(veς); and
P (b̂1, b̂2, ς̂); then b1 = b2.

Thus, environment analysis reduces to computing an environment condition.

5.6 Flow-based environment analyses

A higher-order flow analysis can perform very limited environment analyses (or relatives
thereof) by itself.

5.6.1 Inequivalent bindings

While not as useful as proving the equality of bindings, the instance inequality of bindings
in the abstract clearly implies the instance inequality of any concrete counterparts as well:

Lemma 5.6.1 If |b1| 6= |b2|, then b1 6= b2.

Proof. By fact that | · |Bind is a function. 2

Of course, in the case where |b1| = |b2|, an analysis such as k-CFA cannot determine which
of b1 = b2 or b1 6= b2 holds.

5.6.2 Global variables

Because global variables have one instance throughout the entire execution of the program,
bindings to global variables are trivially instance equivalent to themselves.

Example For example, if the variable buf is a global variable, as in:
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(define buf ...)

Then, the following inference is valid:

([[buf]], t̂) = ([[buf]], t̂′)

and |([[buf]], t)| = ([[buf]], t̂)

and |([[buf]], t ′)| = ([[buf]], t̂′)

=⇒ ([[buf]], t) = ([[buf]], t ′).

2

5.6.3 Value-equivalent closures

A flow analysis can sometimes determine value-equivalence, and this may be sufficient for
the task at hand. Consider two bindings b̂1 and b̂2 from the abstract state ς̂. Under what
condition can k-CFA rule that the concrete values (i.e., the functions) referred to by these
bindings are equal? The condition has two parts:

1. Both bindings resolve to exactly and only the same abstract closure: v̂e ς̂(b̂1) = v̂e ς̂(b̂2) =
{(lam, β̂)}.

2. For each variable v in free(lam), the binding (v, β̂(v)) is recursively (instance or value)
equivalent to itself. Clearly, this condition holds trivially if the λ term has no free
variables.

Example For example, consider the following abstract configuration, v̂e:

([[id]], t̂) 7→{([[(λ (v c) (c v))]], [])}
([[f]], t̂′) 7→{([[(λ (x k) (id x k))]], [[[id]] 7→ t̂])}
([[g]], t̂′′) 7→{([[(λ (x k) (id x k))]], [[[id]] 7→ t̂])}.

It is clearly the case that the function computed by concrete counterparts to v̂e([[f]], t̂′) is
the same function computed by concrete counterparts to v̂e([[g]], t̂′′). 2
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Chapter 6

Abstract garbage collection: ΓCFA

Join is the enemy
— Tom Reps

This chapter introduces the first novel technology of this dissertation, abstract garbage
collection, or as deployed in a flow analysis, ΓCFA. Abstract garbage collection is the abstract
interpretive analog to garbage collection with an important twist: in addition to reaping dead
locations in the heap, abstract garbage collection also discards unreachable abstract bindings
from the environment structure. (Of course, in the CPS machine described thus far, there are
no locations yet—only bindings. When the configuration grows to include a side-effectable
store (added in Chapter 9), abstract garbage collection performs the more familiar task of
recycling locations as well.) The purpose of garbage collection in the abstract is much the
same as its role in the concrete—to make more efficient use of a finite resource.

Abstract garbage collection is not an environment analysis by itself. Rather, abstract
garbage collection is a technique orthogonal to higher-order flow analyses for improving
precision in an abstract interpretation. Consequently, it does increase the chance that a flow-
based environment analysis from the previous chapter will succeed, but more importantly,
it increases the chance that the forthcoming environment analyses will succeed as well.

6.1 Abstract garbage collection in pictures

Abstract bindings are a scarce resource. Over the course of an abstract interpretation, as
bindings occur, an abstract binding, unlike a concrete binding, may be re-allocated. When
a re-allocation occurs, the values previously associated with a binding and the new values
associated with that binding merge together in the abstract value environment.

Abstract garbage collection tackles scarcity by trying to make more efficient use of the
abstract bindings available. As abstract bindings become unreachable, they are removed
from the value environment. That is, their associated set of values is returned to the empty
set. Such behavior is sound due to the principle that if an abstract binding has become
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unreachable within a state, then so must have all of its concrete bindings in an associated
concrete state.

To help illustrate the concept, we’ll walk through several steps of execution for a three-
address concrete machine and its two-address abstract counterpart. We use the more general
term address to refer to entities such as bindings. Just as a store maps a location to a value,
a value environment maps a binding to a value. More generally, a configuration maps an
address (which could be either a location or a binding) to a value.

The diagram below encodes the initial state of the configuration for these two machines.

c

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

|c|

a3 â3

a2 â1,2

''OOOOOOOOOOOOOOO

GF ED@A BCval1 a1oo GF ED@A BCv̂al1

Square-edged boxes represent addresses: a1, a2 and a3 in the concrete; and â1,2 and â3 in
the abstract. In this particular example, address a1 and address a2 abstract to address â1,2,
while only address a3 abstracts to address â3. Double boxes represent addresses in the root
set from the perspective of garbage collection; that is, these are the addresses which are
immediately touched by a state. Rounded boxes represent values. In this case, the value
val1 is at address a1, and its abstract counterpart v̂al1 is at the abstract counterpart of
address a1: â1,2. Because the abstract is a simulation of the concrete, this diagram is sound.

It would be unsound, for instance, if value v̂al1 were not allocated in the abstract.

For the first step of execution, we will allocate the value val3 to address a3. In order
to preserve soundness, we must allocate its abstract counterpart v̂al3 to address â3. At the
same time, we will shift the root pointer to address a3 in the concrete (and, hence, to address
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â3 in the abstract). This results in the following diagram:

c

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

|c|

GF ED@A BCval3 a3oo â3
//GF ED@A BCv̂al3

a2 â1,2

''OOOOOOOOOOOOOOO

GF ED@A BCval1 a1oo GF ED@A BCv̂al1

At this point, if we had a garbage collector available in the concrete, it would remove value
val1 from the configuration. However, the CPS machine we have described thus far does
not feature garbage collection. Moving forward, we’ll see how concrete garbage collection
(or more precisely, its counterpart of abstract garbage collection) can actually improve the
precision of an abstract interpretation.

For the next step of execution, we allocate value val2 to address a2. We also create a
reference from value val3 to address a2. Once again, for soundness, we mirror the changes
in the abstract. This results in the following diagram:

c

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

|c|

GF ED@A BCval3

&&MMMMMMMMMMMMMM
a3oo â3

//GF ED@A BCv̂al3

wwppppppppppppppp

GF ED@A BCval2 a2oo â1,2
////

''OOOOOOOOOOOOOOO
GF ED@A BCv̂al2

GF ED@A BCval1 a1oo GF ED@A BCv̂al1

In this diagram, the damage to precision resulting from an onto mapping from concrete to
abstract bindings is apparent. In the concrete, the address a2 points to value val1. The
abstract interpretation that we have been running simultaneously, however, now reasons
that either value val1 or value val2 could be at address a2.
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The crux of the problem is abstract zombies. A zombie is an abstract value, which used
to be unreachable (dead), but which, due to the re-allocation of an abstract binding, has
once again become reachable (undead). Zombies are an entirely spurious loss of precision for
an abstract interpretation. Beyond blocking optimizations such as run-time check removal
(e.g., if val1 were a string and val2 an integer), an abstract zombie can also increase the

running time of the analysis. If, for example, the values v̂al1 and v̂al2 were procedures, and
the abstract interpretation were to invoke the procedures sitting at address â1,2, the result
would be a fork:

ς̂2.1 // · · ·

· · · // ς̂1

cval1 >>}}}}}}}}

cval2   A
AA

AA
AA

A

ς̂2.2 // · · ·

Forks such as this not only increase the run time of the abstract interpretation, but they may
also further damage precision. All too often, this degrades into a vicious cycle of merging
causing forking causing merging.

The solution to zombies is, of course, abstract garbage collection. Rewinding back to the
pre-zombie configurations, we had:

c

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

|c|

GF ED@A BCval3 a3oo â3
//GF ED@A BCv̂al3

a2 â1,2

''OOOOOOOOOOOOOOO

GF ED@A BCval1 a1oo GF ED@A BCv̂al1
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Garbage collecting both the concrete and the abstract leads to:

c

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

|c|

GF ED@A BCval3 a3oo â3
//GF ED@A BCv̂al3

a2 â1,2

a1

Once again repeating the steps in the allocation of val2 to a2 results in the following
configurations:

c

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

|c|

GF ED@A BCval3

&&MMMMMMMMMMMMMM
a3oo â3

//GF ED@A BCv̂al3

wwppppppppppppppp

GF ED@A BCval2 a2oo â1,2
////GF ED@A BCv̂al2

a1

In this final diagram, it is visually apparent that the abstract does not over-approximate
the concrete. That is, due to the garbage collection of abstract zombies, no precision is lost.
Before closing this example, note that in order for abstract garbage collection to be sound,
we must also perform concrete garbage collection. If we garbage collect the abstract but
not the concrete, there will exist values in the concrete with no abstract counterparts—a
technical violation of soundness even if the concrete values are dead.

Example Consider the abstract state:

([[(f f halt)]], β̂, v̂e, t̂now),

where the binding environment β̂ is:

β̂ = [[[f]] 7→ t̂′, [[halt]] 7→ t̂0],
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and the value environment v̂e is:

([[halt]], t̂0) 7→{halt}
([[id]], t̂) 7→{([[(λ (v c) (c v))]], [])}
([[f]], t̂′) 7→{([[(λ (x k) (id x k))]], [[[id]] 7→ t̂])}
([[g]], t̂′′) 7→{([[(λ (x k) (id x k))]], [[[id]] 7→ t̂])}.

Using the same schema as before, this value environment is visualized as:

([[halt]], t̂0) //GF ED@A BChalt

([[f]], t̂′) //GF ED@A BC([[(λ (x k) (id x k))]], [[[id]] 7→ t̂])

tt
([[id]], t̂) //GF ED@A BC([[(λ (v c) (c v))]], [])

([[g]], t̂′′) //GF ED@A BC([[(λ (x k) (id x k))]], [[[id]] 7→ t̂])

jj

After garbage collection, this value environment looks like:

([[halt]], t̂0) //GF ED@A BChalt

([[f]], t̂′) //GF ED@A BC([[(λ (x k) (id x k))]], [[[id]] 7→ t̂])

tt
([[id]], t̂) //GF ED@A BC([[(λ (v c) (c v))]], [])

([[g]], t̂′′)

2

6.2 Concrete garbage-collecting semantics

To prove soundness, abstract garbage collection requires the development of a concrete
garbage-collecting semantics for CPS. Abstract garbage collection is then just an abstract
interpretation of these semantics.
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The key formal machinery required for concrete garbage collection is already defined—
the reachable-bindings function R : State → P(Bind) (Subsection 4.4.2). (Previously, the
reachable-bindings function aided in the definition of the configuration safety of a state.)
Using the reachable bindings function, the state-based garbage collector Γ : State → State
has a straightforward definition:

Γ(ς)
def
=

{
(call , β, c|R(ς), t) ς = (call , β, c, t)

(proc,d, c|R(ς), t) ς = (proc,d, c, t).

That is, the domain of the configuration is restricted to solely the reachable bindings. Later
on, when the configuration has multiple components, the restriction of the configuration
distributes component-wise, that is:

c = (. . . , σ, ve, δ) =⇒ c|S = (. . . , σ|S, ve|S, δ|S).

The garbage-collecting transition rule ⇒Γ is then just:

Γ(ς)⇒ ς ′

ς ⇒Γ ς
′.

That is, a garbage-collecting transition is identical to an ordinary transition, except that the
state is garbage collected first.

6.3 Correctness of the garbage-collecting concrete se-

mantics

Now we have two concrete operational semantics: an ordinary CPS semantics, and a garbage-
collecting CPS semantics. The soundness of an abstract interpretation based on the new
semantics requires a theory of correctness that relates these two machines. Ultimately,
this means proving that the GC machine is a complete simulation of the original machine.
Diagrammatically, this simulation looks like the following:

I(lam) +3
OO

≡
��

ς1 +3
OO

≡
��

ς2 +3
OO

≡
��

ς3 +3
OO

≡
��

ς4 +3
OO

≡
��

· · ·

I(lam)
Γ

+3 ς ′1 Γ
+3 ς ′2 Γ

+3 ς ′3 Γ
+3 ς ′4 Γ

+3 · · ·

An understanding of the theorems and proofs in this section is not required in order to
implement abstract garbage collection.

Equivalence is the simulation relation between states that we need to preserve across
transitions. We say that two states are equivalent if they have the same image under the
GC function Γ:

Definition 6.3.1 (Equivalent states) States ς1 and ς2 are equivalent iff Γ(ς1) = Γ(ς2).
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As required, this notion of equivalence will preserve the value returned by the program when
the halt continuation is applied. Clearly, more than just the return value is preserved by
this relation, as it leaves call sites, binding environments and time-stamps untouched.

First, we show that making a garbage collection does not degrade the soundness of an
individual state (Definition 4.4.8).1

Theorem 6.3.2 (Preservation of soundness under GC) If the state ς is sound, then
the state Γ(ς) is sound.

Proof. Assume the state ς is sound. Only demonstrating configuration safety is non-trivial.
By the definition of the reachability function R, all paths starting from the set T (ς) through
the relation ;ve are over the bindings in the set R(ς). Hence, any of these paths is also
valid through the relation ;ve|R(ς). As a result, R(Γ(ς)) = R(ς) ⊆ dom(veς). Consequently,
R(Γ(ς)) = dom(veς |R(ς)). 2

Coupling the previous theorem with preservation of concrete soundness under transition
(Theorem 4.4.10), every realizable state in both the GC and non-GC semantics is sound.
From this, if two states are sound and equivalent, then both states transition together, or
not at all. The remainder of the argument for correctness consists of showing that the states
to which they transition are also equivalent.

The following lemmas formalize intuition regarding garbage collection and reachability.
As expected, repeatedly applying garbage collecting to a state does not change it:

Lemma 6.3.3 (Idempotency) Γ(ς) = Γ(Γ(ς)).

Proof. We must show that veς |R(ς) = veς |R(ς)|R(Γ(ς)). This reduces to showing that
R(ς) = R(Γ(ς)). By induction on path length, any path of bindings starting in T (ς) =
T (Γ(ς)) that is valid over the relation ;ve is valid over ;ve|R(ς), and vice versa. 2

If two states are equivalent, they reach the same set of bindings:

Lemma 6.3.4 If Γ(ς1) = Γ(ς2), then R(ς1) = R(ς2).

Proof. By path-length induction on membership in each reachability set. 2

The Containment Lemma formalizes the relationship between reachable bindings before
and after transition:

Lemma 6.3.5 (Containment) If the state ς is sound and the transition ς ⇒ ς ′ is legal,
then not veς(v, t) = veς′(v, t) implies that t = tς′, i.e., that this binding is fresh.

Alternatively,

Corollary 6.3.6 (Containment) If a state ς is sound and the transition ς ⇒ ς ′ is legal,
then

1As a reminder of the notation: ς = (. . . , veς , tς).
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• R(ς ′) ⊆ R(ς) if ς is an Eval state.

• R(ς ′)− {b : b is bound in this transition} ⊆ R(ς) if ς is an Apply state.

Eval -to-Apply transitions do not introduce bindings, and Apply-to-Eval transitions introduce
fresh bindings.

The key inductive step in the simulation theorem is demonstrating that equivalence is
preserved under transition:

Theorem 6.3.7 (Complete simulation) If states ς1 and ς2 are sound, and Γ(ς1) = Γ(ς2),
then either both states are terminal; or ς1 ⇒Γ ς

′
1 and ς2 ⇒ ς ′2 and Γ(ς ′1) = Γ(ς ′2).

Proof. Assume states ς1 and ς2 are sound, and Γ(ς1) = Γ(ς2). By the definition of the GC
function Γ and soundness, if one state is terminal, then so is the other. [To avoid triple
subscripts, let ςi = (. . . , ve i, . . .).]

We consider only the case where the states are non-terminal. We must show that the
subsequent states, ς ′1 and ς ′2, are equal under the GC function Γ; this reduces to showing the
equality ve ′1|R(ς ′1) = ve ′2|R(ς ′2), where the environment functions ve ′1 and ve ′2 are the global
environments for the subsequent states; or, expanded:

ve1|R(ς1)[bi 7→ di]|R(ς ′1) = ve2[bi 7→ di]|R(ς ′2).

By the Containment Lemma, this reduces to showing:

ve1|R(ς ′1) = ve2|R(ς ′2),

which, by ve1|R(ς1) = ve2|R(ς2), reduces to showing:

R(ς ′1) = R(ς ′2),

We show this by contradiction. Suppose we could find a binding b∗ that was in either the
set R(ς ′1) or the set R(ς ′2) but not in both. Let the vector 〈b0, . . . , bn〉 be the path justifying
its membership. Let the index i be the lowest index such that the following does not hold:

ve1|R(ς1)[bi 7→ di](bi) = ve2[bi 7→ di](bi).

Clearly, the binding bi cannot be a fresh binding, so the condition must really be:

ve1|R(ς1)(bi) = ve2(bi).

By the equivalence of states ς1 and ς2, this implies the following does not hold:

ve2|R(ς2)(bi) = ve2(bi).

And, this implies that bi 6∈ R(ς2), which implies that bi 6∈ R(ς1). But, if this were so, then
the binding bi could not be a member of the path justifying the membership of the binding
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b∗ in either the set R(ς ′1) or R(ς ′2). 2

Idempotency supports the correctness of an equivalent formulation of the garbage-collecting
semantics, where the GC function Γ is applied both before and after the transition:

Γ(ς)⇒ ς ′

ς ⇒Γ Γ(ς ′).

Clearly, garbage collecting before and after transition is equivalent to garbage collecting just
once before: the net effect is to GC twice instead of once. While garbage collecting twice in
a row is inefficient for an implementation, this alternate perspective is convenient for proofs,
as it permits the assumption that the concrete semantics visits only states with compact
configurations:

Definition 6.3.8 (Compactness) A state ς is compact iff dom(veς) = R(ς).

Hence, we can now view the state-space as the set StateΓ ⊂ State, where:

StateΓ
def
= {Γ(ς) : ς ∈ State}.

Now, we can define a concretization function ConcΓ : Ŝtate → P(StateΓ) on abstract
states which discards non-compact states:

Definition 6.3.9 The garbage-collected concretization of the state ς is:

ConcΓ(ς̂)
def
= {Γ(ς) : |ς| v ς̂}.

That is, only the compact states are considered.

6.4 Abstract garbage-collecting semantics: ΓCFA

The abstract, garbage-collecting semantics, titled ΓCFA, requires mirror definitions of touch-
ability, reachability and collection in the abstract.

First, the function T̂ : (V̂al + D̂ + Ŝtate) → P(B̂ind) captures what it means for an
abstract value to touch an abstract binding:

T̂ (lam, β̂)
def
= {(v, β̂(v)) : v ∈ free(lam)}

T̂ (halt)
def
= {}

T̂ {p̂roc1, . . . , p̂rocn}
def
= T̂ (p̂roc1) ∪ · · · ∪ T̂ (p̂rocn).

As in the concrete, touching extends to abstract states:

T̂ (call , β̂, v̂e, t̂)
def
= {(v, β̂(v)) : v ∈ free(call)}

T̂ (p̂roc, d̂, v̂e, t̂)
def
= T̂ (p̂roc) ∪ T̂ (d̂1) ∪ · · · ∪ T̂ (d̂n).
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The abstraction of the binding-to-binding adjacency relation mirrors the concrete version:

b̂toucher ; bve b̂touched ⇐⇒ b̂touched ∈ T̂ (v̂e(b̂toucher)).

The abstract reachable-bindings function, R̂ : Ŝtate → P(B̂ind), looks nearly identical to
its concrete counterpart R as well:

R̂(ς̂)
def
= {b̂reached : b̂root ∈ T̂ (ς̂) and b̂root ;∗bve ς̂

b̂reached}.

The GC function Γ abstracts to Γ̂ : Ŝtate → Ŝtate:

Γ̂(ς̂)
def
=

{
(p̂roc, d̂, v̂e|R̂(ς̂), t̂) ς̂ = (p̂roc, d̂, v̂e, t̂)

(call , β̂, v̂e|R̂(ς̂), t̂) ς̂ = (call , β̂, v̂e, t̂).

It is important to note that the GC function Γ̂ moves an abstract state ς̂ down the lattice
of approximation.

With the function Γ̂, the abstract GC transition relation ≈>Γ is:

Γ̂(ς̂) ≈> ς̂ ′

ς̂ ≈>Γ ς̂
′.

6.5 Soundness of abstract garbage collection

This section demonstrates the soundness of ΓCFA. By factoring the theorems in this section,
they build upon the earlier theorems for the soundness of k-CFA and thereby avoid dupli-
cating effort. Once again, the soundness of the abstract semantics depends upon showing
that they simulate the concrete semantics.

The simulation relation is the same one from the proof of correctness for k-CFA. Since
the abstract semantics can choose to GC or not to GC for any given transition, there are
two obligations:

• Showing that the transition relation ≈>Γ simulates the relation ⇒Γ.

• Showing that the transition relation ≈> also simulates the relation ⇒Γ.

The first theorem on the road to these obligations demonstrates that the abstract collector
Γ̂ is a simulation of the concrete collector Γ:

Theorem 6.5.1 (Simulation under collection) If |ς| v ς̂ then |Γ(ς)| v Γ̂(ς̂).

Proof. By Lemma 6.5.9 and Lemma 6.5.10. 2

With this theorem comes the first top-level obligation:
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Theorem 6.5.2 (Simulation under collecting transition) If |ς| v ς̂ and ς ⇒Γ ς
′, then

a state ς̂ ′ exists such that ς̂ ≈>Γ ς̂
′ and |ς ′| v ς̂ ′. Diagrammatically:2

ς̂
≈>Γ //

S
��

ς̂ ′

S
��

ς ⇒Γ
// ς ′

Proof. The proof of this theorem factors into two obligations:

1. If |ς| v ς̂ then |Γ(ς)| v Γ̂(ς̂).

2. If |ς| v ς̂ and ς ⇒ ς ′, then a state ς̂ ′ exists such that ς̂ ≈> ς̂ ′ and |ς ′| v ς̂ ′.

The first obligation is Theorem 6.5.1. The second obligation is the correctness of k-CFA.
2

The second top-level obligation reduces to the monotonicity of the transition rule ≈>
coupled with the next theorem, which states that the GC transition relation ≈>Γ is more
precise than the transition relation ≈>:

Theorem 6.5.3 If ς̂ ≈>Γ ς̂
′
Γ̂
, then a state ς̂ ′ exists such that ς̂ ≈> ς̂ ′ and ς̂ ′

Γ̂
v ς̂ ′. Diagram-

matically:

ς̂ ′

ς̂

≈>
@@

≈>Γ ��<
<<

<<
<<

<

ς̂ ′
Γ̂

v

OO

Proof. By the fact that Γ̂(ς̂) v ς̂ and Theorem 5.4.3. 2

Putting this all together gives us the second top-level obligation:

Theorem 6.5.4 (Non-GC transition approximates GC transition) If |ς| v ς̂ and ς ⇒Γ

ς ′, then a state ς̂ ′ exists such that ς̂ ≈> ς̂ ′ and |ς ′| v ς̂ ′. Diagrammatically:

ς̂
≈> //

S
��

ς̂ ′

S
��

ς ⇒Γ
// ς ′

2Recall that S(ς̂ , ς) def= |ς| v ς̂.
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Proof. By the previous three theorems. 2

With these theorems, ΓCFA is sound to collect as few or as many unreachable bindings as
deemed necessary on any given transition.

Now we turn our attention to the arguments required to support aggressive termination
techniques. Given that the configuration does not grow monotonically across transition in the
abstract (as in k-CFA), i.e., ς̂ ≈>Γ ς̂

′ does not imply ĉς̂ v ĉς̂′ , the correctness argument behind
an aggressive cut-off test in ΓCFA requires more work. The aggressive cut-off condition in
ΓCFA states that, during the state-space search, if the current state ς̂’s image under GC,
Γ̂(ς̂), is more precise than a state already visited, ς̂∗, i.e. Γ̂(ς̂) v ς̂∗, then termination is
sound. The soundness of this behavior relies upon showing that the set of concrete states
represented by the abstract state ς̂ and its garbage-collected version Γ̂(ς̂) are, in fact, equal.

Proving equality means the key soundness theorem for the aggressive cut-off becomes:

Theorem 6.5.5 ConcΓ(ς̂) = ConcΓ(Γ̂(ς̂)).

Proof. The theorem reduces to showing {Γ(ς) : |ς| v ς̂} = {Γ(ς) : |ς| v Γ̂(ς̂)}. We factor
this into two obligations:

• First, we show ConcΓ(ς̂) ⊆ ConcΓ(Γ̂(ς̂)). Choose a state ς from ConcΓ(ς̂). We already
know that Γ(ς) = ς. To prove the state ς’s membership in ConcΓ(Γ̂(ς̂)), it suffices to
show:

|ς| = |Γ(ς)|
v Γ̂|ς|
v Γ̂(ς̂).

• Next, we must show ConcΓ(Γ̂(ς̂)) ⊆ ConcΓ(ς̂). This holds by Γ̂(ς̂) v ς̂.

2

The Zen of ΓCFA It is worth pondering that:

Γ̂(ς̂) v ς̂

is true while at the same time:

ConcΓ(Γ̂(ς̂)) ⊇ ConcΓ(ς̂)

is also true.

6.5.1 Supporting lemmas

The next series of lemmas relates touchable and reachable bindings in both the concrete and
the abstract.
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Lemma 6.5.6 If |ς| v ς̂, then |T (ς)| ⊆ T̂ (ς̂).

Proof. By cases on the structure of the state ς. 2

Lemma 6.5.7 |R(ς)| ⊆ R̂(|ς|).

Proof. Choose an abstract binding b̂ ∈ |R(ς)|. Let b be such that |b| v b̂ and b ∈ R(ς).
Let 〈b0, . . . , b〉 be a path over the relation ;veς that justifies b ∈ R(ς). We can show by

Lemma 6.5.6 and contradiction that the path 〈|b0|, . . . , |b|〉 must also justify b̂ ∈ R̂(|ς|). 2

Lemma 6.5.8 If ς̂1 v ς̂2, then R̂(ς̂1) ⊆ R̂(ς̂2).

Proof. By path-style reasoning similar to Lemma 6.5.7. 2

Lemma 6.5.9
∣∣ve|R(ς)

∣∣ v |ve|∣∣|R(ς)|.

Proof. Choose any abstract binding b̂.

|ve
∣∣R(ς)|(b̂) =

⊔
|b|=b̂

|(ve|R(ς))(b)|

=
⊔
|b|=b̂

|if b ∈ R(ς) then ve(b)|

v
⊔
|b|=b̂

|if b̂ ∈ |R(ς)| then ve(b)|

= if b̂ ∈ |R(ς)| then
⊔
|b|=b̂

|ve(b)| else ⊥

= (|ve|
∣∣|R(ς)|)(b̂).

2

Lemma 6.5.10 If ve1 v ve2 and B̂1 ⊆ B̂2, then v̂e1|B̂1 v v̂e2|B̂2.

Proof. By reasoning similar to Lemma 6.5.9. 2
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6.6 Abstract garbage collection and polyvariance

Running abstract garbage collection on CPS leads to a surprising and subtle benefit: in-
creased control-flow polyvariance. CPS reifies control as data (via explicit continuations).
Abstract garbage collection reaps data. Therefore, abstract garbage collection also reaps con-
trol. This reaping of control, in turn, undoes some of the spurious “cross-talk” in traditional
higher-order control-flow analysis.

Consider a λ term (λ (... k) ...). Suppose a closure over it is invoked at some point
during a 0CFA-level abstract interpretation. To where will this procedure return? Because
the flow set for the return continuation k grows monotonically with each invocation, the
closure will return to every context in which it has been invoked thus far.

With abstract garbage collection, the monotonic growth of the flow set for k is gone.
Moreover, in leaf procedures, it is collectible immediately upon return. Thus, leaf procedures
will always return to their most immediate caller in the abstract. The same is true of tail-
recursive procedures.

Even in the case of indirectly or non-tail recursive procedures, such a procedure will not
return to call sites past the most recent external call.

Example Consider the direct-style code fragment:

(define (id x) x)

(id v1)

(id v2)

Clearly, the result of this program is the value of v2. 0CFA, however, says it could be either
the value of v1 or v2. To see why, let us desugar and CPS convert:

((λ (id)

(id v1 (λ ( )

(id v2 halt))))

(λ (x k) (k x)))

Call this code fragment call .
To see the effect of GC, we’ll trace through abstract interpretation of this code for 0CFA

context-sensitivity, i.e., where the set T̂ime is a singleton. Simplifying matters, in 0CFA,

binding environments (B̂Env) disappear, value environments degenerate to V̂Env : VAR →
P(LAM ), and states no longer need time-stamps.

Suppose call is evaluated (without abstract GC) in the abstract state (call , v̂e), where:

v̂e[[halt]] = {halt}
v̂e[[v1]] = {λ1}
v̂e[[v2]] = {λ2}.

In the subsequent Apply state, ([[(λ (id) ...)]], 〈{λid}〉, v̂e), we have:

λid = [[(λ (x k) (k x))]].
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This leads to the Eval state ([[(id v1 ...)]], v̂e1), where

v̂e1[[halt]] = {halt}
v̂e1[[v1]] = {λ1}
v̂e1[[v2]] = {λ2}
v̂e1[[id]] = {λid}.

Next, 0CFA enters an Apply state (λid, 〈{λ1}, {λcont1}〉, v̂e1), where:

λcont1 = [[(λ ( ) (id v2 halt))]]

The subsequent Eval state ([[(k x)]], v̂e2) is now in the body of the identity function, where:

v̂e2[[halt]] = {halt}
v̂e2[[v1]] = {λ1}
v̂e2[[v2]] = {λ2}
v̂e2[[id]] = {λid}
v̂e2[[x]] = {λ1}
v̂e2[[k]] = {λcont1}.

Next, control returns from the identity function to the continuation λcont1, leading to state
(λcont1, 〈{λ1}〉, v̂e2). This leads directly to the Eval state ([[(id v2 halt)]], v̂e3), where:

v̂e3[[halt]] = {halt}
v̂e3[[v1]] = {λ1}
v̂e3[[v2]] = {λ2}
v̂e3[[id]] = {λid}
v̂e3[[x]] = {λ1}
v̂e3[[k]] = {λcont1}
v̂e3[[ ]] = {λ1}.

Next, 0CFA applies the identity function in state (λid, 〈{λ2}, {halt}〉, v̂e3). Afterward, 0CFA
again evaluates the body of the identity function in the state ([[(k x)]], v̂e4), where:

v̂e4[[halt]] = {halt}
v̂e4[[v1]] = {λ1}
v̂e4[[v2]] = {λ2}
v̂e4[[id]] = {λid}
v̂e4[[x]] = {λ1, λ2}
v̂e4[[k]] = {λcont1, halt}
v̂e4[[ ]] = {λ1}.
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At this point, the flow set for x has merged, and the flow set for k has merged. Consequently,
this state has two successors: one applying the halt continuation to {λ1, λ2}, and one applying
the continuation λcont1 to {λ1, λ2}. Clearly, this second state is a spurious fork, and the
merging of the flow sets for the variable x damaged the precision of the result.

Now, rewind back to the Eval state associated with environment v̂e3; this is the state
([[(id v2 halt)]], v̂e3). Diagrammatically, the environment v̂e3 looks like:

[[v1]] //GF ED@A BCλ1

[[x]]

77nnnnnnnnnnnnnnnn

[[ ]]

>>||||||||||||||||||||

[[id]] //GF ED@A BCλid

[[halt]] //GF ED@A BChalt

[[k]] //GF ED@A BCλcont1

gg

``

ww
[[v2]] //GF ED@A BCλ2

Clearly, only the bindings for the variables id, halt and v2 are reachable from the root set.
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Hence, after garbage collection, this environment looks like:

[[v1]]

[[x]]

[[ ]]

[[id]] //GF ED@A BCλid

[[halt]] //GF ED@A BChalt

[[k]]

[[v2]] //GF ED@A BCλ2

Call this collected environment v̂e ′3. Running the abstract interpretation forward with this
collected environment leads to the Apply state (λid, 〈{λ2}, {halt}〉, v̂e ′3). This, in turn, leads
to the Eval state ([[(k x)]], v̂e ′4), where:

v̂e ′4[[halt]] = {halt}
v̂e ′4[[x]] = {λ2}.

Clearly, the next state is terminal, and no precision is lost in the result of {λ2}. 2

6.7 Advanced abstract garbage-collection techniques

It is possible to garbage collect even more aggressively than the criterion of reachability.
Might, Chambers and Shivers’ work [25] develops a notion of abstract garbage collection
based upon the potential usability of a binding, a stricter criterion than reachability. A
binding is potentially usable only if it is reachable and there is insufficient knowledge to
prove that at least one condition guarding each of its occurrences is unsatisfiable.

Example Consider the following λ term:

(λ (k)

(if-zero c (k a) (k b)))
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Assume (for simplicity) we perform an abstract interpretation with 0CFA-level context-
sensitivity. It may be the case that the flow set for the term c is the set {0} at some point.
When this is the case, even though the reference b is syntactically free, neither this abstract
closure nor its concrete counterparts will make use of its binding. Thus, the binding to the
variable b need not be included in the set of touchable bindings for such a closure. 2
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Chapter 7

Abstract counting: µCFA

. . . the third number, be reached, then
lobbest thou thy Holy Hand Grenade
of Antioch towards thy foe, who, being
naughty in my sight, shall snuff it.

— Monty Python and the Holy Grail

Abstract counting is a mechanism for threading an environment analysis through an
abstract interpretation such as k-CFA. An environment analysis which employs abstract
counting is a measure-based counting flow analysis (µCFA).

Recall that in an abstract interpretation, each abstract element represents a set of con-
crete elements (as illustrated in Figure 7.1). Abstract counting tracks the size of these sets
over the course of an interpretation. It’s worth mentioning that abstract counting is orthog-
onal to both k-CFA and abstract garbage collection. However, abstract garbage collection
does improve the precision of abstract counting, just as it improves the precision of the
underlying flow analysis.

The goal of abstract counting is to find sets of size one, and then apply the following
principle:

w

z

y
x

Concrete Abstract

{w}

{x,y,z}

Figure 7.1: An example concrete-to-abstract mapping.
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If {a} = {b}, then a = b,

or a more general reformulation thereof:

If two equal sets A and B have size at most one, then for any element a ∈ A and
any element b ∈ B, a = b.

In abstract counting, the counted resource is the set of bindings B to which an abstract
binding b̂ corresponds in some particular state ς. The key phrasing “in some particular
state” helps to clarify the nature of counting. It is not the size of the set {b : |b| = b̂} that is
being counted; in fact, this set is unchanging and usually infinite. The set being counted is,
in fact, an approximation of the set {b : |b| = b̂ and b ∈ dom(veς)}. (This count has nothing
to do with the size of the set of abstract denotables associated with the binding b̂ through
the environment v̂e ς̂ : we are not counting the size of the set v̂e ς̂(b̂).)

Once the foundation for abstract counting is laid, the concept generalizes to many kinds
of abstract resources, including store addresses, time-stamps and closures.

7.1 Abstract counting semantics: µCFA

Pleasantly, abstract counting requires no modification or enrichment of the the concrete
semantics. Even better, abstract counting can be “woven” into the existing semantics as a
reduced product of ΓCFA or k-CFA with a second “counting” abstract interpretation. In

this second abstract interpretation, a state ς abstracts to a measure1 function, µ̂ : B̂ind → N̂,
where:

N̂ = {0, 1,∞}.
Literally, the count µ̂(b̂) = n means that there are n or fewer reachable concrete bindings
such that |b| = b̂ in the states abstracting to the measure µ̂. The lattice of counts, N̂, uses
the order v = ≤, the join operator t = max, the meet operator u = min, the element 0 for
⊥ and the element ∞ for >. Addition abstracts naturally to the operator ⊕:

0⊕ n̂ = n̂

n̂⊕ 0 = n̂

1⊕ 1 =∞
n̂⊕∞ =∞
∞⊕ n̂ =∞.

The set of measure functions is M̂easure = B̂ind → N̂.
This leads to a natural definition for the state-to-measure abstraction, | · |µ : State →

M̂easure:

|(. . . , c, t)|µ = |c|µ

|ve|µ = λb̂.ŝize{b : |b| = b̂ and b ∈ dom(ve)},
1This is not to be confused with the kind of measure function found in real or complex analysis.
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where the abstract set-size function ŝize is:

ŝize(S)


0 size(S) = 0

1 size(S) = 1

∞ otherwise.

Example Suppose |t0| = |t1| = |t2| = t̂, and that |t ′0| = |t ′1| = |t ′2| = t̂′, and that t̂ 6= t̂′. Note
that all of the following environments:

ve0 = [([[x]], t0) 7→ d0]

ve1 = [([[x]], t1) 7→ d1]

ve2 = [([[x]], t2) 7→ d2],

abstract to:
|ve0|µ = |ve1|µ = |ve2|µ = [([[x]], t̂) 7→ 1],

even when d0 6= d1 6= d2, because the abstraction | · |µ is concerned only with elements of the
domain.

For this reason, the following environments:

ve0,1 = [([[x]], t0) 7→ d0, ([[x]], t1) 7→ d1]

ve1,2 = [([[x]], t1) 7→ d1, ([[x]], t2) 7→ d2],

both abstract to:

|ve0,1|µ = |ve1,2|µ = [([[x]], t̂) 7→ ∞].

Meanwhile, the following environments:

ve ′0,1 = [([[x]], t0) 7→ d0, ([[x]], t
′
1) 7→ d1]

ve ′1,2 = [([[x]], t1) 7→ d1, ([[x]], t
′
2) 7→ d2],

both abstract to:

|ve ′0,1|µ = |ve ′1,2|µ = [([[x]], t̂) 7→ 1, ([[x]], t̂′) 7→ 1].

In each case, what is being counted is the number of concrete counterparts to abstract bind-
ings found within the environment. 2

One could develop an abstract measure-to-measure transition relation in the same way
that the transition ≈> was developed. The lack of information in a measure µ̂ makes this
pointless. In fact, the only sound transition relation is the following:

≈>µ = M̂easure × {>}.
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In other words, regardless of what you know about one abstract state µ̂, you know absolutely
nothing about the next one: there is simply not enough information inside the measure µ̂—
like the current call site or the environment—to figure out what might happen next.

However, treating the abstract measure as its own abstract interpretation does allow us
to consider its reduced product with the transition relation ≈> and the garbage collector Γ̂.
In a reduced product, two abstract interpretations are run simultaneously:

ς̂ // ς̂ ′ // ς̂ ′′ // · · ·

µ̂ // µ̂′ // µ̂′′ // · · ·

But, instead of running them independently like the previous diagram, their interpretations
are stitched together like so:

ς̂ //

��

ς̂ ′ //

��

ς̂ ′′ //

  

· · ·

µ̂ //

@@��������
µ̂′ //

??��������
µ̂′′ //

>>}}}}}}}}
· · ·

That is, a new joint transition, (ς̂ , µ̂)↗↘ (ς̂ ′, µ̂′), is created, and this joint transition is strictly
more precise than the product of the old transitions, that is:

(↗↘) < (≈>)× (≈>µ).

To help understand this joint interpretation, consider the combined concretization func-

tion, Conc↗↘ : Ŝtate × M̂easure → P(State):

Conc↗↘(ς̂ , µ̂) = {ς : |ς| v ς̂ and |ς|µ v µ̂}.

That is, the combined interpretation considers only the intersection of the abstractions’
concrete counterparts.

Seen from a different perspective, a measure µ̂ looks a lot like a component of the abstract
configuration. After all, its domain is the set of abstract bindings—just like value environ-
ment. Moving with this insight, instead of developing a new joint transition on states like:

((call , β̂, v̂e, t̂), µ̂),

the congruence:

((call , β̂, v̂e, t̂), µ̂) ∼= (call , β̂, v̂e, µ̂, t̂)

permits us to fold the measure function in as part of the abstract configuration, where it
makes a natural fit. From this point forward, we assume that:

Ĉonf = V̂Env × M̂easure.
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([[(f e1 · · · en)]], β̂, v̂e, µ̂, t̂) ≈>µ (p̂roc, d̂, v̂e, µ̂, t̂′), where:

t̂′ = ŝucc(ς̂ , t̂)

p̂roc ∈ Â(f, β̂, v̂e)

d̂i = Â(ei, β̂, v̂e)

(([[(λ (v1 · · · vn) call)]], β̂), d̂, v̂e, µ̂, t̂) ≈>µ (call , β̂′, v̂e ′, µ̂′, t̂′), where:

t̂′ = ŝucc(ς̂ , t̂)

β̂′ = β̂[vi 7→ t̂′]

b̂i = (vi, t̂
′)

v̂e ′ = v̂e t [b̂i 7→ d̂i]

µ̂′ = µ̂ ⊕ [b̂i 7→ 1]

Figure 7.2: Abstract transitions ς̂ ≈>µ ς̂
′ for µCFA

At this point, we also need to extend the abstraction mapping | · | to this joint state:

|(call , β, ve, t)|State
def
= (call , |β|, |ve|, |ς|µ, |t |)

|(proc,d, ve, t)|State
def
= (|proc|Proc, |d|, |ve|, |ς|µ, |t |).

Figure 7.2 contains the new joint transition relation ≈>µ. The only departure from the
k-CFA transition relation is that the Apply-to-Eval transition also increments the measure
for the new bindings.

Extending the GC function Γ̂ to a joint abstract garbage-collection function is straight-
forward:

Γ̂(ς̂)
def
=

{
(p̂roc, d̂, v̂e|R̂(ς̂), µ̂|R̂(ς̂), t̂) ς̂ = (p̂roc, d̂, v̂e, µ̂, t̂)

(call , β̂, v̂e|R̂(ς̂), µ̂|R̂(ς̂), t̂) ς̂ = (call , β, v̂e, µ̂, t̂).

Thus, unreachable bindings are reset to ⊥ = 0 within the measure µ̂.

7.2 Soundness of abstract counting

The primary reason for going through the extra effort of viewing a measure µ̂ as if it were its
own complete abstraction of a state is that phrasing the relation ≈>µ in terms of the reduced
product of two interpretations allows us to build upon the existing correctness infrastructure,
instead of reformulating it all from scratch. The soundness of abstract counting reduces to
the handful of lemmas below. For convenience, we may view the joint abstract state as
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(ς̂ , µ̂). To disambiguate, we use | · |k for the old k-CFA abstraction function, | · |µ for the new
abstraction function and | · | for the joint abstraction function.

The first lemma reasons about measures across transition:

Lemma 7.2.1 If |ς| v (ς̂ , µ̂), ς ⇒ ς ′, and (ς̂ , µ̂) ≈>µ (ς̂ ′, µ̂′) and |ς ′|k v ς̂ ′ then |ς ′|µ v µ̂′.

Proof. Assume |ς| v (ς̂ , µ̂) and ς ⇒ ς ′, and (ς̂ , µ̂) ≈>µ (ς̂ ′, µ̂′) and |ς ′|k v ς̂ ′. The case
where ς is an Eval state is trivial, so suppose ς is an Apply state. Let ς = (. . . , ve, . . .),
ς ′ = (. . . , ve ′, . . .), and ς̂ = (. . . , v̂e, . . .). By the Apply-state schema, ve ′ = ve[(vi, t) 7→ di].
Thus:

|ve ′|µ = λb̂.ŝize{b ∈ dom(ve ′) : |b| = b̂}

= λb̂.ŝize
(
{b ∈ dom(ve) : |b| = b̂} ∪ {b ∈ dom([(vi, t) 7→ di]) : |b| = b̂}

)
= λb̂.ŝize{b ∈ dom(ve) : |b| = b̂} ⊕ ŝize{b ∈ dom([(vi, t) 7→ di]) : |b| = b̂}
= |ve|µ ⊕ |[(vi, t) 7→ di]|µ

v µ̂⊕ |[(vi, t) 7→ di]|µ

= µ̂⊕ [(vi, t̂) 7→ 1]

v µ̂′.

2

The next lemma supports simulation under GC:

Lemma 7.2.2 If |ς| v (ς̂ , µ̂), then |veς |R(ς)|µ v µ̂|R̂(ς̂).

Proof. Assume |ς| v (ς̂ , µ̂). Then, |veς |R(ς)|µ v |veς |µ
∣∣|R(ς)| v µ̂|R̂(ς̂). 2

7.3 Environment analysis via abstract counting

Abstract counting can be brought to bear on environment analysis by the following theorem,
which chains abstract equality to concrete equality:

Theorem 7.3.1 (Measure pinching) If

• |b1| = b̂ = |b2|,

• and µ̂ς̂(b̂) ≤ 1;

• and |ς| v ς̂;

• and b1, b2 ∈ dom(veς);

then b1 = b2.
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Proof. Assume |ς| v ς̂ and µ̂ς̂(b̂) = 1. Choose any two bindings b1, b2 ∈ dom(ve) such that
|b1| = b̂ and |b2| = b̂. From µ̂ς̂ w |veς |µ, we have:

1 ≥ µ̂ς̂(b̂)

≥ |veς |µ(b̂)
= ŝize{b′ ∈ dom(veς) : |b′| = b̂}
≥ ŝize ({b1} ∪ {b2}) ,

which implies that the size of the set {b1} ∪ {b2} is 0 or 1. If the size is 0, then we cannot
choose any such bindings, and the theorem holds vacuously. If the size is 1, then b1 = b2. 2

7.4 Effects of abstract garbage collection on precision

Abstract garbage collection improves the precision of an ordinary flow analysis where the
goal is to minimize flow sets. It is worth considering under what circumstances abstract
garbage collection will also yield improvements in the metric for environment analysis via
abstract counting: measures of 0 or 1—or alternatively, anything but ∞.

Without abstract garbage collection in play, the value ∞ results when the binding in
question is bound twice during abstract interpretation. With abstract garbage collection
resetting counts to 0 for bindings that become unreachable, the count of∞ results when two
or more abstract bindings to the same variable in the same context can be simultaneously
live.

Example To understand which variables qualify as having multiple simultaneously live
bindings to them, it helps to look at examples. For the moment, consider tail-recursive
factorial:

(define (fact n a k)

(if-zero n

(k a)

(- n 1 (λ (m)

(* a n (λ (t)

(fact m t k)))))))

With a 0CFA-level context-sensitivity (and abstract garbage collection), the maximum count
for each binding/variable is:

• fact : 1.

• n : 1.

• t : 1.
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• k : 1.

• m : 1.

The global variable fact is bound once—at program initialization.

Bindings to the variable m, n and t have brief lifetimes—lasting a few transitions each.
Consequently, bindings to these variables are never simultaneously live, and hence, never
exceed a count of 1.

The continuation variable k binds to a single value (repeatedly) for the duration of the
program—the outer-level continuation coming from the external call to the function fact. 2

Example Consider non-tail-recursive factorial as a foil:

(define (fact n k)

(if-zero n

(k 1)

(- n 1 (λ (m)

(fact m (λ (ans)

(* ans n k)))))))

With a 0CFA-level context-sensitivity (and abstract garbage collection), the maximum count
for each binding/variable is:

• fact : 1.

• n : ∞.

• k : ∞.

• m : 1.

• ans : 1.

In this example, the variables which are live across the recursive call—n and k—end up with
simultaneously live bindings to themselves—pushing their counts to ∞. 2

7.5 Advanced counting-based techniques

The following techniques improve the precision of a counting-based environment analysis,
but they are not required. Arguments for the soundness of these techniques are omitted.
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7.5.1 Strong update on mutable variables

While the pure CPS presented thus far does not allow for side effects to variables, it is not
hard to extend it with a construct such as Scheme’s set!, which mutates a variable. The
näıve abstract interpretation of this construct would be the following transition relation:

([[(set! v eval econt)]], β̂, v̂e, µ̂, t̂) ≈>µ (proc, 〈〉, v̂e ′, µ̂, t̂′), where:

proc ∈ Â(econt, β̂, v̂e)

d̂ = Â(eval, β̂, v̂e)

v̂e ′ = v̂e t [(v, β̂(v)) 7→ d̂]

t̂′ = ŝucc(ς̂ , t̂).

However, a smarter implementation could detect whether there were one or fewer coun-
terparts to the binding (v, β̂(v)), i.e., whether µ̂(v, β̂(v)) ≤ 1:

([[(set! v eval econt)]], β̂, v̂e, µ̂, t̂) ≈>µ (proc, 〈〉, v̂e ′, µ̂, t̂′), where:

proc ∈ Â(econt, β̂, v̂e)

d̂ = Â(eval, β̂, v̂e)

v̂e ′ =

{
v̂e[(v, β̂(v)) 7→ d̂] µ̂(v, β̂(v)) ≤ 1

v̂e t [(v, β̂(v)) 7→ d̂] otherwise

t̂′ = ŝucc(ς̂ , t̂).

The only difference with this transition schema is that v̂e ′ is constructed via shadowing
instead of by joining. This behavior is sound, because in the concrete, there is only one
counterpart to the binding (v, β̂(v)), and its value is also about to change.

Example To get a better feeling for why strong update is sound when the count is less than
or equal to 1, consider the concrete states (call , β1, ve1, tnow) and (call , β2, ve2, tnow), where:

call = [[(set! v lam . . . )]]

β1[[v]] = t1

ve1 = [([[v]], t1) 7→ d1]

β2[[v]] = t2

ve2 = [([[v]], t2) 7→ d2].

Note that the subsequent environments ve ′1 and ve ′2 overwrite the values living at the slots
([[v]], t1) and ([[v]], t2):

ve ′1([[v]], t1) = (lam, β1)

ve ′2([[v]], t2) = (lam, β2).
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Supposing |t1| = |t2| = t̂, both of these Eval states can be represented by the same
abstract state (call , β̂, v̂e, µ̂, t̂now), where:

β̂[[v]] = t̂

v̂e([[v]], t̂) = |d1|D t |d2|D
µ̂([[v]], t̂) = 1.

And, in the abstract, the subsequent environment v̂e ′ is:

v̂e ′([[v]], t̂) = {(lam, β̂)}.

Note that the old value for slot ([[v]], t̂)—|d1| t |d2|—has been discarded and replaced.
To get a better feeling for why strong update is unsound if a count exceeds 1, consider

the more complex value environment ve1,2 = ve2,1 = ve1 t ve2, and the concrete states
(call , β1, ve1,2, tnow) and (call , β2, ve2,1, tnow). The subsequent environments lose their parallel
structure:

ve ′1,2([[v]], t1) = (lam, β1)

ve ′1,2([[v]], t2) = d2

ve ′2,1([[v]], t1) = d1

ve ′2,1([[v]], t2) = (lam, β2).

Both of these Eval states abstract to (call , β̂, v̂e, µ̂1,2, t̂now), where:

µ̂1,2([[v]], t̂) =∞.

Note that any subsequent abstract environment must represent both ve ′1,2 and ve ′2,1, such as
v̂e ′′, where:

v̂e ′′([[v]], t̂) = {|d1|, |d2|, (lam, β̂)}.

In this case, two concrete slots are being represented by one abstract slot; hence, both pos-
sible values must exist there in the abstract. 2

7.5.2 Abstract rebinding

Another opportunity for optimization occurs when a variable is bound to itself. Consider
the following map function:

(define (map f lst)

(if (null? lst)

(cons (f (car lst)) (map f (cdr lst)))

’()))
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In this code (and its counterpart in CPS), the variable f is repeatedly bound to itself.
If handled in näıve fashion, the value environment ve would look something like this

during an invocation of map:

ve([[f]], t0) = proc,

· · ·
ve([[f]], t1) = ve([[f]], t0)

· · ·
ve([[f]], t2) = ve([[f]], t1)

· · ·
ve([[f]], t3) = ve([[f]], t2)

· · ·

Note that this same behavior would be achieved if instead t0 = t1 = t2 = · · · .
If the concrete interpretation finds that the variable v is on the verge of receiving a value

attached to some binding of the same variable, (v, told), and that |told| = |tnew|, then instead
of creating a new entry in the value environment ve, the concrete interpretation could instead
install the older binding [v 7→ told] in the new binding environment β′. In effect, this would
re-use the older entry within the value environment ve.2

In an abstract interpretation, when a rebinding like this is detected, this means it is
sound to not increment the measure for this particular entry, further increasing the chance
that the magic count of one concrete counterpart will prevail.

2This breaks the store-less implementation of set! we just described. To use this technique with set!,
mutable variables must be allocated side-effectable reference cells.
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Chapter 8

Abstract frame strings: ∆CFA

This chapter shifts gears to attack the environment problem from a different angle: the stack.
The forthcoming analysis, ∆CFA, statically bounds stack motion. A comprehensive theory
linking stack change to environment change turns ∆CFA into an environment analysis.

Note to implementors ∆CFA is a second solution to the environment problem. Ab-
stract counting and abstract garbage collection should be sufficient for most tasks requiring
environment analysis. Given its relative technical complexity, ∆CFA is recommended to
implementors only in addition to these other two techniques, and then, only if these other
techniques proved insufficiently precise for the task at hand. Forewarnings about implemen-
tation aside, the concrete frame-string-based environment theory is useful in and of itself as a
guide for understanding the behavior of environments—even if ∆CFA is never implemented.
2

The development of ∆CFA begins with an enrichment of the concrete semantics to track
stack change. In order to track stack change, CPS must be partitioned into user-world and
continuation-world elements [12, 13].

8.1 Partitioned CPS

The grammar for partitioned CPS (Figure 8.1) factors elements into the user world and the
continuation world.

• The user world is composed of terms whose values were available to the user in the
pre-CPS-converted, direct-style code.

• The continuation world is composed of terms which do not correspond to terms from
the pre-CPS-converted, direct-style code. These terms correspond to return points in
the original source code.

Per the convention used thus far, labels on terms are omitted except where required.
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The annotations for this partitioning are easily inserted during the direct-style-to-CPS
transform itself. Given the following grammar for direct-style λ calculus:

τ ∈ TERM ::= v
| (λ (v) τ)
| (τfun τarg),

the converter C : TERM → CEXP → UCALL outputs annotated terms:

C v q = [[(q vψ)κ]]

C [[(λ (v) τ)]] q = [[(λ (v k′) ucall)ψ]]

where k′ is fresh

ucall = C τ k′κ

C [[(τfun τarg)]] q = ucall

where u′, u′′ are fresh

ucall = C τfun [[(λ (u′) ucall ′)κ]]

ucall ′ = C τarg [[(λ (u′′) ucall ′′)κ]]

ucall ′′ = [[(u′ u′′ q)ψ]],

where the labels highlight to which world a term belongs. The expression C τ q is a term
that invokes the continuation q on the result of the expression τ .

Example In the following code fragment for factorial, continuation-world entities are in
bold and underlined:

(define (fact n return)
(if-zero n

(return 1)

(- n 1 (λ (n-1)

(fact n-1 (λ (n-1!)

(* n n-1! return)))))))

8.1.1 Stack management in partitioned CPS

In partitioned CPS, just enough information to perform direct-style stack management exists.
In unpartitioned CPS, there is a single control construct: call to λ. In partitioned CPS, there
are really two: call to user-world λ, and call to continuation λ.

In languages that support continuations, these two operations have distinct meanings
with respect to the stack: calling a user-world function pushes a frame, while calling a
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pr ∈ PR = ULAM

v ∈ VAR = UVAR + CVAR
u ∈ UVAR ::= identifier
k ∈ CVAR ::= identifier

REF = UREF + CREF
UREF ::= uψ

CREF ::= kκ

lam ∈ LAM = ULAM + CLAM

ulam ∈ ULAM ::= (λ (u1 · · ·un k1 k2 · · · km) call)ψ

clam ∈ CLAM ::= (λ (u1 · · ·un) call)κ

e, f ∈ EXP = UEXP + CEXP
a, h ∈ UEXP = ULAM + UREF

q ∈ CEXP = CLAM + CREF

call ∈ CALL = UCALL + CCALL

ucall ∈ UCALL ::= (f e1 · · · en q1 q2 · · · qm)ψ
ccall ∈ CCALL ::= (q e1 · · · en)κ

` ∈ LAB = ULAB + CLAB
ψ ∈ ULAB = a set of user labels
κ ∈ CLAB = a set of continuation labels

Figure 8.1: Grammar for pure, multi-argument partitioned CPS
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StackAct = {push, pop}
φ ∈ Φ = LAB × Time × StackAct

::= 〈`t| (push)
| |`t〉 (pop)

p, q ∈ F = Φ∗

Figure 8.2: Frame strings

continuation restores an older stack. Procedure return, for instance, is merely a special and
common instance of continuation invocation—the case where the continuation closed over
the immediate parent of the current stack frame is invoked.

Advanced, Steele-style stack management [41] is recovered by aggressively popping the
stack when continuations are passed as arguments. For instance, before executing the call
(f a1 · · · an q1 · · · qn), the stack can be reset to the top-most frame over which one of the
continuations q1 through qn are closed. This sort of stack discipline leads to, for instance,
proper tail-recursive behavior.

Most of the time, there will only be one continuation argument. Multiple continuations
are useful for encoding conditional constructs in CPS, and for more exotic purposes, such
as transducer pipelines. The standard CPS transform C given earlier does not introduce
multiple continuations.

8.2 Frame strings

With an informal understanding of stack management in place, this section introduces the
formal machinery for describing stack operations. Later, in Section 8.4, this formal machinery
feeds into to theorems about environment structure.

A frame string is a record of the stack-frame allocation and deallocation operations over
the course of some segment of a computation; it can equally be viewed as a trace of the
program’s control flow. More precisely, a frame string is a sequence of characters, with each
character representing a push/pop frame operation (Figure 8.2).

A single frame character captures three items of information about a stack operation:
(1) the label ` of the λ term attached to that frame; (2) the time t of the frame’s creation;
and (3) the action taken, either a push represented as a “bra” 〈··| or a pop represented1 as a
“ket” |··〉. Thus, the character 〈l387| represents a call to λ expression l3 at time 87, while the
character |l387〉 represents returning from this instance of l3 at some later time.

But, saying that a |··〉 action is a procedure return is a coarse oversimplification. In the
modern world, which allows tail calls and continuation invocations, what the action |l387〉 really
represents is popping procedure l3’s frame. Perhaps this occurred because l3 was returning,
but perhaps it was instead because l3 was performing a tail call, and so we would never be
returning to l3. Note, also, that if the source language provides full continuations, then it

1These “bra” and “ket” brackets come from Dirac’s notation for quantum mechanics [14].
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is possible for a frame to be popped and later re-pushed, when some saved, upward-passed
continuation is invoked.

Example Certain frame strings are nonsensical, i.e., no program can generate them. For
example, 〈a1||b2〉 would represent “pushing a frame for procedure a and then popping a frame
for procedure b.” Likewise, 〈a1||a2〉 would represent “pushing a frame for procedure a and then
popping a different frame for the same procedure.” Clearly, these behaviors are impossible.
2

Example Consider the code, once again, for non-tail-recursive CPS factorial:

(define (fact n return)

(if-zero n

(return 1)

(- n 1 (λ k1 (n-1)

(fact n-1 (λ k2 (n-1!)

(* n n-1! return)))))))

The frame-string trace generated by executing (fact 0 halt) is:

〈fact0 |〈if−zero1 |
Call to halt︷ ︸︸ ︷
|if−zero1 〉|fact0 〉 .

The frame-string trace generated by executing (fact 1 halt) is:

〈fact0 |〈if−zero1 |〈−2 |
Call to k1︷ ︸︸ ︷
|−2 〉〈k13 | 〈fact4 |〈if−zero5 |

Call to k2︷ ︸︸ ︷
|if−zero5 〉|fact4 〉〈k26 | 〈∗7|

Call to halt︷ ︸︸ ︷
|∗7〉|k26 〉|k13 〉|if−zero1 〉|fact0 〉 .

2

Example The frame-string trace for tail-recursive CPS factorial:

(define (fact n result return)

(if-zero n

(return result)

(- n 1 (λ k1 (n-1)

(* n result (λ k2 (n*result)

(fact n-1 n*result return)))))))

on (fact 1 1 halt) is:

〈fact0 |〈if−zero1 |〈−2 |
Call to k1︷ ︸︸ ︷
|−2 〉〈k13 | 〈∗4|

Call to k2︷ ︸︸ ︷
|∗4〉〈k25 |

Tail call to fact︷ ︸︸ ︷
|k25 〉|k13 〉|if−zero1 〉|fact0 〉〈fact6 | 〈if−zero7 |

Call to halt︷ ︸︸ ︷
|if−zero7 〉|fact6 〉 .
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It has long been known that tail recursion makes more efficient use of stack space in the
concrete. Perhaps not too surprisingly, tail recursion will make similarly efficient use of this
scarce resource in the abstract. 2

Example The call to the continuation (return-cc) in the following fragment will actually
push frames back onto the stack:

(define (return-cc) (call/cc (lambda (cc) (cc cc))))

((return-cc) (lambda (x) x))

2

8.2.1 The net operation

By composing a few primitive operations on procedure strings, we achieve a vocabulary for
describing arbitrary stack-to-stack change during program execution. The operator · is the
string-concatenation operator. The net operator b·c cancels out opposing, adjacent frame-
character pairings until no more cancellations are possible. That is, if the push 〈`t| occurs
to the immediate left or right of its opposing pop |`t〉 the pair cancels into the empty string
under the net; when no further annihilations in the string p are possible, the remainder is
bpc, e.g.b〈a1|a1〉〈b2|c = 〈b2|. This is known as taking the net of a frame string. Formally, the
net operator over the empty string is bεc = ε, over length-one strings is bφc = φ, and over
length-two strings is:

b〈`1t1|
`2
t2〉c =

{
ε `1 = `2 and t1 = t2

〈`1t1|
`2
t2〉 otherwise

b〈`1t1|〈
`2
t2|c = 〈`1t1|〈

`2
t2|

b|`1t1〉〈
`2
t2|c =

{
ε `1 = `2 and t1 = t2

|`1t1〉〈
`2
t2| otherwise

b|`1t1〉|
`2
t2〉c = |`1t1〉|

`2
t2〉

For lengths higher than two, the net’s distributivity reduces the string:

bp · q · rc = bp · bqc · rc.

Lastly, bpc = p if there is no string q shorter than p where bqc = bpc.

Example In practice, the bra-ket notation makes it easy to visually perform the net. For
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example:

b〈a1|a1〉c = ε

b|a1〉〈a1|c = ε

b〈a1|〈b2|b2〉|a1〉c = ε

b〈a1|〈b2|b2〉c = 〈a1|
b〈a1|〈b2|b2〉〈c3|c = 〈a1|〈c3|

b〈a1|〈b2|b2〉〈c3|c3〉〈b2|c = 〈a1|〈b2|
b|a1〉〈a2|c = |a1〉〈a2|.

Note that in cases where more than one cancellation is possible, cancellation order does not
effect the result. 2

The net of a frame string is unique, i.e., the order of cancellations does not alter the net:

Theorem 8.2.1 The net of a frame string p is unique.

Proof. By induction on string length p. The base cases of length(p) ≤ 2 are trivial.

Base case, p = φ1φ2φ3. If at most one length-two substring is cancellable in the frame-
string p, the net is clearly unique. Thus, we must consider the case where bφ1φ2c = ε and
bφ2φ3c = ε. Suppose φ1 = 〈`t|. Then φ2 = |`t〉, which implies φ3 = 〈`t|. Regardless of cancella-
tion order, b〈`t|`t〉〈`t|c = 〈`t|. An analogous argument works when we suppose φ1 = |`t〉.

Inductive Step: Fix k. Assume ∀p : length(p) < k =⇒ bpc is unique. Let p be a frame
string of length k. Pick any two distinct length-two substrings which are cancellable. When
only one or no such substring exists, this step is trivial. We divide into cases on whether
these substrings overlap.

• Case Substrings do not overlap. Clearly, we may cancel one substring without blocking
the ability to cancel the other. Thus, we may cancel them in either order and result
in the same string, which by our inductive hypothesis, has a unique net.

Case Substrings overlap. That is, we have the string p · φ1φ2φ3 · q where bφ1φ2c = ε
and bφ2φ3c = ε. Using the base case of length three, the net of this string is bp · φ1 · qc
regardless of cancellation order, and this string has a unique net by our inductive
hypothesis.

2
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8.2.2 The group structure of frame strings

The net operation induces an equivalence relation ≡ on frame strings: p ≡ q iff bpc = bqc.
This congruence ≡ partitions frame strings into equivalence classes, which form a group
under concatenation. When proving theorems about environments and designing an abstract,
analysis-friendly model of frame strings, this structure becomes an advantage.

Theorem 8.2.2 Frame strings modulo the net form a group under concatenation.

Proof. Let a≡
def
= {x : x ≡ a}. Over equivalence classes, the operator · becomes: A · B def

=
{x : x ≡ α · β, α ∈ A, β ∈ B}. We must show that the four group properties hold.

1. Closure under concatenation: First, let a ≡ α and b ≡ β. We show that a · b ≡ α · β.
We have: a · b ≡ α · β iff ba · bc = bα · βc iff ba · bc = bbαc · bβcc iff ba · bc = bbac ·
bbcc iff ba · bc = ba · bc.
With this, it is now simple to show that: a≡ · b≡ = (a · b)≡.

2. Associativity of concatenation: From the associativity of concatenation, we get: (a≡ ·
b≡) · c≡ = (a · b)≡ · c≡ = ((a · b) · c)≡ = (a · (b · c))≡ = a≡ · (b · c)≡ = a≡ · (b≡ · c≡).

3. Existence of an identity, ε≡: a≡ · ε≡ = (a · ε)≡ = a≡ = (ε · a)≡ = ε≡ · a≡.

4. Existence of an inverse: Pick any equivalence class p≡. First, we show that every string
in p has an inverse p−1 by induction on the length of the string, that is, p · p−1 ≡ p−1 ·
p ≡ ε.

The base cases of length zero and length one are trivial.

Inductive Step: Fix k. Assume ∀p : length(p) < k =⇒ ∃p−1 : p · p−1 ≡ p−1 · p ≡ ε.
Split p = r · s such that r and s have non-zero length. p has inverse s−1 · r−1, as
r · s · s−1 · r−1 ≡ s−1 · r−1 · r · s ≡ ε.

Now, note: p≡ · p−1
≡ = (p · p−1)≡ = ε≡ = (p−1 · p)≡ = p−1

≡ · p≡.

2

Aside: Procedure strings Harrison’s procedure strings [18] are otherwise identical to
frame strings, but for the fact that each character records only the action (push/pop) and
the procedure label—time is not included. The end result is that pop-push pairs are un-
cancellable under the net. For example, otherwise distinct frame strings such as |a1〉〈a2| and
|a1〉〈a1| become the same procedure string. Clearly, the first of these does not cancel, while
the second cancels to the empty string. Without the ability to tell the difference, procedure
strings simply cannot allow the cancellation. (Naturally, push-pop pairs are still cancellable
in procedure strings.) From an algebraic perspective, in procedure strings, pop characters
have no right-inverse and push characters have no left-inverse. Consequently, procedure
strings form a monoid under the net operation where frame strings form a group. 2
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From the group structure comes an inverse operation ·−1 : F → F for free. Operationally,
p−1 reverses frame string p, and flips each push/pop action to its opposite frame action. This
is the inverse of the string p modulo b·c. From this comes the freedom to invoke group-like
transformations for frame strings under net.

Example The inverse also has a visual interpretation; consider:

〈a1|
−1 = |a1〉

|a1〉
−1 = 〈a1|

〈a1|〈a2|
−1 = |a2〉|a1〉

〈a1|〈b2|b2〉
−1

= 〈b2|b2〉|a1〉

In each case, a string appended or prepended to its inverse cancels to empty under the net. 2

Several useful properties of frame strings and their operators follow as a natural conse-
quence of their group-ness:

p−1 · p ≡ p · p−1 ≡ ε

p · q ≡ ε =⇒ q ≡ p−1

(p−1)−1 ≡ p.

8.2.3 A frame-string vocabulary for control-flow

Once encoded in partitioned CPS, each kind of control transfer creates a frame-string signa-
ture during program execution:

Non-tail call: 〈ψ· |

Tail call (iteration): |κ· 〉 · · · |κ· 〉|ψ· 〉〈ψ· |

Simple return: |κ· 〉 · · · |κ· 〉|ψ· 〉〈κ· |

Primop call: 〈ψ· ||ψ· 〉〈κ· | or |κ· 〉 · · · |κ· 〉|ψ· 〉〈ψ· ||ψ· 〉〈κ· |

“Upward” throw: |··〉 · · · |··〉〈κ· |

“Downward” throw: |··〉 · · · |··〉〈··| · · · 〈··|〈κ· |

Coroutine switch: |··〉 · · · |··〉〈··| · · · 〈··|〈κ· |

Note that, with the exception of primops, these constructs have no explicit support in
CPS. It is the natural encoding of these constructs within CPS that generates such signatures.
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8.2.4 Frame strings and stacks: two interpretations

To connect these operators back to the stack-management model, if we have a frame string p
that describes the trace of a program execution up to some point in time, then the net string
bpc gives us a picture of the stack at that time. Alternately, if the frame string p represents
some contiguous segment of a program’s trace, then the net string bpc yields a summary of
the stack change that occurred during the execution of that segment.

The analysis will, in fact, make exclusive use of this second interpretation, which connects
two points in a program’s execution. If frame string p describes some sequence of actions
on the stack, then its inverse p−1 produces the frame string that will “undo” these actions,
restoring the stack to its state at the point in the computation corresponding to what existed
before the actions p were performed. Conveniently, this is well-suited to handle general
continuations (as well as the more prosaic task of handling simple returns).

8.2.5 Tools for extracting information from frame strings

Figure 8.3 defines three tools for selecting, extracting and testing structure from frame
strings. The function trS : F → F produces the trace of a frame string with respect to
procedure labels or times in the set S by discarding any frame action whose procedure label
or time is not in the set S. The function dir∆ : F → P(∆) returns the direction of a frame
string with respect to a set of regular expressions ∆.2 That is, it returns the subset of the
pattern set ∆ whose members match the frame string supplied to the function dir∆.

Depending on the target analysis or optimization, there are a number of sets which make
sense for the pattern set ∆. For instance, the pattern set ∆Ton = {〈··|

∗, |··〉
∗, |··〉

∗〈··|
∗} extracts

the tonicity of a string, that is:

p is push-monotonic if 〈··|
∗ ∈ dir∆Ton

(p)
p is pop-monotonic if |··〉

∗ ∈ dir∆Ton
(p)

p is pop/push-bitonic if |··〉
∗〈··|

∗ ∈ dir∆Ton
(p).

Or, informally, a frame string is push-monotonic if it is purely pushes; a frame string is
pop-monotonic if it is purely pops; and a frame string is pop/push-bitonic if it is a sequence
of pops followed by a sequence of pushes.

The notion of a string’s trace purity becomes useful in reasoning about environments.
The following definitions identify different kinds of string purity:

p is continuation-pure if trCLAB(p) = p
p is user-pure if trULAB(p) = p
p is S-pure if trS(p) = p.

Or, informally, a frame string is continuation-pure if it contains only frame characters for
continuations; a frame string is user-pure if it contains only frame characters for user-world
functions; and a frame string is S-pure if it contains only characters for the procedure labels

2These regular expressions will be matching net frame strings that describe the change in the stack
between two points in execution; thus the use of the symbol ∆.
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For any set X where X ⊆ Time or X ⊆ LAB :

trX(ε)
def
= ε.

For any set T where T ⊆ Time:

trT (〈`t| · p)
def
=

{
〈`t| · trT (p) t ∈ T
trT (p) t 6∈ T

trT (|`t〉 · p)
def
=

{
|`t〉 · trT (p) t ∈ T
trT (p) t 6∈ T .

For any set L where L ⊆ LAB :

trL(〈`t| · p)
def
=

{
〈`t| · trL(p) ` ∈ L
trL(p) ` 6∈ L

trL(|`t〉 · p)
def
=

{
|`t〉 · trL(p) ` ∈ L
trL(p) ` 6∈ L.

For any pattern set ∆:

dir∆(p)
def
= {re ∈ ∆ : p ∈ L(re)}.

For any set of procedure labels L ⊆ LAB :

p �L q def
= trL(bp · q−1c) = ε.

Figure 8.3: Analytic tools for frame strings
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in the set S. In an environment analysis, continuation-purity is the most useful, since a
frame string that is continuation-pure in the net indicates that the environment has changed
by at most the variables bound by those continuations.

The suffix-detection relation �S appears somewhat arbitrary at first, but it can be inter-
preted as follows: undo the net effect of string q on string p; p �S q then holds if and only
if the remaining string consists solely of frame actions for procedures in S. The relation �
degenerates to equivalence under the net when the set of procedure labels is empty:

p �∅ q ⇐⇒ p ≡ q.

Example The following are examples where the relation � holds:

〈a1|〈a2|〈b3| �{a} 〈b3|
〈a1|a1〉〈a2|〈b3| �∅ 〈a2|〈b3|
〈a1|a1〉〈a2|〈b3| �{a} |a1〉〈a2|〈b3|.

The following are examples where this relation does not hold:

〈a1|〈a2|〈c3|〈b4| 6�{a} 〈b4|
〈a1|〈a2|〈c3|〈b4| 6�∅ 〈c3|〈b4|.

2

Later on, certain frame actions—the ones that will go into the set S—do not change the
environment in a meaningful way, and the purpose of this relation is to ignore these frame
actions. For the purposes of environment analysis, the set S will be either the set CLAB or
∅. To plant the seeds of intuition, consider the fragment:

01 (f x (λ k1 (a)

02 (g y (λ k2 (b)

03 ...))))

The net stack change from line 01 to line 03 is 〈k1t |〈k2t+i|. If the variables of concern are not a
and b, then labels k1 and k2 can be ignored when testing the equivalence of the environment
on line 01 and the environment on line 03.

The choice of the symbol � is meant to suggest that the net of the right-hand side will be
a suffix of the net of the left-hand side whenever we use it. (We make no use of the relation
� where this is not the case.)

8.3 Concrete frame-string semantics

Unlike the addition of counting, the addition of stack-tracking machinery requires alterations
to the concrete semantics. Two changes must be made:
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1. Time-stamps are attached to closures (some of which are now considered continuation)
to record their birthdate. Instead of a pair (lam, β), a closure is now a triple (lam, β, t),
where t is the birthdate.

2. A new stack-logging component, δ, must be added to the configuration.

If only the log δ had to be added to the machine, then we could formulate the concrete
frame-string semantics as a pure product of the original CPS machine (Figure 4.3) with this
one.

Figure 8.4 gives the state-space of the frame-string semantics, and Figure 8.5 provides
the transition relation. The log component δ is a member of the set Log , a map from a time
in the past to the stack change since that time. Each transition is charged with the task of
keeping this log up-to-date. In both transitions, each first computes the change p∆ caused
by that transition, and then updates the log.

In the Eval -to-Apply transition rule, the change p∆ is the result of resetting the state of
the stack to the top-most (i.e., youngest) continuation. If the call site is a continuation call
site, and the continuation under evaluation is (clam, β, tbirth), then the change p∆ becomes
just δ(tbirth)

−1. In other words, when a continuation is invoked, the stack is reset to the stack
that existed at the time of the continuation’s creation. If, instead, the call site is a user-world
call site, then the Steele stack-management policy dictates that the machine should pop off
frames that aren’t necessary—all of the frames down to the top-most continuation. It’s worth
noting that most of the time, there is only a single continuation argument. Allowing multiple
continuation arguments is useful for encoding conditionals, and for more exotic constructs,
such as transducer pipelines [38]. Thus, if a function ends in a tail call, e.g. (f ... k),
the net effect of this behavior is to pop off the current frame before proceeding.

In an Apply-to-Eval transition, the change p∆ is straightforward: invoking a procedure
always pushes a frame on behalf of that procedure.

The argument evaluator A : EXP × BEnv × VEnv × Time ⇀ D must be extended to
take in the current time:

A(v, β, ve, t) = ve(v, β(v))

A(lam, β, ve, t) = (lam, β, t).

If the argument is a λ term, then the current time is affixed to the closure as its birthdate.
The function youngest δ : P(D) → F returns the stack change since the creation of the

youngest continuation:

youngest δ(C) = (shortest ◦ ageδ)(C − (ULAM × BEnv × Time))

ageδ(lam, β, t) = δ(t)

ageδ(halt) = δ(t0).

This function picks the youngest continuation by finding the shortest frame string. The ag-
gressive stack management model calls for resetting the stack to the top-most (i.e., youngest)
continuation upon function call. If implementing Steele’s stack management model were not
of concern, this function would not be required.
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ς ∈ State = Eval + Apply
Eval = CALL× BEnv × Conf × Time
Apply = Proc × D∗ × Conf × Time

c ∈ Conf = VEnv × Log
δ ∈ Log = Time ⇀ F

ve ∈ VEnv = Bind ⇀ D
b ∈ Bind = VAR × Time
β ∈ BEnv = VAR ⇀ Time

d ∈ D = Val
val ∈ Val = Proc

proc ∈ Proc = Clo + {halt}
clo ∈ Clo = LAM × BEnv × Time

t ∈ Time = an infinite, ordered set of times

Figure 8.4: Domains for the state-space of partitioned CPS machine

([[(f e1 · · · en)]], β, ve, δ, t)⇒∆ (proc,d, ve, δ′, t ′) where:

t ′ = succ(ς, t)

proc = A(f, β, ve, t)

di = A(ei, β, ve, t)

p∆ = (youngest δ{proc, d1, . . . , dn})−1

δ′ = (δ · (λ .p∆))[t ′ 7→ ε]

(([[(λ (v1 · · · vn) call)`]], β),d, ve, δ, t)⇒∆ (call , β′, ve ′, δ′, t ′) where:

t ′ = succ(ς, t)

β′ = β[vi 7→ t ′]

bi = (vi, t
′)

ve ′ = ve[bi 7→ di]

p∆ = 〈`t ′|
δ′ = (δ · (λ .p∆))[t ′ 7→ ε]

Figure 8.5: Concrete frame-string transitions ς ⇒∆ ς ′ for CPS
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8.3.1 Frame-string structure

At this point, it’s worth proving (within this semantics) that the net of any intermediate
frame string has pop/push-bitonic structure. One way to interpret this structure is as follows:
to turn stack A into stack B, we can pop frames from A until we reach a common ancestor
with B (which might be the empty stack) and then push the remaining frames in B. This
knowledge allows for a leaner abstraction of frame strings.

Theorem 8.3.1 (Bitonicity of the net) If a frame string represents the stack motion be-
tween two times during the execution of a program, the net of this string is pop/push-bitonic.

Proof. First, let’s state the theorem formally. Let the predicate P on machine states be

P (. . . , δ, t)
def
=

 ∀t1 ≤ t2 ≤ t : ∃p :

{
δ(t1) = p+ δ(t2)
bpc is pop/push-bitonic

∀t1 ≤ t : bδ(t1)c is pop/push-bitonic.

Then, ∀ς ∈ V(pr) : P (ς).
The proof proceeds by induction over transitions between states. The base case for the

initial state is trivial.
Inductive Step: Assume P (ς) and that the transition ς ⇒∆ ς ′ is legal. We must show

P (ς ′). Let δ be the log from the state ς, and δ′ be the log from the next state ς ′. We split
into cases on the structure of the state ς.

• Case ς ∈ Apply . In this case, δ′ = (δ · λt.〈`t′|)[t′ 7→ ε]. Consider the first property of
the two contained within P . Let t1 ≤ t2 hold for any two times where t2 < t′. Then:
δ′(t1) = (δ · λt.〈`t′|)[t′ 7→ ε](t1) = δ(t1) · 〈`t′| = p · δ(t2) · 〈`t′| = p · (δ · λt.〈`t′|)[t′ 7→
ε](t2) = p · δ′(t2). The special case of t2 = t′ is trivial.

Next, we turn to the second property. Clearly, bδ′(t′)c = ε is bitonic. Now, pick
any time t1 < t′. We have: bδ′(t1)c = bδ(t1) · 〈`t′|c = bδ(t1)c · 〈`t′|, which is also
pop/push-bitonic.

• Case ς ∈ Eval . In this case, δ′ = δ · λt.δ(tb)−1 for some tb < t′. (The time tb is the
birthdate on the continuation selected by the function youngest .) The first property
holds analogously to the previous case. (Note that the previous case did not depend
on the structure of 〈`t′|, which is replaced in this case with δ(tb)

−1.)

Now, we focus on the second property, in cases. Pick any t1 ≤ t′. First, suppose
t1 ≤ tb. By the inductive hypothesis, δ(t1) = p · δ(tb). In this case: bδ′(t1)c = b(δ ·
λt.δ(tb)

−1)(t1)c = bδ(t1) · δ(tb)−1c = bp · δ(tb) · δ(tb)−1c = bpc, which, by our inductive
hypothesis, is bitonic.

Instead, suppose tb ≤ t1. By the inductive hypothesis, δ(tb) = p · δ(t1). bδ′(t1)c = b(δ ·
λt.δ(tb)

−1)(t1)c = bδ(t1) · δ(tb)−1c = bδ(t1) · (p · δ(t1))−1c = bδ(t1) · δ(t1)−1 · pc = bpc,
which by our inductive hypothesis, is bitonic.
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2

As we’ll see shortly, this regular structure is important for developing a finite, computable
abstraction of frame strings.

8.3.2 Correctness of the concrete frame-sring semantics

Demonstrating the correctness of the concrete frame-string semantics means proving that it
is a complete simulation of the original CPS semantics. Dropping the log δ from each state
almost achieves this. Rigor requires developing a mapping from frame-string state-space to
ordinary state-space that also removes birthdates from closures. Being no more than tedious
and trivial, such arguments are omitted.

If the aforementioned mapping is seen as an abstraction mapping, it is also possible to
view that the original CPS semantics as an abstract interpretation (albeit an incomputable
one) of the frame string semantics. This means that k-CFA, ΓCFA and µCFA are also
abstract interpretations of the frame-string semantics.

8.4 Concrete frame-string environment theory

In this section, the investment made in tracking stack change pays off by linking it to
environment behavior. Throughout this section, we will refer to a single execution of some
program pr .3 We’ll represent this execution as a sequence of visited states indexed by their
time-stamps: ς; that is: ςt = (. . . , t). Of course, for any two consecutive states in this
sequence, ς and ς ′, we expect that ς ⇒∆ ς ′. We’ll also need to refer to the components of
these states, and to do that, we’ll use the following convention:

ςt
def
=

{
(call t , βt , ve t , δt , t) if ςt ∈ Eval

(proct ,dt , ve t , δt, t) if ςt ∈ Apply .

For instance, ve t is defined as the value environment that exists at time t during execution.
Much of the forthcoming theory now plays off the fact that binding environments return

times, and that time happens to be good for more than simply looking up a value.

Alternate interpretations of a binding Consider the binding time t′ = βt(v). That is,
consider the time t′ at which the variable v was bound according to the environment present
in the Eval state at time t:

• t′ is the time at which the variable v was bound.

• vet(v, t
′) is the value of the variable v in this binding.

3Even though the minimal CPS has just a single possible execution, we formulate the theory in such
terms to ensure that it generalizes to a concrete machine with non-deterministic behavior/multiple possible
executions (Sub-section 4.3.1).
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• βt′ is the binding environment where the binding (v, t ′) first appeared.

• bδt(t′)c summarizes stack change since this binding was made.

2

The environment β is an ancestor of an environment β′ if β v β′.4 The first lemma relates
a binding in one environment to the ancestor environment where that binding first appeared.
One strategy for determining equivalence between two environments involves inferring their
common ancestry.

Lemma 8.4.1 (Ancestor) βt(v) = ββt (v)(v).

Proof. Let βt(v) = t ′. By the definition of the transition relation ⇒∆, βt ′ = β∗[v 7→ t ′, . . .]
for some environment β∗. From this, ββt (v) = βt ′(v) = (β∗[v 7→ t ′, . . .])(v) = t ′ = βt(v). 2

The following lemma relates the environment found within a closure to the environment
present at the closure’s birth; not surprisingly, these environments are the same.

Lemma 8.4.2 For each state ((lam, β, t), . . .) in the execution ς, β = βt.

Proof. By the definitions of the argument evaluator A and the Eval state schema. 2

As stated here, the property is claimed for a procedure that is about to be applied in some
Apply state. In fact, it holds for every procedure found anywhere in a machine state, but
the more limited claim is all that is required.

Next, we define an interval notation from the set Time to intermediate frame strings:

[t1, t2]
def
= δt2(t1).

In other words, the frame string [t1, t2] is the stack change between time t1 and time t2.
Lemmas such as the following fall out naturally:

Lemma 8.4.3 If t1 ≤ t2 ≤ t3, then [t1, t2] · [t2, t3] = [t1, t3].

Proof. By induction on time t3. 2

Temporal arithmetic An arithmetic shorthand on times makes intervals easier to work
with. Given a time t:

t+ 1/2
def
= t′ such that ςt ⇒∆ (. . . , t ′)

t+ 1
def
= t′ such that ςt ⇒2

∆ (. . . , t ′)

t− 1/2
def
= t′ such that t′ + 1/2 = t

t− 1
def
= t′ such that t′ + 1 = t.

4The order v on binding environments is the submap relation: β v β′ iff for all v ∈ dom(β) : β(v) =
β′(v).
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In the spirit of recognizing each transition rule making up the relation ⇒∆ as “half” a full,
unfactored transition, adding 1/2 applies the rule ⇒∆ once. Adding 1 makes the “full” tran-
sition, going from Eval to Eval or Apply to Apply . 2

At this point, it’s also useful to partition the set Time into a Tick set and a Tock set:

Time = Tick + Tock .

Times from the set Tick are time-stamps on Eval states. Times from the set Tock are time-
stamps on Apply states. With this distinction, we can refine the definition of closures and
bindings:

Clo = LAM × BEnv × Tick

BEnv = VAR ⇀ Tick .

The next lemma holds by the following reasoning: the Apply-state schema (Figure 8.5)
for the concrete transition relation ⇒∆ always adds a fresh (and therefore uncancellable)
push action, 〈`t′|, to the end of every interval. Thus, when we prove that a net interval
must be pop-monotonic, no Apply state (and hence nothing at all) has occurred within this
interval, thereby forcing the times to be identical. Note that proving an interval is empty is
sufficient to show that it is pop-monotonic.

Lemma 8.4.4 (Frame-string pinching) For ticks t1 and t2, if the frame string b[t1, t2]c
is pop-monotonic, then t1 = t2.

Proof. By contradiction. Suppose t1, t2 ∈ Tick and the string b[t1, t2]c is pop-monotonic, but
that there existed a time t such that t1 ≤ t < t2. Then, [t2− 1/2, t2] is a fresh (uncancellable)
push, 〈`t2|. Hence, b[t1, t2]c = b[t1, t2− 1/2]+ [t2− 1/2, t2]c = b[t1, t2− 1/2]c+ 〈`t2|, which is clearly
not pop-monotonic—a contradiction. 2

By substituting t1 = β(v) and t2 = β′(v) into the previous lemma, we immediately get
the fundamental frame-string environment theorem:

Theorem 8.4.5 (Fundamental) b[β(v), β′(v)]c = ε iff β(v) = β′(v).

This sets up a strategy for proving environmental equivalence: if the analysis can infer that
no net stack change happened between two bindings of the same variable, then the bindings
are identical.

Looking ahead, in ∆CFA, if we find that some abstract interval has change |ε|, then all
of the concrete intervals it represents have change ε. This implies that the abstract times
defining the interval in question actually represent the same concrete time.

A surprisingly useful lemma, the following derives call behaviour about an interval from
the frame string describing the interval. Briefly, it states that if the net of a frame string
ends with a push action for procedure `, then the procedure invoked in the prior Apply state
was a closure over the λ expression labelled `:5

5The slight abuse of notation lam` denotes the λ term labelled `.
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Lemma 8.4.6 If b[t1, t2]c = p · 〈`t|, then proct2−1/2 = (lam`, β, tb).

Proof. By the Apply-state schema for the relation ⇒∆. 2

The purpose of the next two lemmas is to decompose a frame-string interval into smaller
intervals. If some state invokes a continuation, then the net frame-string change from the
subsequent state to the birthdate of the continuation is just a push action for the continua-
tion:

Lemma 8.4.7 If the procedure evaluated at time t − 1/2 is a continuation, i.e.:

proct−1/2 = (lamκ, βtb , tb),

then [t − 1, t ] = [tb, t − 1]−1 · 〈κt |, and b[tb, t ]c = 〈κt |.

Proof. By the following:

b[tb, t ]c = b[tb, t − 1] ·
[tb,t−1]−1︷ ︸︸ ︷

[t − 1, t − 1/2] ·
〈κt |︷ ︸︸ ︷

[t − 1/2, t ]c = b[t − 1/2, t ]c = 〈κt |.

2

If the net frame-string change between two ticks is push-monotonic and continuation-
pure, then we can find a time that divides the interval into two such intervals where the
latter one contains a single push action:

Lemma 8.4.8 For ticks t1 and t2, if b[t1, t2]c = 〈κ1
i1
| · · · 〈κn

in
|, then there exists a tick t such

that:
b[t1, t]c = 〈κ1

i1
| · · · 〈κn−1

in−1
|,

and:
b[t, t2]c = 〈κn

in
|.

Proof. Suppose b[t1, t2]c = 〈κ1
i1
| · · · 〈κn

in
|. By Lemma 8.4.6, proct2−1/2 = (lamκn , βtb , tb). By

Lemma 8.4.7, we can say [t2 − 1, t2] = [tb, t2 − 1]−1 · 〈κn
in
|. Thus, b[tb, t2]c = b[tb, t2 − 1] ·

[t2 − 1, t2]c = 〈κn
in
|. We show that t = tb satisfies the existential quantifier. We divide into

two cases:

• Case tb ≤ t1.

〈κ1
i1
| · · · 〈κn−1

in−1
| · 〈κn

in
| = b[t1, t2]c
= b[t1, t2 − 1] · [t2 − 1, t2]c
= b[t1, t2 − 1] · [tb, t2 − 1]−1 · 〈κn

in
|c

= b[t1, t2 − 1] · ([tb, t1] · [t1, t2 − 1])−1 · 〈κn
in
|c

= b[t1, t2 − 1] · [t1, t2 − 1]−1 · [tb, t1]−1 · 〈κn
in
|c

= b[tb, t1]−1 · 〈κn
in
|c

= b[tb, t1]−1c · 〈κn
in
|.
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Thus, [tb, t1]
−1 = 〈κ1

i1
| · · · 〈κn−1

in−1
|, and so b[tb, t1]c = |κn−1

in−1
〉 · · · |κ1

i1
〉. By the pinching lemma

(8.4.4), tb = t1, which gives us b[t1, tb]c = ε. With b[tb, t2]c = 〈κn
tn | holding, the time tb

satisfies the quantifier.

• Case t1 ≤ tb.

〈κ1
i1
| · · · 〈κn−1

in−1
| · 〈κn

in
| = b[t1, t2]c = b[t1, tb] · [tb, t2]c = b[t1, tb]c · 〈κn

in
|.

Hence, b[t1, tb]c = 〈κ1
i1
| · · · 〈κn−1

in−1
|. With b[tb, t2]c = 〈κn

tn | holding, the time tb satisfies the
quantifier.

2

The next few theorems present sufficient (but not necessary) conditions to demonstrate
environment equality in specific cases. It’s natural to question why we even need such
conditions when we already stated a sufficient and necessary condition—the Fundamental
Theorem. The answer has to do with the imprecise nature of decidable program analyses:
the abstract analogs (developed as part of the conditions for super-β inlining in Section 10.7)
to these new conditions are satisfied more easily than the abstract analog of the Fundamental
Theorem. In fact, there are likely more conditions than those given here—conditions covering
special cases whose abstract analogs are also more tolerant of imprecision.

Before diving into these theorems, it is instructive to review the lifetime of a binding.
When a variable is bound, one of two things will happen: (1) there will be continuation-pure
net motion to the use of the variable, or (2) there will be continuation-pure net motion to the
creation of a closure capturing the variable. When a closure from (2) is eventually applied,
again, one of two things will happen: (1) there will be continuation-pure net motion to the
use of the variable, or (2) there will be continuation-pure net motion to the creation of yet
another closure which captures the variable, and thus we recur. Note how continuation-pure
sequences chain together equivalent environments. The following finite state automaton is
a description of the net stack motion between the binding of a variable x and its eventual
use. The solid lines represent continuation-pure net motion, and the dotted line represents
arbitrary net motion.

GF ED@A BCbind x

|κ· 〉
∗〈κ· |

∗
//

|κ· 〉
∗〈κ· |

∗

++GF ED@A BCclose λ over x
Φ∗

--GF ED@A BCinvoke λ

|κ· 〉
∗〈κ· |

∗
33

|κ· 〉
∗〈κ· |

∗
nn

?> =<89 :;use x

From this diagram, we see that continuations, which restore an environment and then push
a frame to hold a return value, are the connective glue between equivalent environments.
(Note also that user-level environment-deepening constructs such as let and letrec would
be treated like let-continuations.)

We now present the theorems that formalize the picture above. The first of these states
that if the net frame-string change between two ticks is solely a continuation push action,
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then the environment at the later time is an extension of—by exactly the variables bound
by that continuation’s λ expression—the environment from the earlier time. Recall that the
function B : LAB → P(V AR) maps a procedure’s label to the variables bound by that
procedure.

Theorem 8.4.9 (Atomic extension) For ticks t1 and t2, if b[t1, t2]c = 〈κi |, then βt1 =
βt2|B(κ).

Proof. Assume b[t1, t2]c = 〈κi |. Then, the continuation (lamκ, βb, tb) was invoked in ςt2−1/2.
By the definition of the Apply schema, we can deconstruct the environment βt2 as:

βt2 = βtb [vi 7→ · · · ],

for vi ∈ B(κ). This implies:
βtb = βt2|B(κ).

By Lemma 8.4.7, we know [t2 − 1, t2] = [tb, t2 − 1]−1 · 〈κi | and b[tb, t2]c = 〈κi |. Next, we show
that tb = t1 by considering the cases tb ≤ t1 and t1 ≤ tb.

• Case tb ≤ t1. [tb, t2] = [tb, t1] · [t1, t2]. We know that b[tb, t2]c = b[t1, t2]c = 〈κi |. Hence,
b[tb, t1] · [t1, t2]c = b[t1, t2]c. By the group-like properties of net frame strings, we have
that b[tb, t1]c must be the identity element, ε. By the pinching Lemma 8.4.4, tb = t1.

• Case t1 ≤ tb. [t1, t2] = [t1, tb] · [tb, t2]. We know that b[t1, t2]c = b[tb, t2]c = 〈κi |. Hence,
b[t1, tb] · [tb, t2]c = b[tb, t2]c. By the group-like properties of net frame strings, we have
that b[t1, tb]c must be the identity element, ε. By the pinching Lemma 8.4.4, tb = t1.

2

The next theorem extends the previous theorem across an arbitrary number of continu-
ations.

Theorem 8.4.10 (Push deepening) For ticks t0 and tn, if b[t0, tn]c = 〈κ1
i1
| · · · 〈κn

in
|, then

βt0 = βtn|B(κ1)| · · · |B(κn).

Proof. Assume b[t0, tn]c = 〈κ1
i1
| · · · 〈κn

in
|, By the downward decomposition Lemma 8.4.8 and

Theorem 8.4.9, there exist t1, . . . , tn−1 such that:

b[t0, t1]c = 〈κi1|
b[t1, t2]c = 〈κi2|

...
b[tn−1, tn]c = 〈κin|

 =⇒


βt1|B(κ1) = βt0
βt2|B(κ2) = βt1

...

βtn|B(κn) = βtn−1 .

Substituting and solving for βtn , we get:

βt0 = βtn|B(κn)| · · · |B(κ1) = βtn|B(κ1)| · · · |B(κn).
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2

Example Consider, again, the trace for non-tail-recursive CPS factorial:

(define (fact n return)

(if-zero n

(return 1)

(- n 1 (λ k1 (n-1)

(fact n-1 (λ k2 (n-1!)

(* n n-1! return)))))))

The frame-string trace generated by executing (fact 1 halt) would be:

〈fact0 |〈if−zero1 |〈−2 ||−2 〉

net = 〈k13 |〈k26 |︷ ︸︸ ︷
〈k13 |〈fact4 |〈if−zero5 ||if−zero5 〉|fact4 〉〈k26 | 〈∗7||∗7〉|k26 〉|k13 〉|if−zero1 〉|fact0 〉.

The net frame string between the time after the call to the primop - but before the call to
the primop * is just two continuation pushes. Environmentally, this indicates that the envi-
ronment between these two points in execution differs only by the variables bound in these
two continuations. Specifically, the earlier environment is identical except for the bindings
to the variables n-1 and n-1!. 2

So far, we’ve been restricted to reasoning about strings that are either empty or push-
monotonic and continuation-pure, which seems constricting. Fortunately, we can use group
theory to infer continuation-purity for some past intervals using frame strings which have
no restrictions on their content. The following corollary relates the equivalence of two en-
vironments from the past, which are inferred to be separated by a continuation-pure and
push-monotonic net stack change. For convenience, we’ll extend the function B across vec-
tors:

B(κ)
def
= B〈κ1, . . . , κn〉

def
= B(κ1) ∪ · · · ∪ B(κn).

Corollary 8.4.11 For ticks t0, t1, t2, if b[t0, t2] · [t1, t2]−1c = 〈κ1
i1
| · · · 〈κn

in
|, then βt0 = βt1|B(κ).

Proof.

[t0, t2] = [t0, t1] · [t1, t2]
[t0, t2] · [t1, t2]−1 = [t0, t1] · [t1, t2] · [t1, t2]−1

b[t0, t2] · [t1, t2]−1c = b[t0, t1] · [t1, t2] · [t1, t2]−1c
= b[t0, t1] · b[t1, t2] · [t1, t2]−1cc
= b[t0, t1]c,

which permits us to invoke the previous theorem. 2

The payoff of this corollary is that, using only the frame-string log δt2 from time t2, we can
infer the equivalence of environments from past times t0 and t1.
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Not surprisingly, there are pop-monotonic analogs and pop/push-bitonic generalizations
for each of these theorems. For instance, we have:

Theorem 8.4.12 For ticks t1 and t2, if b[t1, t2]c = |κ1
i1
〉〈κ2
i2
|, then βt1|B(κ1) = βt2|B(κ2).

and, its extended version, which applies to looping in CPS:

Theorem 8.4.13 For ticks t0 and tn, if b[t0, tn]c = |κ1
i1
〉 · · · |κn

in
〉〈κ′t |, then βtn|B(κ′) = βt0|B(κ).

and, again, a history corollary:

Corollary 8.4.14 For ticks t0, t1, t2, if b[t0, t2] · [t1, t2]−1c = |κ1
i1
〉 · · · |κn

in
〉〈κ′t |, then βt1|B(κ′) =

βt0|B(κ).

Combining the above for bitonic strings, we have:

Theorem 8.4.15 For ticks t0, t1, if b[t0, t1]c = |κ1
i1
〉 · · · |κn

in
〉〈κ

′
1

i′1
| · · · 〈κ

′
n

i′m
|, then βt1|B(κ′) =

βt0|B(κ).

and the most general historic variant:

Theorem 8.4.16 For ticks t0, t1 and t2, if b[t0, t2] · [t1, t2]−1c = |κ1
i1
〉 · · · |κn

in
〉〈κ

′
1

i′1
| · · · 〈κ

′
m

i′m
|, then

βt1|B(κ′) = βt0|B(κ).

The generalized theorem has a useful consequent involving the suffix-detection relation:

Corollary 8.4.17 For ticks t0, t1 and t2, if b[t0, t2]c �CLAB b[t1, t2]c, then for v ∈ dom(βt0) ∩
dom(βt1), βt0(v) = βt1(v).

The advantage to this corollary is that it supports a direct abstract analog.

8.5 Abstract frame strings

Now that we have an incomputable, frame-string-based environment theory, we are ready
to start developing a computable abstraction of the frame string semantics. The first step
in creating a computable abstract analysis out of the concrete frame-string semantics is the
development of abstract frame strings. To be useful for environment analysis, any such
abstraction must provide:

1. F̂ , a set of abstract frame strings;

2. | · | : F → F̂ , an abstraction operation for frame strings;

3. ⊗ : F̂ × F̂ → F̂ , an operator for “concatenating” abstract frame strings;

4. ·−1 : F̂ → F̂ , an abstract “inverse” operation; and

5. %S ⊆ F̂ × F̂ , an abstract comparison relation, parameterized over a set of procedure
labels S.

Coupled with the forthcoming constraints, we end up with a rich space of designs for abstract
frame strings. This dissertation makes use of the most general abstraction yet developed.
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8.5.1 Design constraints on abstract frame strings

To pack an infinite set of frame strings into a finite set F̂ , we have to choose where to lose
precision. The abstract frame strings described here do so in three places:

1. They discard actions which are not in the net of the frame string, e.g., |〈a1|〈b2|b2〉| = |〈a1||;

2. they discard the ordering of actions between different procedures, e.g., |〈a1|〈b2|| = |〈b2|〈a1||;

3. and they remember at most one action precisely for a given procedure, e.g., |〈a1|〈a2|| =
|〈a1|〈a2|〈a3|〈a4|| but |〈a1|| 6= |〈a1|〈a2||.

A frame string p abstracts to a Curried function mapping the label for any given λ
expression and an abstract time to a description of the net stack motion in the frame string
p for just that λ expression at the times given. Thus the set of abstract frame strings is:

F̂ = LAB → T̂ime → P(∆),

where the set ∆ is a set of regular expressions describing the net motion for a given procedure;
here, as in [18], we use:

∆
def
= {ε, 〈··|, |··〉, 〈··|〈··|

+, |··〉|··〉
+, |··〉

+〈··|
+}.

Example For example, suppose |1|Time = t̂1, |2|Time = t̂2, |3|Time = t̂3,4, |4|Time = t̂3,4; then:

|〈a1|〈a2|〈b3|〈b4|| = λ`.λt̂.


{〈··|} ` = a and t̂ = t̂1

{〈··|} ` = a and t̂ = t̂2

{〈··|〈··|
+} ` = b and t̂ = t̂3,4

{ε} otherwise.

2

Note that there is no regular expression in the set ∆ for the many-pushes-many-pops
pattern 〈··|

+|··〉
+, or any other exotic combination for that matter. By the Bitonicity Theorem

(8.3.1), any frame string generated by the concrete semantics is covered by the patterns in
the set ∆, even if we allow for full user continuations.

At first glance, it might seem that allowing an abstract string to return sets of regular
expressions is unnecessary. After all, the abstract string |p| for any concrete string p will
always match only one member of the pattern set ∆ for each procedure. However, sets are
required when concatenating two abstract frame strings, as an operation may lose precision.

For convenience, we’ll use the following shorthands:

|〈`t̂||
def
=

⊔
|t |=t̂

|〈`t||,
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Table 8.1: Abstract frame-string-pattern concatenator cat

cat ε 〈··| 〈··|〈··|
+

ε {ε} {〈··|} {〈··|〈··|
+}

〈··| {〈··|} {〈··|〈··|
+} {〈··|〈··|

+}
〈··|〈··|

+ {〈··|〈··|
+} {〈··|〈··|

+} {〈··|〈··|
+}

|··〉 {|··〉} {ε, |··〉
+〈··|

+} {〈··|, 〈··|〈··|
+, |··〉

+〈··|
+}

|··〉|··〉
+ {|··〉|··〉

+} {|··〉, |··〉|··〉
+, |··〉

+〈··|
+} ∆

|··〉
+〈··|

+ {|··〉
+〈··|

+} {|··〉
+〈··|

+} {|··〉
+〈··|

+}

cat |··〉 |··〉|··〉
+ |··〉

+〈··|
+

ε {|··〉} {|··〉|··〉
+} {|··〉

+〈··|
+}

〈··| {ε} {|··〉, |··〉|··〉
+} {〈··|〈··|

+, |··〉
+〈··|

+}
〈··|〈··|

+ {〈··|, 〈··|〈··|
+} ∆− {|··〉

+〈··|
+} {〈··|〈··|

+, |··〉
+〈··|

+}
|··〉 {|··〉|··〉

+} {|··〉|··〉
+} {|··〉

+〈··|
+}

|··〉|··〉
+ {|··〉|··〉

+} {|··〉|··〉
+} {|··〉

+〈··|
+}

|··〉
+〈··|

+ {|··〉, |··〉|··〉
+, |··〉

+〈··|
+} {|··〉, |··〉|··〉

+, |··〉
+〈··|

+} ∆

and:

tr t̂ = tr {t :|t |=t̂},

and:

ε̂ = |ε|.

Using these, the abstraction mapping becomes:

|p| def
= λ`.λt̂.(dir∆ ◦ tr {`} ◦ tr t̂)bpc.

The following soundness constraint induces a definition for abstract concatenation oper-
ator ⊗:

|p| v p̂ and |q| v q̂ =⇒ |p · q| v p̂⊗ q̂.

The most precise operator which satisfies this constraint is:

p̂⊗ q̂ def
= λ`.λt̂.{â ∈ cat(â1, â2) : â1 ∈ p̂(`)(t̂) and â2 ∈ q̂(`)(t̂)},

where the function cat is defined in Table 8.1. (Readers familiar with Harrison’s work [18]
are cautioned that this operation behaves differently than Harrison’s ⊕, as abstract frame
strings are an abstraction of a group, while Harrison’s abstract procedure strings are an
abstraction of a monoid.)
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Similarly, the inverse operation ·−1 is the most precise operator satisfying the following
soundness constraint:

|p| v p̂ =⇒ |p−1| v p̂,−1

which is:

p̂−1 def
= λ`.λt̂.map

 ε 7→ ε, 〈··| ↔ |··〉,
〈··|〈··|

+ ↔ |··〉|··〉
+,

|··〉
+〈··|

+ ↔ |··〉
+〈··|

+

 (p̂(`)(t̂)).

Several abstract comparison relations are induced by the following soundness constraint:

|p| v p̂ and |q| v q̂ and p̂ %S q̂ =⇒ bpc �S bqc.

This dissertation uses the following:

p̂ %S q̂
def
= ∀` ∈ S : ∀t̂ : (p̂⊗ q̂−1)(`)(t̂) = {ε}.

Before proceeding, pause and note what a strong guarantee an abstract frame-motion set
of {ε} makes. ∆CFA’s ability to make conclusions about the concrete frame-string semantics
will, in general, spring from finding this particular, tightly constraining value.

Looking at special cases of the relation % helps to explain its behavior. For example, if
p̂ %S ε̂, what does that say about the abstract string p̂? In effect, it says that given any
string p represented by p̂, the net of string p contains only procedures in the set S. Moreover,
if the set S is the set CLAB , then the environment associated with the start of the string p
is a relative of the environment present after the changes in p.

In another special case, if p̂ %∅ q̂, then we can make a very strong claim: given frame
strings p and q such that |p| v p̂ and |q| v q̂, we know that bpc = bqc.

8.5.2 Correctness of abstract frame string operations

The following theorem establishes the correctness of our abstract concatenation operator:

Theorem 8.5.1 If |p| v p̂ and |q| v q̂, then |p · q| v p̂⊗ q̂.

Proof. Let p, q ∈ F and let p̂, q̂ ∈ F̂ . Assume |p| v p̂ and |q| v q̂. We will show that for any

label ` and any time t̂, |p · q|(`)(t̂) ⊆ (p̂⊗ q̂)(`)(t̂). Choose any ` ∈ LAB and any t̂ ∈ T̂ime.
From this:

|p · q|(`)(t̂) = (dir∆ ◦ tr {`} ◦ tr t̂)bp · qc
= dir∆b(tr {`} ◦ tr t̂)(bpc · bqc)c
⊆ cat((dir∆ ◦ tr {`} ◦ tr t̂)bpc), (dir∆ ◦ tr {`} ◦ tr t̂)bqc))
= cat(|p|(`)(t̂), |q|(`)(t̂))
⊆ {â ∈ cat(â1, â2) : â1 ∈ p̂(`)(t̂) and â2 ∈ q̂(`)(t̂)}
= (p̂⊗ q̂)(`)(t̂).
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2

Soundness for the comparison relation comes from the following:

Theorem 8.5.2 If |p| v p̂ and |q| v q̂ and p̂ %S q̂, then bpc �S bqc.

Proof. Suppose |p| v p̂ and |q| v q̂ and p̂ %S q̂. Choose any label ` from the set S and any
time t̂. It follows that:

{ε} = (p̂⊗ q̂−1)(`)(t̂)

= |p · q−1|(`)(t̂)
= (dir∆ ◦ tr {`} ◦ tr t̂)bp · q−1c

From the above, tr {`}bp · q−1c = ε. 2

The following lemmas will also assist when dealing with the demonstrating the soundness
of the abstract interpretation.

Lemma 8.5.3 If p̂1 v p̂3 and p̂2 v p̂4, then p̂1 ⊗ p̂2 v p̂3 ⊗ p̂4.

Proof. Assume p̂1 v p̂3 and p̂2 v p̂4.

(p̂1 ⊗ p̂2)(`)(t̂) = {â ∈ cat(â1, â2) : â1 ∈ p̂1(`)(t̂) and â2 ∈ p̂2(`)(t̂)}
⊆ {â ∈ cat(â1, â2) : â1 ∈ p̂3(`)(t̂) and â2 ∈ p̂4(`)(t̂)}
= (p̂3 ⊗ p̂4)(`)(t̂).

2

Lemma 8.5.4 (p̂1 ⊗ p̂2) t (p̂3 ⊗ p̂4) v (p̂1 t p̂3)⊗ (p̂2 t p̂4) .

Proof.

((p̂1 ⊗ p̂2) t (p̂3 ⊗ p̂4))(`)(t̂) = (p̂1 ⊗ p̂2)(`)(t̂) ∪ (p̂3 ⊗ p̂4)(`)(t̂)

= {â ∈ cat(â1, â2) : â1 ∈ p̂1(`)(t̂) and â2 ∈ p̂2(`)(t̂)}
∪ {â ∈ cat(â1, â2) : â1 ∈ p̂3(`)(t̂) and â2 ∈ p̂4(`)(t̂)}

⊆
{

â ∈ cat(â1, â2) :

{
â1 ∈ p̂1(`)(t̂) ∪ p̂3(`)(t̂)
â2 ∈ p̂2(`)(t̂) ∪ p̂4(`)(t̂)

}}
=

{
â ∈ cat(â1, â2) :

{
â1 ∈ (p̂1 t p̂3)(`)(t̂)
â2 ∈ (p̂2 t p̂4)(`)(t̂)

}}
= ((p̂1 t p̂3)⊗ (p̂2 t p̂4))(`)(t̂).

2
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ς̂ ∈ Ŝtate = (Êval + Âpply)>⊥
Êval = CALL× B̂Env × Ĉonf × T̂ime

Âpply = P̂roc × D̂∗ × Ĉonf × T̂ime

ĉ ∈ Ĉonf = V̂Env × L̂og

δ̂ ∈ L̂og = T̂ime → F̂

v̂e ∈ V̂Env = B̂ind → D̂

b̂ ∈ B̂ind = VAR × T̂ime

β̂ ∈ B̂Env = VAR ⇀ T̂ime

d̂ ∈ D̂ = P(V̂al)

v̂al ∈ V̂al = P̂roc

p̂roc ∈ P̂roc = Ĉlo + {halt}
ĉlo ∈ Ĉlo = LAM × B̂Env × T̂ime

t̂ ∈ T̂ime = a finite set of abstract times/contours

Figure 8.6: Domains for the state-space of ∆CFA

8.6 Abstract frame-string semantics: ∆CFA

∆CFA is an abstract interpretation of the partitioned CPS semantics. Figure 8.6 describes
the state-space of ∆CFA, and Figure 8.7 provides the transition relation. As with the
regular concrete semantics, the chief distinction with respect to k-CFA is the addition of the
logging component δ̂. As with k-CFA, the transition schema closely mimick their concrete
counterparts.

Optimization The partitioning of the set Time into the sets Tick and Tock illuminates
a simple optimization for ∆CFA. The only times that are ever used to index into the log
are times from the set Tick . As a result, both the abstract and the concrete can drop tocks

from the log. Mathematically, this means changing the Êval -to-Âpply log update to:

δ̂′ = δ̂ ⊗ (λ .p̂∆),

since the times generated in these transitions are tocks. 2

Once more, the argument evaluator A abstracts naturally into the function Â : EXP ×
B̂Env × V̂Env × T̂ime → D̂:

Â(v, β̂, v̂e, t̂) = v̂e(v, β̂(v))

Â(lam, β̂, v̂e, t̂) = {(lam, β̂, t̂)}.
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([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ≈>∆ (p̂roc, d̂, v̂e, δ̂′, t̂′) where:

t̂′ = ŝucc(ς̂ , t̂)

p̂roc ∈ Â(f, β̂, v̂e, t̂)

d̂i = Â(ei, β̂, v̂e, t̂)

p̂∆ = ( ̂youngest δ̂{{p̂roc}, d̂1, . . . , d̂n})−1

δ̂′ = (δ̂ ⊗ (λ .p̂∆)) t [t̂′ 7→ ε̂]

(([[(λ (v1 · · · vn) call)`]], β̂), d̂, v̂e, δ̂, t̂) ≈>∆ (call , β̂′, v̂e ′, δ̂′, t̂′) where:

t̂′ = ŝucc(ς̂ , t̂)

β̂′ = β̂[vi 7→ t̂′]

b̂i = (vi, t̂
′)

v̂e ′ = v̂e t [b̂i 7→ d̂i]

p̂∆ = 〈`t̂′|
δ̂′ = (δ̂ ⊗ (λ .p̂∆)) t [t̂′ 7→ ε̂]

Figure 8.7: Abstract transitions ς̂ ≈>∆ ς̂ ′ for ∆CFA

In the abstract, time has lost is orderedness, and abstract frame strings have no concept
of shortest. Thus, the function ̂youngest δ̂ : P(D̂) → F̂ must join the stack change of all
continuations:

̂youngest δ̂(Ĉ) =
⊔
{δ̂(t̂) : (lam, β̂, t̂) is found in Ĉ and lam ∈ CLAM }

t if halt is found in Ĉ then δ̂(t̂0) else ⊥.

8.7 Soundness of the abstract frame-string semantics

Proving the soundness of ∆CFA follows the same structure as the proof of soundness for
k-CFA. Clearly, time-stamps on closures makes for a trivial modification to the proof. We
must also extend the abstraction operation to logs:

|δ|Log = λt̂.
⊔
|t|=t̂

|δ(t)|.

The lemmas required to the support correctness of the abstract log component are provided
below.
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Lemma 8.7.1 If |δ| v δ̂ and |δ′| v δ̂′, then |δ δ′| v δ̂ t δ̂′.

Proof.

|δ δ′| = λt̂.
⊔
|t|=t̂

|(δ δ′)(t)|

= λt̂.
⊔
|t|=t̂

|if t ∈ dom(δ′) then δ′(t) else δ(t)|

v λt̂.
⊔
|t|=t̂

|δ(t)| t |δ′(t)|

= λt̂.

 ⊔
|t|=t̂

|δ(t)|

 t
 ⊔
|t|=t̂

|δ′(t)|


= λt̂.δ̂(t̂) t δ̂′(t̂)
= δ̂ t δ̂′.

2

We also need the next lemma, which relates concrete logs to abstract logs under concate-
nation.

Lemma 8.7.2 If |δ1| v δ̂1 and |δ2| v δ̂2, then |δ1 · δ2| v δ̂1 ⊗ δ̂2.

Proof. By the contract for abstract frame strings:

|δ1 · δ2| = λt̂.
⊔
t̂=|t|

|(δ1 · δ2)(t)| = λt̂.
⊔
t̂=|t|

|δ1(t) · δ2(t)|

v λt̂.
⊔
t̂=|t|

|δ1(t)| ⊗ |δ2(t)| v λt̂.
⊔
t̂=|t|

δ̂1(t̂)⊗ δ̂2(t̂)

= λt̂.δ̂1(t̂)⊗ δ̂2(t̂) = δ̂1 ⊗ δ̂2.

2

Lemma 8.7.3 If |δ| v δ̂ and |d| v d̂ then |youngest δ(d)| v ̂youngest δ̂(d̂).

Proof. By the properties of t and the definition of the function ̂youngest . 2
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8.8 Environment analysis via abstract frame strings

The goal of environment analysis is a computable condition that conservatively predicts the
equivalence of environments.

∆CFA supports such a condition as an analog to Corollary 8.4.17:

Theorem 8.8.1 Pick a state ς ∈ V(pr) such that |ς| v ς̂. Given (lam1, β1, t1), (lam2, β2, t2) ∈
range(veς), if δ̂ς̂(|t1|) %CLAB δ̂ς̂(|t2|) and v ∈ dom(β1) ∩ dom(β2), then β1(v) = β2(v).

Proof. By the soundness of ∆CFA and the induced definition of the relation %. 2

∆CFA also supports an abstract analog to the Fundamental Theorem:

Theorem 8.8.2 Pick a state ς ∈ V(pr) such that |ς| v ς̂. Given (lam1, β1, t1), (lam2, β2, t2) ∈
range(veς), if δ̂ς̂(|β1(v)|) ⊗ δ̂ς̂(|β2(v)|)−1 = |ε|, then β1(v) = β2(v).

Proof. By the soundness of ∆CFA and the Fundamental Theorem. 2

8.9 Advanced frame-string techniques

The following techniques enhance either precision or efficiency in ∆CFA, but they are not
required for soundness. Arguments for their soundness are omitted.

8.9.1 Abstract frame counting

The logic behind abstract frame counting is similar to abstract binding counting: determine
when an abstract frame represents only a single concrete frame. To see the utility in this,
consider the net b|a1〉〈a1|c. Of course, this is the empty string. Yet, for the abstract equivalent:

||a1〉| ⊗ |〈a1|| 6= ε̂.

This is because a pop |··〉 concatenated with a push 〈··| in the abstract yields {ε, |··〉
+〈··|

+}.
If, however, the analysis knew that, in the present state, there was but one concrete

counterpart to the frame, then it could infer that:

cat(|··〉, 〈··|) = {ε}.

To count frames, we extend the domain of the measure function µ̂ to include the set

LAB × T̂ime. Then, when traversing the application of the procedure labeled ` at abstract
time t̂′, we increment the count for this frame:

µ̂′(`, t̂′) = µ̂(`, t̂)⊕ 1.
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With frame-counting in place, the abstract concatenator is parameterized by the measure
function: ⊗µ̂. When concatenating the pattern sets for label ` and time t̂, the cat function
cat µ̂(`,t̂) is used:

cat0 = cat [(|··〉, 〈··|) 7→ {ε}]
cat1 = cat [(|··〉, 〈··|) 7→ {ε}]

cat∞ = cat .

8.9.2 Abstract garbage collection in ∆CFA

In ∆CFA, two additional abstract resources are eligible for abstract garbage collection: times,
as the domain of the current log δ̂, and abstract frames, as just described.

The set of reachable times is equal to the set of the birthdates on reachable closures.
If the results are to be used for environment analysis, then times associated with bindings
used for comparison must also be considered reachable. If the results are used solely for
stack-based optimizations, then only the birthdates need to be considered reachable.

The set of reachable frames is determined by finding the set of reachable times, indexing
each of these into the current log δ̂ to yield an abstract string p̂, and then marking the frame
(`, t̂) reachable if p̂(`, t̂) 6= {ε}. In effect, an abstract frame is garbage collected when there
is no longer a way to re-push or to re-pop that frame.
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Chapter 9

Extensions

It is not difficult to augment both the pure CPS and the abstract transition schemas uti-
lized thus far with the richer constructs found in any industrial-strength language. The
corresponding concrete transition schemas are taken to be self-evident.

9.1 Explicit recursion

While recursion is possible in the existing semantics through instruments such as the Y
combinator or the U combinator, it is not difficult to add explicit support for mutual recursion
through constructs such as Scheme’s letrec.

The abstract Êval -to-Êval transition schema for letrec is:

([[(letrec ((v1 lam1) · · · (vn lamn)) call)]], β̂, v̂e, µ̂, t̂) ≈> (call , β̂′, v̂e ′, µ̂′, t̂′) where:

t̂′ = ŝucc(ς̂ , t̂)

β̂′ = β̂[vi 7→ t̂′]

d̂i = Â(lam i, β̂
′, v̂e)

b̂i = (vi, t̂
′)

v̂e ′ = v̂e t [b̂i 7→ d̂i]

µ̂′ = µ̂⊕ [b̂i 7→ 1].

It is worth highlighting that the evaluator Â takes the extended environment β̂′ in this rule.
This, in conjunction with the factored environment, is what accomplishes the self-reference.

9.2 Basic values

Adding basic values, such as integers, first requires expanding the set of expressions, EXP :

EXP = REF + LAM + CONST ,
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where the set CONST contains the numerals.
Next, the abstract value domain V̂al is enlarged:

V̂al = P̂roc + B̂as ,

where the set B̂as contains abstractions of basic values.
Lastly, the abstract evaluator Â receives a new case:

Â(const , β̂, v̂e) = {|K(const)|Bas},

where the semantic function K : CONST → Bas assigns constants to their denotations.

9.3 Primitive operations

Syntactically, the addition of primitive operations requires the addition of the set PRIM to
the set of expressions EXP :

EXP = REF + LAM + CONST + PRIM .

Semantically, the set of abstract procedures must be similarly enlarged:

P̂roc = Ĉlo + {halt}+ PRIM ,

and the evaluator Â receives another case:

Â(prim, β̂, v̂e) = {prim}.

Then Âpply-to-Âpply schema must be written for each primitive operation, such as the
following rule for addition:

([[+]], 〈d̂1, d̂2, d̂c〉, v̂e, µ̂, t̂) ≈> (p̂roc, d̂a, v̂e, µ̂, t̂
′) where:

p̂roc ∈ d̂c
t̂′ = ŝucc(ς̂ , t̂)

d̂a = {neg , zero, pos}.

9.4 Store

Adding a side-effectable store requires expanding the set of abstract configurations, Ĉonf :

Ĉonf = V̂Env × Ŝtore,

where the set Ŝtore is a set of maps from address to values:

Ŝtore = Âddr → D̂ .

The set of abstract addresses has the same degree of freedom as the set of abstract times,
with similar implications for speed and precision. Interaction with the store occurs through
primitive operations such as new-cell, set-cell and get-cell.
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9.4.1 Must-alias analysis

Introducing an abstract store opens up the possibility of using counting information to
perform must-alias analysis. Doing so requires expanding the domain of the measure µ̂ to
include abstract addresses:

M̂easure = B̂ind + Âddr → N̂.

Naturally, moving through a new-cell primitive increases the count for the abstract address
just allocated.

Once this small change is made, however, the analog of the Measure Pinching Theorem
applies to addresses:

Theorem 9.4.1 (Must alias) If |a1| = â1 and |a2| = â2 and concrete addresses a1 and a2

are reachable from state ς and |ς| v ς̂ and â1 = â2 and µ̂ς̂(â1) = µ̂ς̂(â2) = 1, addresses a1

and a2 must alias each other in the state ς.

Proof. By arguments identical to the Measure Pinching Theorem. 2

9.4.2 Strong update

Just as with set!, a more precise, strong-update [7] transition can be made for set-cell

when the count of the address under update is 1; that is, the following schema is sound:

([[set-cell]], 〈d̂loc, d̂val, d̂c〉, v̂e, σ̂, µ̂, t̂) ≈> (p̂roc, 〈〉, v̂e, σ̂′, µ̂, t̂′) where:

p̂roc ∈ d̂c
â ∈ d̂loc

t̂′ = ŝucc(ς̂ , t̂)

σ̂′ =

{
σ̂ t [â 7→ d̂val] µ̂(â) > 1

σ̂[â 7→ d̂val] µ̂(â) ≤ 1.
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Chapter 10

Applications

This chapter briefly reviews optimizations enabled by ΓCFA, µCFA and ∆CFA. For super-β
inlining, a formal and rigorous argument for correctness is supplied.

10.1 Globalization

Globalization, as defined by Sestoft [33], is the conversion of function parameters to global
variables when the bindings to these parameters are known to have non-self-interfering life-
times. Environmentally, globalization is effectively asking: would a globally-scoped environ-
ment be equivalent to the lexically scoped environment for the variables in question?

Example In the following function:

(define (f g i arr len)

(if (< i len)

(begin (g (array-ref arr i))

(f g (+ i 1) arr len))))

if the procedure g never invokes the array-walking function f either directly or indirectly,
then it is safe to transform this code into:

(define (f)

(if (< i len)

(begin (g (array-ref arr i))

(set i (+ i 1))

(f))))

and invocations of the form (f g i a l) into:
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(begin

(set! g g)
(set! i i)
(set! arr a)
(set! len l)
(f))

2

Detecting when this is legal is straightforward for ΓCFA. A variable v is globalizable (in
program pr) if there is never more than one simultaneously live binding to the variable in
any state, i.e., if:

Globalizable(v, pr)
def
=

⊔
ς̂∈V̂(pr)

⊕
t̂

µ̂ς̂(v, t̂) ≤ 1.

Globalization via abstract counting offers the additional benefit over Sestoft’s approach
in that rebindings aren’t counted as self-interfering bindings to the same variable.

10.1.1 Register promotion

Of the variables eligible for globalization, it is possible to assign them to global registers by
constructing an interference graph much like that found in graph-coloring register alloca-
tion. Briefly, two variables v and x interfere if bindings to these two variables can ever be
simultaneously live. In other words, if there exists a reachable state ς̂ where µ̂ς̂(v, t̂) ≥ 1
and µ̂ς̂(x, t̂

′) ≥ 1 for some times t̂ and t̂′, then the variables x and v may have interfering
lifetimes. By utilizing one of the graph-coloring algorithms from register allocation, it is
possible to assign globalized variables directly to registers.

10.2 Super-β copy propagation

Super-β copy propagation [37] is the replacement of a lexically inferior variable with a lexi-
cally superior variable when the two are known to be equivalent.

Example Consider tail-recursive loop in CPS:

(letrec ((fact (λ (a n k)

(if-zero n

(k 1)

(* a n (λ (a*n)

(- n 1 (λ (n-1)

(fact a*n n-1 k)))))))))

(fact 1 m c))

126



It is always the case that the continuation variable k is bound to the value of the outer
continuation-variable c. Copying the variable c over the variable k and then performing
useless-variable elimination on k leads to the following:

(letrec ((fact (λ (a n)

(if-zero n

(c 1)

(* a n (λ (a*n)

(- n 1 (λ (n-1)

(fact a*n n-1)))))))))

(fact 1 m))

In the process, according to the CPS partitioning, the user-level function fact has been
promoted into a continuation, which then admits a more efficient implementation. 2

Performing super-β copy propagation requires checking for the equivalence of two vari-
ables at the inferior variable’s points of uses in the set V̂(pr). If they both evaluate to the
closures over the same λ term (as in the previous example), then copy propagation is legal
if their respective environments are equivalent up to the free variables in the λ term.

10.3 Super-β lambda propagation

In super-β lambda propagation, a reference is replaced with an inlined λ term. The legality
of this transformation has two conditions:

1. all values flowing to the reference must be closures over the same λ term;

2. and the environment within each closure must be equivalent to the current environ-
ment, up to the free variables within the λ term.

10.3.1 Super-β inlining

The most common form of super-β λ propagation is the replacement of the procedure-position
reference with an inlined λ term. A formal and rigorous argument for the correctness of this
transformation is given in Section 10.7.

10.3.2 Lightweight closure conversion

Lightweight closure conversion [42] is a relative of super-β λ propagation. It applies when
more the one λ term flows through a reference while the environments within closures and
the current environment still agree on the values of some free variables.
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In this case, the variables upon which they agree can be removed from the closures’
environments and added as parameters to the function. This also requires a calling-protocol
agreement which must be supported by a higher-order control-flow analysis.

10.4 Super-β teleportation

Super-β teleportation is a combination of super-β inlining and globalization which can suc-
ceed even when the closure’s λ term contains free variables which are not free in the current
environment. For each variable which is free in the λ term, but not free in the current
environment, the inlining is still legal if each of these variables can be globalized.

10.5 Super-β rematerialization

Super-β rematerialization, like teleportation, inlines a λ term when not all of its free variables
are available at the call site. In the case of rematerialization, however, the required values
are recomputed dynamically. Suppose that the term lam would be eligible for inlining if only
the variable v were available at the call site in the state (call , β, ve, t). Examine the closure
ve(v, β(t)) = (lam ′, β′). If the environment β′ is equivalent to the environment β up to the
free variables in lam ′, then it is safe to inline the term [lam ′/v]lam at the call site call .1

10.6 Escape analysis

The results of ∆CFA are naturally suited to escape anlaysis. In escape analysis, the goal is
to turn heap allocation into stack allocation by determining when an object cannot escape
its frame of creation.

It is legal to stack-allocate the closure over the λ term lam ′ if for each state ς̂ invoking its
closure—(lam ′, β̂′, t̂′)—the stack change since the closure’s creation is push-monotonic, i.e.:

∀` : ∀t̂ : δ̂ς̂(t̂
′)(`)(t̂) ∩ {|··〉, |··〉|··〉

+, |··〉
+〈··|

+} = ∅.

10.6.1 Lightweight continuations

In CPS, when a continuation closure is shown not to escape its frame of creation, this allows
the compiler to convert such a continuation from a context plus a stack to just a function
pointer plus a stack pointer. The resulting continuation is lightweight, for continuation
creation and invocation have become inexpensive constant-time operations.

1The notation [e′/v]e is the capture-avoiding substitution of the expression e′ for free instances of the
variable v inside expression e.
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10.7 Correctness of super-β inlining

In this section, we tackle the formal correctness of super-β inlining. We begin with a general,
incomputable condition for the safety of inlining. Then, we find conditions computable by
µCFA and ∆CFA that can imply this general, incomputable condition.

Theorem 10.7.1 (Safety of super-β inlining) It is safe to inline the term lam ′ in place
of the term f ′ in the program pr if for each state ([[(f e1 · · · en)]], β, c, t) in V(pr) such that
f = f ′:2

• A(f, β, c) = (lam ′, β′),

• and β′|free(lam ′) = β|free(lam ′).

Proof. For this proof, we will demonstrate that the original program and the transformed
program are complete simulations of each other.

Before we can describe the simulation relation R, we need to define several concepts.
First, the program pr with the term lam ′ inlined in place of the term f ′ is S(pr), where:

S[[v]] = v

S[[(λ (v1 · · · vn) call)]] = [[(λ (v1 · · · vn) Scall)]]

S[[(f e1 · · · en)]] =

{
[[(lam ′ e1 · · · en)]] f = f ′

[[(Sf Se1 · · ·Sen)]] otherwise.

We need also need the left-inverse S−1 for the transform S:

S−1[[v]] = v

S−1[[(λ (v1 · · · vn) call)]] = [[(λ (v1 · · · vn) S−1call)]]

S−1[[(f e1 · · · en)]] =

{
[[(f ′ e1 · · · en)]] f = lam ′

[[(S−1f Se1 · · ·S−1en)]] otherwise.

Clearly, for a term τ from a properly labeled program,

(S−1 ◦ S)(τ) = τ .

We also need to generalize the transform S to states and other semantic domains:

S(call , β, ve, t) = (Scall , β, Sve, t)

S(proc,d, ve, t) = (Sproc, Sd, Sve, t)

S(ve) = λb.S(ve(b))

S〈d1, . . . , dn〉 = 〈S(d1), . . . , S(dn)〉
S(lam, β) = (S(lam), β)

S(halt) = halt ,

2Given the “hidden” label on the term f ′, there can be at most one such call site in the program.
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And, similarly, for the inverse S−1:

S−1(call , β, ve, t) = (S−1call , β, S−1ve, t)

S−1(proc,d, ve, t) = (S−1proc, S−1d, S−1ve, t)

S−1(ve) = λb.S−1(ve(b))

S−1〈d1, . . . , dn〉 = 〈S−1(d1), . . . , S
−1(dn)〉

S−1(lam, β) = (S−1(lam), β)

S−1(halt) = halt .

Finally, the concept of a normalized state is also required:

||(call , β, h, t)|| = (call , β|free(call), ||ve||, t)
||(proc,d, h, t)|| = (||proc||, ||d||, ||h||, t)

||ve|| = λb.||ve(b)||
||〈d1, . . . , dn〉|| = 〈||d1||, . . . , ||dn||〉
||(lam, β)|| = (lam, β|free(lam))

||halt || = halt

Putting all of these together allows us to formulate R:

R(ς, ςS) iff ||S(ς)|| = ||ςS|| and ||ς|| = ||S−1(ςS)||.

They key inductive step is the following: Let ς be a state from the execution of the
original program. Let ςS be a state from the execution of the transformed program. The
relation R must satisfy three oligations:

1. Obligation. The relation R must preserve the value passed to halt . This is trivial.

2. Obligation If R(ς, ςS) and the transition ς ⇒ ς ′ is legal, then the transition ςS ⇒ ς ′S is
also legal and R(ς ′, ς ′S). Diagrammatically:

ς ⇒ //

R

��

ς ′

R
��

ςS ⇒
// ς ′S

We proceed by cases on ς ∈ Eval or ς ∈ Apply .

• Case ς = (call , β, ve, t). Then, let

call = ((f e1 · · · en)
ς ′ = (proc,d, ve ′, t ′)

ςS = (callS, βS, veS, tS)

callS = ((fS eS,1 · · · eS,n)
ς ′S = (procS,dS, ve

′
S, t

′
S).
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By R(ς ′, ς ′S), we know the following hold:

(S(call), β|free(S(call)), ||S(ve)||, t) = (callS, βS|free(callS), ||veS||, tS)
(S−1(callS), βS|free(S−1(callS)), ||S−1(veS)||, tS) = (call , β|free(call), ||ve||, t).

Which also implies:

β|(free(call) ∪ free(callS)) = βS|(free(call) ∪ free(callS)).

Showing relationship R(ς ′, ς ′S) factors into the following obligations:

– Obligation ||S(proc)|| = ||procS||. This factors into three sub-cases on the
term f .

∗ Sub-case f = f ′. In other words, this is the site that was inlined. We
assume f is a variable, as otherwise the whole proof is trivial.

||S(proc)|| = ||S(A(f ′, β, ve))||
= ||S(lam ′, β′)||
= ||(lam ′, β′)||
= (lam ′, β′|free(lam ′))

= (lam ′, β|free(lam ′))

= (lam ′, βS|free(lam ′))

= ||(lam ′, βS||
= ||A(lam ′, βS, veS)||
= ||procS||.

∗ Sub-case f is a variable.

||S(proc)|| = ||S(A(f, β, ve))||
= ||S(ve(f, β(f)))||
= ||S(ve(f, βS(f)))||
= ||S(ve(fS, βS(fS)))||
= ||veS(fS, βS(fS))||
= ||A(fS, βS, veS)||
= ||procS||.
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∗ Sub-case f is a λ term.

||S(proc)|| = ||S(A(f, β, ve))||
= ||S(f, β)||
= ||(S(f), β)||
= ||(fS, β)||
= (fS, β|free(fS))

= (fS, βS|free(fS))

= ||(fS, βS)||
= ||A(fS, βS, veS)||
= ||procS||.

– Obligation ||S(di)|| = ||dS,i||.
By cases on ei ∈ VAR or ei ∈ LAM , like the latter two sub-cases of the prior
obligation.

– Obligation ||proc|| = ||S−1(procS)||.
This factors into three sub-cases on the term f .

∗ Sub-case f = f ′. In other words, this is the site that was inlined. We
assume f is a variable, as otherwise the whole proof is trivial.

||proc|| = ||A(f ′, β, ve)||
= ||(lam ′, β)||
= (lam ′, β|free(lam ′))

= (lam ′, βS|free(lam ′))

= ||(lam ′, βS))||
= ||S−1(lam ′, βS)||
= ||S−1(A(lam ′, βS, veS))||
= ||S−1(procS)||.

∗ Sub-case f is a variable.

||proc|| = ||A(f, β, ve)||
= ||ve(f, β(f))||
= ||S−1(veS(f, β(f)))||
= ||S−1(veS(fS, β(fS)))||
= ||S−1(veS(fS, βS(fS)))||
= ||S−1(A(fS, βS, veS))||
= ||S−1(procS)||.
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∗ Sub-case f is a λ term.

||proc|| = ||A(f, β, ve)||
= ||(f, β)||
= (f, β|free(f))

= (f, βS|free(f))

= ||(f, βS)||
= ||(S−1(fS), βS)||
= ||S−1(fS, βS)||
= ||S−1(A(fS, βS, veS))||
= ||S−1(procS)||.

– Obligation ||di|| = ||S−1(dS,i)||.
By cases on ei ∈ VAR or ei ∈ LAM , like the latter two sub-cases of the prior
obligation.

• Case ς = (proc,d, ve, t). Then, let

proc = ([[(λ (v1 · · · vn) call)]], β)

ςS = (procS,dS, veS, tS)

procS = ([[(λ (v1 · · · vn) callS)]], βS)

ς ′ = (call , β′, ve ′, t ′)

ς ′S = (callS, β
′
S, ve

′
S, t

′
S).

By R(ς ′, ς ′S), we know the following hold:

(||S(proc)||, ||S(d)||, ||S(ve)||, t) = (||procS||, ||dS||, ||veS||, tS)
(||S−1(procS)||, ||S−1(dS)||, ||S−1(veS)||, tS) = (||proc||, ||d||, ||ve||, t).

From this, we immediately know:

callS = S(call)

call = S−1(callS),

and also:

β|(free(call) ∪ free(callS)) = βS|(free(call) ∪ free(callS)).

Showing relationship R(ς ′, ς ′S) factors into the following obligations:

– Obligation ||S(ve ′)|| = ||ve ′S||.
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||S(ve ′)|| = ||S(ve[bi 7→ di])||
= ||λb.(S(ve[bi 7→ di]))b||
= ||λb.S(ve[bi 7→ di]b)||
= ||λb.S(if bi = b then di else ve(b))||
= ||λb.if bi = b then S(di) else S(ve(b))||
= λb.if bi = b then ||S(di)|| else ||S(ve(b))||
= λb.if bi = b then ||S(di)|| else ||S(ve)||(b)
= λb.if bi = b then ||dS,i|| else ||veS||(b)
= λb.if bi = b then ||dS,i|| else ||veS(b)||
= ||λb.if bi = b then dS,i else veS(b)||
= ||λb.(veS[bi 7→ dS,i])(b)||
= ||veS[bi 7→ dS,i]||
= ||ve ′S||

– Obligation ||S−1(ve ′S)|| = ||ve ′||.

||S−1(ve ′S)|| = ||S−1(veS[bi 7→ dS,i])||
= ||λb.(S−1(veS[bi 7→ dS,i]))b||
= ||λb.S−1(veS[bi 7→ dS,i]b)||
= ||λb.S−1(if bi = b then dS,i else veS(b))||
= ||λb.if bi = b then S−1(dS,i) else S−1(veS(b))||
= λb.if bi = b then ||S−1(dS,i)|| else ||S−1(veS(b))||
= λb.if bi = b then ||di|| else ||ve(b)||
= λb.if bi = b then ||di|| else ||ve||(b)

= λb.||ve||[bi 7→ ||di||]b
= ||ve||[bi 7→ ||di||]
= ||ve[bi 7→ di]||
= ||ve ′||

3. Obligation. If R(ς, ςS) and the transition ςS ⇒ ς ′S is legal, then the transition ς ⇒ ς ′ is
also legal and R(ς ′, ς ′S). Diagrammatically:

ςS
⇒ // ς ′S

ς ⇒
//

R

OO

ς ′

R

OO

The structure of the proof for this obligation is identical the prior.
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2

10.8 Counting-based inlining

The condition in Theorem 10.7.1 is easy to demonstrate from µCFA:

Theorem 10.8.1 It is safe to inline the term lam ′ in place of the term f ′ in the program
pr if for each state ([[(f e1 · · · en)]], β̂, ĉ, µ̂, t̂) in V̂(pr) such that f = f ′:

• Â(f, β̂, ĉ) = {(lam ′, β̂′)},

• and for each v ∈ free(lam ′):

– β̂(v) = β̂′(v),

– v ∈ free[[(f e1 · · · en)]],
– and µ̂(v, β̂(v)) = 1 = µ̂(v, β̂′(v)).

Proof. Pick any terms lam ′ and f ′. Assume for each state ([[(f e1 · · · en)]], β̂, ĉ, µ̂, t̂) in V̂(pr)
such that f = f ′:

• Â(f, β̂, ĉ) = {(lam ′, β̂′)},

• and for each v ∈ free(lam ′):

– β̂(v) = β̂′(v),

– v ∈ free[[(f e1 · · · en)]],
– and µ̂(v, β̂(v)) = 1 = µ̂(v, β̂′(v)).

Pick any ([[(f e1 · · · en)]], β, c, t) from the set V(pr) such that f = f ′. The soundness of µCFA
guarantees we can find an abstract state ([[(f e1 · · · en)]], β̂, ĉ, µ̂, t̂) ∈ V̂(pr) which represents
(via v) the concrete state ς. Further, it must be that:

A(f, β, c) = (lam ′, β′),

where Â(f, β̂, ĉ) = {(lam ′, β̂′)} and |β′| v β̂′. Pick any variable v from the set free(lam ′).
By the soundness of the state ς, it must be the case that (v, β(v)) and (v, β′(v)) are in the
set dom(c). The soundness of µCFA guarantees that |(v, β(v))| = |(v, β′(v))| = (v, β̂(v)) =
(v, β̂′(v)). Now:

1 = µ̂(v, β̂(v))

≥ |c|µ(v, β̂(v))

= ŝize{b ∈ dom(c) : |b| = (v, β̂(v))}
≥ ŝize ({(v, β(v))} ∪ {(v, β′(v))}) .
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Thus, the set {(v, β(v))} ∪ {(v, β′(v))} is a singleton set, and therefore:

β(v) = β′(v).

2

10.9 Abstract frame-string conditions

For ∆CFA, there are at least three conditions that support inlining a λ term at a call site.
Each condition comes in two parts:

1. a concrete, incomputable frame-string-based condition which implies the condition in
Theorem 10.7.1;

2. and an abstract, computable ∆CFA-based condition which implies the first condition.

During these proofs, we’ll use the symbols V̂∆ and V∆ to denote the states visited by ∆CFA
and the concrete-frame string semantics.

The first condition checks whether the procedure in question is closed over a common,
local ancestor of the current environment. It does this by checking to see if the stack change
since the creation of the closure’s environment is continuation-monotonic—in other words,
whether only local bindings have been introduced (or removed) since that time.

Example This condition allows inlining lam directly at the call site in the following:

((identity lam) ...)

to yield:

(lam ...)

2

Theorem 10.9.1 (Locally inlinable (concrete)) It is safe to inline the term lam ′ in
place of the procedure f ′ if for every state ([[(f e1 · · · en)]], β, ve, δ, t) ∈ V∆(pr) such that
f ′ = f :

1. A(f ′, β, ve, t) = (lam ′, β′, t ′);

2. free(lam ′) ⊆ dom(β);

3. and δ(t ′) �CLAB ε.

Proof. Pick any terms lam ′ and f ′. Assume that for every state ([[(f e1 · · · en)]], β, ve, δ, t) in
the set V∆(pr) such that f ′ = f :
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1. A(f ′, β, ve, t) = (lam ′, β′, t ′);

2. free(lam ′) ⊆ dom(β);

3. and δ(t ′) �CLAB ε.

Pick any such state: ([[(f e1 · · · en)]], β, ve, δ, t). δ(t ′) �CLAB ε implies:

b[t′, t]c = |κ1
i1
〉 · · · |κn

in
〉〈κ

′
1

i′1
| · · · 〈κ

′
m

i′m
|,

which, by Theorem 8.4.16, implies:

β|B(κ′) = β′|B(κ).

The remainder follows from the fact that free(lam ′) ⊆ B(κ′) and free(lam ′) ⊆ B(κ). 2

This concrete frame-string condition leads to a natural ∆CFA-based condition:

Theorem 10.9.2 (Locally inlinable (abstract)) It is safe to inline the term lam ′ in
place of the procedure f ′ if for every state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈ V̂∆(pr) such that
f ′ = f :

1. Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)};

2. v ∈ free[[(f e1 · · · en)]];

3. and δ̂(t̂′) %CLAB ε̂.

Proof. Pick any terms lam ′ and f ′. Assume that for every state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈
V̂∆(pr) such that f ′ = f :

1. Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)};

2. v ∈ free[[(f e1 · · · en)]];

3. and δ̂(t̂′) %CLAB ε̂.

Pick any state ς = ([[(f e1 · · · en)]], β, ve, δ, t) ∈ V∆(pr) such that f ′ = f . By soundness, we
can find an abstract state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈ V̂∆(pr) which represents (via v) ς
where Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)}. By soundness, it must be that:

A(f ′, β, ve, t) = (lam ′, β′, t ′),

where |t ′| = t̂′. Hence, by δ̂(t̂′) %CLAB ε̂:

δ(t ′) �CLAB ε.

2

The second condition checks, variable-by-variable, whether or not its binding was cre-
ated in a common ancestor. This can occur if two procedures escape the same ancestral
environment, and then one is passed into and invoked within the other.
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Theorem 10.9.3 (Escaping inlinable (concrete)) It is safe to inline the term lam ′ in
place of the procedure f ′ if for every state ([[(f e1 · · · en)]], β, ve, δ, t) ∈ V∆(pr) such that
f ′ = f :

1. A(f ′, β, ve, t) = (lam ′, β′, t ′);

2. and for each variable v ∈ free(lam ′), the condition δ(β(v)) �CLAB δ(t ′) holds.

Proof. Pick some term lam ′ and some term f ′.
Assume that for every state ([[(f e1 · · · en)]], β, ve, δ, t) ∈ V∆(pr) such that f ′ = f :

1. A(f ′, β, ve, t) = (lam ′, β′, t ′);

2. and for each variable v ∈ free(lam ′), the condition δ(β(v)) �CLAB δ(t ′) holds.

Pick any variable v ∈ free(lam ′). From δ(β(v)) �CLAB δ(t ′), we have that:

b[β(v), t ′]c = |κ1
i1
〉 · · · |κn

in
〉〈κ

′
1

i′1
| · · · 〈κ

′
m

i′m
|,

which implies:

ββ(v)(v) = βt ′(v),

which, by the Ancestor Lemma, implies:

β(v) = ββ(v)(v) = βt′(v) = β′(v).

2

As before, an abstract condition implies the concrete condition:

Theorem 10.9.4 (Escaping inlinable (abstract)) It is safe to inline the term lam ′ in
place of the procedure f ′ if for every state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈ V̂∆(pr) such that
f ′ = f :

1. Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)};

2. and for each variable v ∈ free(lam ′), the condition δ̂(β̂(v)) %CLAB δ̂(t̂′) holds.

Proof. Pick any terms lam ′ and f ′. Assume that for every state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈
V̂∆(pr) such that f ′ = f :

1. Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)};

2. and for each variable v ∈ free(lam ′), the condition δ̂(β̂(v)) %CLAB δ̂(t̂′) holds.

138



Pick any state ς = ([[(f e1 · · · en)]], β, ve, δ, t) ∈ V∆(pr) such that f ′ = f . By soundness, we
can find an abstract state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈ V̂∆(pr) which represents (via v) ς
where Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)}. By soundness, it must be that:

A(f ′, β, ve, t) = (lam ′, β′, t ′),

where |t ′| = t̂′. Pick any variable v ∈ free(lam ′). By δ̂(β̂(v)) %CLAB δ̂(t̂′), we have that:

δ(β(v)) �CLAB δ(t ′).

2

Lastly, we have a condition based on the Fundamental Theorem that individually checks
each free variable for equivalence. The condition does this by comparing the frame string
change between the birth of these bindings in both environments. If this change is empty,
then these bindings must be the same binding. In the concrete, this condition is both
necessary and sufficient to enable inlining.

Theorem 10.9.5 (Exactly inlinable (concrete)) It is safe to inline the term lam ′ in
place of the procedure f ′ if for every state ([[(f e1 · · · en)]], β, ve, δ, t) ∈ V∆(pr) such that
f ′ = f :

1. A(f ′, β, ve, t) = (lam ′, β′, t ′);

2. and for each variable v ∈ free(lam ′), the condition bδ(β(v)) · δ(β′(v))−1c = ε holds.

Proof. Pick any terms lam ′ and f ′. Assume that for every state ([[(f e1 · · · en)]], β, ve, δ, t) ∈
V∆(pr) such that f ′ = f :

1. A(f ′, β, ve, t) = (lam ′, β′, t ′);

2. and for each variable v ∈ free(lam ′), the condition bδ(β(v)) · δ(β′(v))−1c = ε holds.

Pick any such state: ([[(f e1 · · · en)]], β, ve, δ, t). Pick any variable v ∈ free(lam ′). By the
Fundamental Theorem:

β(v) = β′(v).

2

Once again, there is a ∆CFA-based condition:

Theorem 10.9.6 (Exactly inlinable (abstract)) It is safe to inline the term lam ′ in
place of the procedure f ′ if for every state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈ V̂∆(pr) such that
f ′ = f :

1. Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)};
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2. and for each variable v ∈ free(lam ′), the condition δ̂(β̂(v))⊗ δ̂(β̂′(v))−1 = ε̂ holds.

Proof. Pick any terms lam ′ and f ′. Assume that for every state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈
V̂∆(pr) such that f ′ = f :

1. Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)};

2. and for each variable v ∈ free(lam ′), the condition δ̂(β̂(v))⊗ δ̂(β̂′(v))−1 = ε̂ holds.

Pick any state ς = ([[(f e1 · · · en)]], β, ve, δ, t) ∈ V∆(pr) such that f ′ = f . By soundness, we
can find an abstract state ([[(f e1 · · · en)]], β̂, v̂e, δ̂, t̂) ∈ V̂∆(pr) which represents (via v) ς
where Â(f ′, β̂, v̂e, t̂) = {(lam ′, β̂′, t̂′)} and |β′| v β̂′. Pick any variable v ∈ free(lam ′). By
δ̂(β̂(v))⊗ δ̂(β̂′(v))−1 = ε̂:

bδ(β(v)) · δ(β′(v))−1c = ε.

2
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Chapter 11

Implementation

While the mathematics presented thus far are a legitimate blueprint for implementing the
analyses, transcribing them verbatim does not make for the most efficient implementation.
The techniques presented in this chapter serve to speed up the analyses in practice. Empirical
evaluation of these techniques (Chapter 13) suggests that these cost little to no precision.
Section 11.3 provides a state-space searching algorithm that ties all of these techniques
together.

11.1 Caching visited states

Of particular importance is the manner in which states visited during the state-space search

are stored. In practice, storing only Êval states is sufficient, and this is best done through
the use of a side-effected global table, Σ̂:

Σ̂ : CALL× B̂Env × T̂ime → P(Ĉonf ).

This table Σ̂ maps an evaluation context (call , β̂, t̂) to a set of configurations which have
been seen with that context.

During the search, when the current state—the one just pulled from the work list—is
(call , β̂, ĉ, t̂), if:

{ĉ} v Σ̂[call , β̂, t̂],

then this branch of the search has terminated. This is because the monotonicity of the
abstract transition relation guarantees that the set of states it would visit have already been
approximated.

Otherwise, the update:

Σ̂[call , β̂, t̂]← Σ̂[call , β̂, t̂] ∪ {ĉ},

is performed and the successors of this state are added to the work set.
Using the order v instead of the relation ⊆ for termination testing is equivalent to the

aggressive cut-off technique from Shivers’ k-CFA [37].
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11.2 Configuration-widening

Shivers’ second technique for improving speed in k-CFA, the time-stamp algorithm, explicitly
relied upon the monotonicity of the configuration across state-to-state transitions. Briefly,
the time-stamp algorithm boiled down to using a single-threaded store across all branches
of the search. This diminished precision slightly, but the gains in speed were considerable.
In fact, constraint-based formulations of k-CFA use the time-stamp algorithm implicitly.
Unfortunately, both ΓCFA (via the function Γ̂) and µCFA (via strong update) destroy the
monotonic growth of the configuration required for the soundness of this technique.

However, the core idea behind the time-stamp algorithm generalizes in the absence of
cross-transition configuration monotonicity to a technique called configuration widening.
During the state-space search, after a state ς̂ has been pulled from the work list, it is mutated
according to the following algorithm:

(call , β̂, ĉ, t̂)← Γ̂(ς̂)

ĉ′ ← ĉ t ĉ∗

ς̂ ← Γ̂(call , β̂, ĉ′, t̂),

where ĉ∗ is the widening configuration for this state.

11.2.1 Global widening

The simplest policy for choosing a widening configuration is the global widening policy. With
this, there is a single widening configuration for the entire program. In effect, the widening
configuration ĉ∗ is the least upper bound of all configurations seen this far:

ĉ∗global =
⊔
i

⊔
ĉ∈Σ̂[i]

ĉ.

Naturally, when implementing this in practice, the widening configuration ĉ∗ is computed in-
crementally with each transition. Without abstract garbage collection and abstract counting,
this policy degenerates to Shivers’ [37] time-stamp algorithm.

11.2.2 Context widening

Alternatively, a per-context widening policy uses all of the configurations seen at the context
of the current state ς = (call , β̂, ĉ, t̂):

ĉ∗context =
⊔

ĉ∈Σ̂[call ,β̂,t̂]

ĉ.

Cutting against intuition, empirical evaluation (Chapter 13) of these widening policies indi-
cates that the per-context widening policy is fastest in practice, even while it is more precise
at the same time.
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Σ̂← ⊥ A table of visited states.

Ŝtodo ← {Î(pr)} The work list.
procedure Search()

if Ŝtodo = ∅
return

remove ς̂ ∈ Ŝtodo

if ς̂ ∈ Êval

(call , β̂, ĉΓ̂, t̂)← Γ̂(ς̂) Garbage collect the state.

Ĉ ← Σ̂[call , β̂, t̂] Configurations seen with this context.

if {ĉΓ̂} v Ĉ
return Search() Done—by monotonicity of ≈>.

ĉ∗ ←WideningConfig(ς̂)
ĉ′ ← ĉΓ̂ t ĉ∗
Σ̂[call , β̂, t̂]← {ĉ ∈ Ĉ : ĉ 6v ĉ′} ∪ {ĉ′} Mark the configuration as seen.

ς̂ ← Γ̂(call , β̂, ĉ′, t̂) Garbage collect the widened configuration.

Ŝnext ← {ς̂ ′ : ς̂ ≈> ς̂ ′}
Ŝtodo ← Ŝtodo ∪ Ŝnext

return Search()

Figure 11.1: State-space search algorithm: Search

11.3 State-space search algorithm

The procedure Search (Figure 11.1) executes the state-space search with the enhancements
described above. In Haskell, the algorithm admits a nearly verbatim implementation using
a state monad.
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Chapter 12

Related work

I did it all, by myself.
— Olin Shivers

12.1 Rabbit & sons: CPS-as-intermediate representa-

tion

First formulated by Plotkin [32], the use of CPS as a universal IR dates to Steele’s work on
Rabbit [41], and it is exemplified by subsequent work on compilers such as Orbit [23] and
SML/NJ [5]. This dissertation fully embraces the core message of this philosophy: transform
everything into λ, and do λ well.

By using CPS, two of its subtle—and at first unrecognized—benefits conspired to aid
the discovery of environment analysis. First, the purely tail-recursive nature of CPS makes
it natural to develop a small-step, state-to-state machine for a semantics. This, in turn,
permits a direct and flexible abstract interpretation. Second, the reification of control as
data means that flow algorithms meant to act on data automatically act upon control as
well. The payoff from this is evident in the form of the increased polyvariance that results
from garbage collecting continuations in the abstract: calls to the same procedure in different
contexts can be distinguished—even with a 0CFA contour set.

The partitioned CPS used in frame-string analysis draws on Danvy’s work in transforming
CPS back to direct-style code [12, 13].

While it is possible to adapt all of the technologies within this dissertation to other IRs,
such as A-Normal Form or SSA, it seems unlikely that incarnations for these IRs will ever
achieve the same degree of simplicity as when implemented for CPS. In order to adapt these
algorithms to direct-style languages (Section 14.1), continuations must be made explicit
within the semantics, and this inherently complicates their structure.
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12.2 Cousot & Cousot: Abstract interpretation

The Cousots’ abstract interpretation [10, 11] is the key tool employed during the develop-
ment of the entire environment-analytic framework. Besides the higher-order nature of this
work, a compelling difference between environment analysis and existing work on abstract
interpretation is the heavy reliance upon non-monotonic growth of the abstract configuration
across transitions.

The lack of monotonicity in configuration growth requires additional effort when for-
mulating a Galois connection and in arguing for the correctness of the analyses, because,
ordinarily, moving a state ς̂ down the lattice of approximation implies that information has
been discarded. While for k-CFA, the Galois connection property holds:

|ς| v ς̂ ⇐⇒ ς ∈ Conc(ς̂),

this property no longer holds when we switch to a garbage-collecting concretization function,
ConcΓ, i.e.:

ς ∈ Conc(ς̂) 6=⇒ |ς| v ς̂.

The solution, adopted in this dissertation, is to modify the semantics such that only garbage-
collected states are visited in the concrete interpretation, and at this point, the Galois
connection is trivially restored.

With the Galois connection restored, arguments for the correctness of moving down
the lattice of approximation culminate with the counter-intuitive “Zen of ΓCFA,” which

shows that the everywhere-reductive garbage-collection function Γ̂ : Ŝtate → Ŝtate takes an
abstract state to a more “precise” abstract state, i.e.:

Γ̂(ς̂) v ς̂,

even while no concrete states are excluded, i.e.:

ConcΓ(Γ̂(ς̂)) ⊇ ConcΓ(ς̂).

The use of abstract interpretation to solve the environment problem also stands in con-
trast to the constraint-solving and/or type-based approaches taken by prior attempts [17,
21, 42, 39, 40]. State-machine-based abstract interpretation also simplifies the arguments for
the soundness of the analyses and the total correctness of transformations based upon them.

12.3 Shivers: k-CFA

Higher-order control-flow analysis has its origins in the closure analyses of Jones [22] and
Sestoft [33, 34]. It was Shivers that discovered what has become the canonical framework
for higher-order control-flow analysis, k-CFA [36, 37]. k-CFA computes a conservative set of
λ terms which flow to a given expression in the program. Shivers’ original k-CFA does this
by performing a denotationally-defined abstract interpretation.
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Palsberg rephrased this analysis in terms of constraints [30], and the constraint-based
formulation has since become the most popular strategy for implementing 0CFA. Heintze
and McAllester [19] developed a sub-transitive, demand-driven, linear-time version of 0CFA.
It will be of interest to see if environment analyses can be adapted in a similar fashion. The
non-monotonic growth of the configuration intuits that such a reformulation may be more
challenging than that of k-CFA.

With respect to environments, k-CFA can, at best, reason about their non-equivalence,
i.e., if two environments differ in the abstract, then their concrete counterparts must differ
as well, i.e.:

If |β1| = β̂1 and |β2| = β̂2 and β̂1(v) 6= β̂2(v), then β1(v) 6= β2(v).

This is a direct result of the surjective nature of the abstraction function. During k-CFA, the
set of (potentially infinite) concrete contexts in which environments exist is folded down to
a finite set of abstract contexts. Each abstract context represents a set of concrete contexts.
As a result, one cannot safely infer equality in the concrete from equality in the abstract.

In discussing the limits of k-CFA, Shivers notes [37, p. 105]:

Our central problem is that we are identifying together different contours [con-
texts ] over the same variable. We are forced to this measure by our desire to
reduce an infinite number of contours down to a finite set. ... So, if we want to
track the information associated with a general abstract binding of a variable,
we need a way to distinguish it from past and future bindings made under the
same abstract contour.

12.3.1 Polymorphic splitting, DCPA and related techniques

There exists a family of research based on enriching and tailoring the set of abstract con-
texts, such as Wright and Jagannathan’s work on polymorphic splitting [43] and Agesen’s
DCPA [1]. However, all of these augmented CFAs still suffer the same problem when it
comes to performing environment analysis—the surjective nature of the abstraction map-
ping. This makes them unable to deduce concrete equality from abstract equality. While
these augmented CFAs do produce more precise control-flow results, i.e., tighter bounds on λ
flows, they ultimately suffer from the same problem with respect to analyzing environments.
Consequently, all of these techniques are orthogonal to environment analysis, and should not
be confused with instances of it.

Shivers’ general formulation of k-CFA forms the foundation of the environment analyses
presented in this dissertation, as it allows an explicit reduction of the environment problem:
“When is it the case that abstract equality does imply concrete equality?”

12.4 Hudak: Abstract reference counting

Hudak’s work on abstract reference counting [20] deserves credit for inspiring portions of
the work on µCFA. Hudak described a mechanism for first-order languages that performs
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garbage collection in the abstract through abstract reference counting. His goal in doing so
was to determine when destructive updates could be inserted by the compiler [20, p. 14]:

One of the more important uses (and the one that originally motivated this
research) is to determine when it is safe to perform destructive updates on ag-
gregate data structures. Such an optimization is possible if the reference count
of the aggregate is always 1 when the update is about to be performed.

In abstract reference counting, objects allocated in the abstract receive bounded reference
counts, much as they would receive in concrete, reference-counting garbage collection. It is
important to note that abstract reference counting is not the same concept as abstract
counting, even though there is overlap in the machinery used.

Abstract counting, as described in µCFA, counts (or more precisely, upper bounds) the
number concrete counterparts to an abstract resource. There is no concrete analog to ab-
stract counting: the measure µ̂ exists purely as an abstract interpretation. Abstract reference
counting, on the other hand, counts the number of objects referring to another object. Its
concrete analog exists, and it is, of course, a legitimate technique for performing garbage
collection or run-time destructive update.

Both analyses require a finite abstraction of the naturals. Hudak employs the flat lat-
tice {0, 1, 2 . . . ,maxrc,∞} along with both abstract addition ⊕ and abstract subtraction
	. µCFA, on the other hand, employs the ordered lattice {0, 1,∞} and uses only abstract
addition. (It is conceivable that an implementation of ΓCFA which allows for a C-like free

operation could make use of an abstract subtraction operation.)

The key distinction between Hudak’s work and µCFA comes down to the critical shift in
perspective: counting concrete counterparts of instead of references to.

12.5 Harrison: Procedure string analysis

Pnueli et al. [35] first formalized call strings as a mechanism for data-flow analysis. Harri-
son [18] utilized an extension thereof—procedure strings—to perform automatic paralleliza-
tion of imperative Scheme-like programs that allow the use of continuations. In his work,
he informally described how his analysis might also be used to perform what amounts to
super-β lambda propagation in a very specific situation [18, p. 316]:

Intuitively, if each free variable of the closure makes no net (upward or downward)
movements with respect to the procedure that binds it, from the point where it
is bound to the point of application of the closure in which it occurs free, and
if the free variable is in the lexical scope at the point of application, then the
procedure may be expanded in-line at the point of application, as all of its free
variable references will be to the correct bindings.

Or, more formally:
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Suppose that ẋ is a free variable instance in [abstract closure] ĉ, and let p̂ be the
stack configuration that describes the movements that ẋ makes between between
the point at which it is instantiated, and a point of application of ĉ. If p̂α = {ε}
where x is bound by λα (and if x is in the lexical scope at the point of application),
then the same instance of x is visible at the points at which ĉ is closed and applied.
If this is true of every free variable instance in ĉ, then it may be expanded in-line
at the point of application.

In doing so, Harrison achieved a partial solution to the environment problem. But, while
his condition seems to be correct, it is specific to a single “local” case, and it is unlikely to
be satisfied given the low precision of Harrison’s analysis. Harrison pointed out that this
condition is trivially true for closures that have no free variables. However, in such cases,
the more direct 0CFA would have done just as well. Despite these drawbacks, his use of
procedure strings marks another interesting point of departure for tackling the environment
problem.

By integrating procedure strings into his abstract context set, Harrison made another
glancing blow on the environment problem. Harrison’s universe of abstract contours has six
elements—three of which correspond to a single concrete context. As abstract interpretation
progresses in Harrison’s analysis, it “shifts” every contour in the world. Freshly allocated
variables initially receive a singleton contour and remain bound to singleton contours until
their binding procedure activation returns or calls itself once more. With this, Harrison
achieved of an early form of “strong update” [18, p. 279]:

If (b̂[[x]])α = {d} or (b̂[[x]])α = {e}, then this abstract instance of x represents
only one concrete instance of x, for every state in the concretization of q̂, and we
effect the assignment within WrEnv by “overwriting” the value of ê at 〈[[x]],d〉
or 〈[[x]],d〉.

Chase [7] later explicitly defined and generalized this notion of strong update. Strong update
takes advantage of the fact that when it is known that an abstract value corresponds to a
singleton set of concrete values, then the abstract value may be treated as if it were concrete.

∆CFA represents the extension and subsumption of Harrison’s original work into a fully
general environment theory. The key distinction is the generalization of procedure strings
(a monoid) into frame strings (a group). This group-like structure is required for the correct
formulation of an environment theory that allows full, first-class continuations. ∆CFA also
goes beyond Harrison’s work by providing three conditions for the safety of super-β inlining.
Harrison’s condition is subsumed by the escaping inlinable condition (Theorem 10.9.3).

∆CFA also corrects Harrison’s confusion regarding a perceived incompatibility between
continuation-passing style and procedure strings:

In short, the evaluation of a program converted to CPS describes only downward
movements ... This is not an indictment of CPS; it is simply to say that the
model of procedure activation and deactivation it assumes differs from that built
into the semantics of procedure strings.
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By partitioning CPS, ∆CFA both recovers and generalizes the expected frame-string oper-
ations.

12.6 Sestoft: Globalization

Sestoft’s work on globalizing function parameters [33, 34] serves as some of the earliest work
on an incarnation of the environment problem. Sestoft is concerned with determining which
procedure parameters may be hoisted to the global scope. In effect, Sestoft is asking when
a global environment would be equivalent to a lexically scoped environment.

To do this, he performs a definition-use-path-based interference analysis to see which
variables can self-interfere, i.e., which variables may have simultaneous live bindings [33, p.
25]:

Path π has interference with respect to variable x if replacing x by a global
variable X could change the result of the evaluation. This happens when the
value of X becomes modified before the last use of that value, by a (re)definition
of X. A (re)definition of a global variable will destroy its former value, whereas a
(re)definition of a (local) variable will not destroy the old value which is retained
on the parameter passing stack.

Variables which do not self-interfere may be safely hoisted to the global scope.
µCFA performs and generalizes this kind of self-interference analysis. The generalization

comes through the shift in granularity from variables to bindings. That is, it may the be case
that bindings made to the same variable in different contexts do not self-interfere; µCFA can
detect this where Sestoft’s analysis would lump both together and assume the variable was
self-interfering. Determining when a binding self-interferes is simple: check each reachable
measure function to determine whether its count ever exceeds one; if it does not, the binding
never self-interferes (Section 10.1).

12.7 Shivers: Re-flow analysis

Shivers [37] tackled the environment problem with re-flow analysis. At its core, re-flow anal-
ysis is based upon k-CFA. Re-flow analysis solves the abstract-to-concrete equality problem
by allocating a distinguished abstract contour only once for some context of concern. In the
reformulation of k-CFA given in this dissertation, this distinguished contour is equivalent to
a distinguished abstract time. As a result, for this one contour, abstract equality does imply
concrete equality. That is, if t̂? is a golden contour—allocated only once during the entire
analysis—then the following holds:

If |β1| = β̂1 and |β2| = β̂2 and β̂1(v) = β̂2(v) = t̂?, then β1(v) = β2(v).

According to Shivers’ description [37], re-flow analysis begins with a pass of k-CFA where
k ≥ 1. Afterward, an additional run of k-CFA is made for each context of concern and for
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each environment. µCFA is an opportunistic variant on the key theme of re-flow analysis:
all abstract bindings start as distinguished until forced to be considered otherwise. ΓCFA,
in conjunction with µCFA, is an attempt to opportunistically re-gild contours that have lost
their golden status.

Intuition and the following sketch suggests that the precision and power of re-flow analysis
approaches µCFA without the benefits of ΓCFA, in the limit. Without ΓCFA, µCFA can
detect the singularity only of variables bound once during the entire run of the program,
which in most cases, is the set of global variables. If re-flow analysis were used on a variable
v that is bound more than once during the lifetime of the program, the following would
occur:

• (v, t̂?) would be allocated upon the first visit.

• (v, t̂i) would be allocated upon the ith visit.

In performing an environment analysis, all bindings to a given variable must be considered.
States that reference only (v, t̂?) would be able to infer equality. However, states that picked
up later abstract bindings of v would be forced to compare a binding such as (v, t̂2) to itself,
and for these cases, re-flow analysis can make no conclusions about concrete equality.

µCFA and ∆CFA also improve upon re-flow analysis by providing a formal and rigorous
argument for the correctness of environment analysis, which Shivers did not do.

12.8 Wand and Steckler: Invariance set analysis

In defining and crafting a solution for the problem of lightweight closure conversion, Wand
and Steckler [40, 42] were forced to solve the segment of the environment problem that
also afflicts Super-β inlining. In lightweight closure conversion, free variables within closures
whose values are available at a call site are left out of the closure, leaving them to be supplied
dynamically at their point of invocation. In effect, this requires answering the question:
when are dynamically scoped environments equivalent to lexically scoped environments?
Computing which variables can be made dynamic safely is what requires at least a partial
solution to the environment problem.

Wand and Steckler introduced a novel approach to solving the environment problem. To
determine when such variables may be supplied dynamically, Wand and Steckler extend a
constraint-based 0CFA with the notion of invariance sets. It is these invariance sets which
provide the solution to the environment problem [40, p. 25]:1

... if Proc(m), then ∀x ∈ θΓ,k, x ∈ Dom(ψ′′) ∩ Dom(ψ′′′), and ψ′′(x) = ψ′′′(x).

When a variable appears in an invariance set for an expression, its value remains unchanged
across a transition starting at that expression. If this expression is a procedure, then the
environment at this call site and the environment within the closure it invokes must be
equivalent over the variables in the invariance set.

1Here, the symbols ψ′′ and ψ′′′ represent environments and the symbol θΓ,k ⊆ VAR is an invariance set.
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Certain rules in invariance-set analysis are overly restrictive, such as [40, p. 18]:

Vi .rator

j

−→ F
[[j .bv ]] 6∈ θj .bv ,

which literally means: “if any application e ever invokes the term (λ (v) eb), then the
variable v cannot be invariant across its own evaluation.” This rule makes it easy to construct
cases where µCFA can trivially catch the invariance of a variable, while invariance-set analysis
never can, e.g., the evaluation of the expression v in the following:

(letrec ((v (λ (x) v)))

(v v))

Clearly, the variable v remains invariant across its own evaluation.
In the earliest work of its kind for environment analysis, Wand and Steckler also rigorously

demonstrate the partial correctness of lightweight closure conversion [40, p. 36]:

[O]ur states are partial correctness assertions. [Emphasis original.]

Wand and Steckler’s algorithm is strictly partially correct. For example, in the following
non-terminating program, the variable v is incorrectly left in the invariance set at the call
site for g:

(define f (λ (g)

(λ (v)

(if g

((f (λ (x) (+ x v))) (g v))

((f (λ (x) (+ x v))) v)))))

((f #f) 1)

This dissertation demonstrates total correctness for a transformation based upon environ-
ment analysis.

12.9 Chase, Altucher, et al.: First-order must-alias

analysis

Must-alias analysis, a relative of the environment problem, has received little attention in
the literature [4, 29]. Nearly all of the literature on alias analysis focuses on may-alias
analysis [2, 3, 6, 9, 28].

Muth et al. [29] demonstrated that the complexity of a precise interprocedural must-alias
analysis is EXPTIME-complete.

Altucher et al. [4] developed a must-alias analysis for C for the purpose of utilizing strong
update during a flow analysis. Their approach to must-alias analysis is to identify which
aliases are bound to singleton sets of fixed locations [4, p. 78]:
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... if the target of an assignment, lhs , is may aliased to only one fixed location,
FL, then that alias can be considered a must alias, and any definition of FL that
reaches the assignment can be killed ...

This kind of must-alias analysis, much like re-flow analysis, has been termed an “only visited
once” analysis [16]. Using abstract counting (even without abstract garbage collection) can
detect all such instances.

12.10 Jagannathan et al.: Higher-order must-alias anal-

ysis

Building on work by Hudak [20] and Chase et al. [7], Jagannathan et al. [21] describe a
constraint-based extension of 0CFA in which the cardinality of an abstract variable or pointer
is tracked via per-program-point cardinality maps. The solution space of these constraints
is equivalent to a specific instance of the parameters to µCFA (Section 13.5).

To Jagannathan et al., the cardinality of an abstract entity is either singular, meaning
it corresponds to a single concrete value, or multiple, meaning it corresponds to arbitrarily
many concrete values. When the cardinality of a variable is singular, only one value can be
bound to it in the concrete.

Jagannathan also employs the notion of reachability. However, the monotonicity de-
manded by constraint-solving requires that reachability pruning be built directly into the
constraints. As a result, the first iteration of the algorithm uses no reachability pruning
whatsoever. Each iteration of the algorithm generates a new set of constraints, with tighter
reachability-based pruning than before built in. Due to the abstract interpretive approach
taken in this dissertation, reachability can be computed on the fly.

Jagannathan et al.’s work suffers from three main limitations:

• Like others, it is pegged at 0CFA in precision, failing whenever two instances of the
same variable can be simultaneously live.

• It handles CPS (and continuations) poorly.

• Like re-flow analysis, it requires multiple iterations of the analysis.

ΓCFA and µCFA extend and generalize Jagannathan et al.’s work on multiple fronts:

• They are conducted as an abstract interpretation, which requires only one run to
achieve maximum precision.

• They are parameterized by precision, e.g., k-level, DCPA, polyvariant, and by degree
of widening.

• They handle CPS and continuations without difficulty or added machinery.

• Proofs of soundness are concise and straightforward.
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Chapter 13

Evaluation

In the computer field, the moment of truth
is a running program; all else is prophecy.

— Herbert Simon

13.1 Implementation

The combined ΓCFA and µCFA framework has been implemented for a subset of R5RS
Scheme. The framework supports the following parameters:

k The context-sensitivity parameter k determines the set of abstract times T̂ime. The
current abstract time t̂ is chosen to be a sequence of the last k call site labels.

w The widening parameter w has three settings:

p Employ a per-program (global) widening configuration.

c Employ a per-context (call , β̂, t̂) widening configuration.

s Employ a per-state configuration. (No widening.)

g The garbage collection parameter g has two settings: “no garbage collection” or
“garbage collect every state.”

c The abstract counting parameter c has two settings “disable abstract counting” or
“enable abstract counting.”

13.2 Benchmarks

Hand-crafted coroutine benchmarks and benchmarks from Will Clinger’s Scheme benchmark
suite were used to evaluate these analyses:
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• put-double-coro. 39 functions pre-CPS conversion. Composes a put-5 coroutine with
a doubling coroutine and a printing coroutine.

• int-fringe-coro. 49 functions pre-CPS conversion. Composes a tree-walking corou-
tine with an integrating coroutine and a printing coroutine.

• int-stream-coro. 45 functions pre-CPS conversion. Composes a coroutine consuming
a list with an integrating coroutine and a printing coroutine.

• perm. 35 functions pre-CPS conversion. Generates all possible permutations of n
integers.

• lattice. 36 functions pre-CPS conversion. Generates the sequence lattice for a pa-
rameter lattice.

• earley. 90 functions pre-CPS conversion. Generates a parser given a grammar.

• nboyer. 43 functions pre-CPS conversion. Tests whether a set of propositions are
implied by a set of lemmas.

• sboyer. 44 functions pre-CPS conversion. Tests whether a set of propositions are
implied by a set of lemmas. (This version uses scons to avoid list duplication when
sharing is possible.)

13.3 Illustration

ΓCFA can reduce the size of the abstract state-transition graph. For instance, examine the
following doubly-nested loop:

(letrec ((lp1 (λ (i x)
(if (= 0 i) x

(letrec ((lp2 (λ (j f y) (if (= 0 j)
(lp1 (- i 1) y)
(lp2 (- j 1) f

(f y))))))
(lp2 10 (λ (n) (+ n i)) x))))))

(lp1 10 0))

An operational k-CFA produces the following state-to-state transition graph:
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Meanwhile, the same program, analyzed via ΓCFA, leads to the follow state-to-state transi-
tion graph:
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Informal experiments indicate that the size of the reduction varies directly with the amount
of tail recursion used in the program.

13.4 Comparison: Wand and Steckler

Table 13.1 provides a quantitative comparison of a combined µ+ΓCFA (Γ) and Wand and
Steckler’s invariance-set analysis (θ). The benchmark implementation of Wand and Steckler’s
algorithm used an implementation for MzScheme provided by Paul Steckler and the most
recent paper [40] as best-practice references. For this comparison, the context-sensitivity
was set to k = 0 and configuration-widening was set to program-level—the worst case for
precision.

To generate Table 13.1, each call site was examined. For each call site, the variables that
were both (1) free at the call site, and (2) free in all closures invoked at that call site were
tested. Each such variable v received one of four classifications:

θ+Γ+ Both invariance-set analysis and µ+ΓCFA marked v invariant at this call site.

θ+Γ− Only invariance-set analysis marked v invariant at this call site.

θ−Γ+ Only µ+ΓCFA marked v invariant at this call site.

θ−Γ− Neither analysis marked v invariant.
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Table 13.1: Comparison of µ+ΓCFA and Wand & Steckler’s invariance analysis

θ+Γ+ θ+Γ− θ−Γ+ θ−Γ− Γ+/θ+ Timeθ TimeΓ

earley 61 0 649 239 1100% 14s+2s 24s
int-fringe-coro 136 0 24 25 117% 1s+εs 5s
int-stream-coro 129 0 4 36 103% 5s+εs 14s
lattice 79 0 70 40 200% 7s+εs 10s
nboyer 231 0 44 22 188% 43s+5s 68s
perm 140 0 149 17 206% 1s+εs 2s
put-double-coro 72 0 17 7 123% εs+εs 2s
sboyer 235 0 50 22 121% 49s+5s 95s

The timings provided for invariance-set analysis are given in f+t form, where f denotes the
time for the flow analysis, and t denotes the time for invariance-set analysis. The times for
each benchmark indicate the time it took to run each analysis on a single 2.6 GHz Intel Core
2 Duo processor with 4 GB RAM.

The results from this table support the following claims:

• Environment analysis by µ+ΓCFA completely subsumes Wand and Steckler’s algo-
rithm in precision. That is, if Wand and Steckler mark a variable invariant at a call
site, µ+ΓCFA will also mark it invariant.

• Wand and Steckler’s algorithm is always faster.

The speed of Wand and Steckler’s algorithm comes in part from the fact that the invariance
analysis can be decoupled from the flow analysis, whereas µ+ΓCFA inextricably weaves
environment analysis and flow analysis together.

13.5 Comparison: Jagannathan, et al.

Table 13.2 provides a comparison between Jagannathan, et al.’s must-alias (MAA) analy-
sis [21] and the fused µ+ΓCFA. The implementation of MAA used the original implementa-
tion, provided by Suresh Jagannathan and Peter Thiemann, as a best-practices reference.

MAA extends a constraint-based 0CFA with a per-program-point measure function. Be-
cause it is constraint-based, configuration growth in MAA must be monotonic, which makes
dynamic, ΓCFA-style garbage collection impossible. Instead, MAA runs successive iterations
of the analysis. The first run is without any garbage collection at all. The results of the nth
run determine the reachability sets used for pruning during the n+ 1th run.

In Table 13.2, the first slot for each measurement indicates the percentage of variables
marked as having a count less than or equal to one over the duration of program execution.
The second slot for each measurement indicates the time it took to run the analysis on a
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single 2.6 GHz Intel Core 2 Duo processor with 4 GB RAM. OOM indicates the benchmark
exhausted 4 GB of RAM.

The first column, MAA1, represents running the first iteration of MAA. As a result, the
time on this column represents a lower bound on the running time and the precision of the
MAA algorithm.

The remaining columns provide the results while varying the contour/T̂ime set and the
degree of configuration-widening. k = 0 indicates a 0CFA-level contour set. k = 1 indicates
a 1CFA-level contour set. The letter p indicates program-level configuration-widening. The
letter c indicates context-level configuration-widening. The letter s indicates state-level
configurations, i.e., no configuration-widening. The column marked † indicates what would
be the limit of the MAA algorithm’s precision.
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The results from this table support the following claims:

• µ+ΓCFA is both faster and more precise than MAA.

• Point-level configuration-widening converges quickly, and at little cost to precision over
state-level widening.

• Program-level configuration-widening can widen so aggressively that it slows down
analysis, even if it costs little or no precision.

• 1CFA rarely provides additional precision, but it always costs more time.

• Most variables bound more than once appear to have short, non-overlapping lifetimes.
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Chapter 14

Future work

One of the symptoms of an approaching nervous breakdown
is the belief that one’s work is terribly important.

— Bertrand Russell

Though useful in and of itself, the new degree of power granted by environment analysis
makes it a rich platform for further investigation. The ideas discussed and sketched in this
chapter offer vectors for future researchers interested in this area, but nothing more: none of
the concepts in this section (with the exception of Logic-Flow Analysis [24]) has been vetted
by peer review.

14.1 Environment analysis for direct-style λ calculus

An environment analysis in the spirit of what has been described in this dissertation is
possible for direct-style λ calculus as well. It merely requires more machinery.

Consider the direct-style grammar:

f , e ∈ EXP ::= v
| (λ (v) e)
| (f e).

A simple, CESK-like [15] machine for this language is given by the following transition
rules:

([[(e0 e1)]],d, β, σ, sp, hp)⇒ (elength(d), β, σ
′, sp ′, hp)

when length(d) < 2

where sp ′ = sp + 1

σ′ = σ[sp ′ 7→ κ]

κ = ([[(e0 e1)]],d, β, sp).
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([[(f e)]], 〈proc, darg〉, β, σ, sp, hp)⇒ (proc, darg, σ, sp, hp).

(([[(λ (v) eb)]], β), d, σ, sp, hp)⇒ (eb, β
′, σ′, sp, hp ′)

where hp ′ = hp + 1

β′ = β[v 7→ hp ′]

σ′ = σ[(v, hp ′) 7→ d].

(([[(f e)]],d, β, sp), d′, σ, hp)⇒ ([[(f e)]],d concat 〈d′〉, β, σ, sp, hp).

(lam, 〈〉, β, σ, sp, hp)⇒ (σ(sp), (lam, β), σ[sp 7→ ⊥], hp).

(v , 〈〉, β, σ, sp, hp)⇒ (σ(sp), σ(v, β(v)), σ[sp 7→ ⊥], hp).

The relation ⇒ comprises a non-recursive, continuation-based transition system. The
continuations (κ) have been made explicit in the semantics, rather than explicit in the
syntax as with CPS. These rules abstract easily into the abstract transition relation ≈>:

([[(e0 e1)]], d̂, β̂, σ̂, µ̂, ŝp, ĥp) ≈> (elength(d̂), β̂, σ̂
′, µ̂′, ŝp ′, ĥp)

when length(d̂) < 2

where ŝp ′ = ŝucc(ŝp)

σ̂′ = σ̂ t [ŝp ′ 7→ {κ̂}]
µ̂′ = µ̂⊕ [ŝp ′ 7→ 1]

κ̂ = ([[(e0 e1)]], d̂, β̂, ŝp).

([[(f e)]], 〈d̂fun, d̂arg〉, β̂, σ̂, µ̂, ŝp, ĥp) ≈> (p̂roc, d̂arg, σ̂, µ̂, ŝp, ĥp)

where p̂roc ∈ d̂fun.

(([[(λ (v) eb)]], β̂), d̂, σ̂, µ̂, ŝp, ĥp) ≈> (eb, β̂
′, σ̂′, µ̂′, ŝp, ĥp

′
)

where ĥp
′
= ŝucc(ĥp)

β̂′ = β̂[v 7→ ĥp
′
]

σ̂′ = σ̂ t [(v, ĥp
′
) 7→ d̂]

µ̂′ = µ̂⊕ [(v, ĥp
′
) 7→ 1].
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(([[(f e)]], d̂, β̂, ŝp), d̂′, σ̂, µ̂, ĥp) ≈> ([[(f e)]], d̂ concat 〈d̂′〉, β̂, σ̂, µ̂, ŝp, ĥp).

(lam, 〈〉, β̂, σ̂, µ̂, ŝp, ĥp) ≈> (κ̂, (lam, β̂), σ̂, µ̂, ĥp)

where κ̂ ∈ σ̂(ŝp).

(v , 〈〉, β̂, σ̂, µ̂, ŝp, ĥp) ≈> (κ̂, σ̂(v, β̂(v)), σ̂, µ̂, ĥp)

where κ̂ ∈ σ̂(ŝp).

Immediately, the chief advantage of using CPS becomes clear, two rules are replaced with
many, and the states themselves nearly double in the number of components.

14.1.1 Partial abstract garbage collection

Garbage collection also becomes more complicated, as the reaching function must trace
through stack pointers, bindings, closures and continuations. There is, however, one sub-
tle advantage in using direct-style: partial abstract garbage collection. A partial garbage
collection traces out solely the reachable stack pointers from the current state, which can
be done without scanning the entire abstract heap as well. By collecting solely continua-
tions, the control-flow polyvariance achieved by ΓCFA is cleanly factored apart from the
data polyvariance it achieves.

14.1.2 Dependency analysis

By augmenting these semantics with side effects, it becomes possible to perform dependency
analysis as a precursor to automatic parallelization. The first step is to allocate the function
being applied as the next abstract stack pointer. Then, when the abstract interpretation
encounters a read or a write to a side-effectable resource (a mutable variable or a store
location), all of the reachable stack pointers are searched, using the partial-abstract garbage
collection reachability function. If the access is a read, all of the functions contained within
the stack pointers are marked as read-dependent on the given resource. If the access is a
write, all of the functions contained within the stack pointers are marked as write-dependent
on the given resource.

14.2 Abstract bounding

For the purposes of environment or must-alias analysis, a measure µ̂ which provides only an
upper bound on the number of concrete counterparts is entirely adequate. When moving
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beyond environment analysis, however, it is useful to have a second counter, ν̂ : B̂ind → N̂≥,
which provides a lower bound. The lattice of lower bounds, however, is even simpler than
the lattice of upper bounds:

N̂≥ = {0, 1}.

And, for the lattice components, we get > = 0, ⊥ = 1, t = min, u = max and v = ≥.

Conveniently, the abstraction function for the lower-bound measure is the same as the
upper-bound measure, i.e.:

|ς|ν = |ς|µ.

What remains to be done is a modification of the semantics (abstract and concrete) to
account for ν̂, along with proofs of soundness.

14.3 Heavyweight invariant synthesis: Logic-flow anal-

ysis

The lower-bound measure ν̂ is immediately useful for the task of establishing conditions
about abstract bindings that are independent of scope. With both measures µ̂ and ν̂ avail-
able, it is possible to “pinch” the number of concrete values at exactly one. The importance
of this pinching is that it prevents universal quantifiers that range over the concrete counter-
parts to an abstract resource from being vacuously true, which would otherwise limit their
malleability and utility.

Logic-flow analysis [24] performs a second abstract interpretation, and weaves it together
with the mechanical abstract interpretations presented thus far. This second abstract inter-
pretation abstracts a machine state ς into a set of propositions, Π, which hold on this state.
The ground terms of the logic in which these propositions reside range over the concrete
counterparts to abstract resources, such as abstract bindings.

Certain events during the abstract interpretation of a program allow an analysis to es-

tablish such propositions. For instance, moving through an Âpply state, where the value of
one binding is associated with the value of another binding, proposes a proposition declaring
the equality of these two bindings as a candidate. If each abstract binding will have no more
than one concrete counterpart after the transition, it is legal to assert such a proposition.
Other propositions may be established by virtue of passing through a conditional statement,
when the upper-bound on the abstract condition is no greater than one.

A key invariant that all propositions within the set Π must refer only to abstract resources
with a lower bound of 1. The reason for this is that the following inference is valid:

∀x ∈ X : ∀y ∈ Y : x = y ∀x ∈ X : ∀z ∈ Z : x = z
∀y ∈ Y : ∀z ∈ Z : y = z,

only if size(X) ≥ 1.

A preliminary report on logic-flow analysis is available in [24].
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14.4 Lightweight invariant synthesis: ΘCFA

Logic-flow analysis, as reported in [24], misses low-hanging fruit for picking up program
invariants, and it opens Pandora’s box by allowing the space of propositions it considers
to be infinite. ΘCFA overcomes these problems by (1) having abstract closures close over
locally-established propositions; and (2) restricting the set of propositions that the analysis
can reason about.

In ΘCFA, an abstract closure is (lam, β̂, θ) where θ is a set of conditions given in a
simplified logic that reference only the variables free in the term lam. This simplified logic
has bindings and denotables for ground terms, and each ground term corresponds to an
implicit, outer-level universal quantification over its concrete counterparts.

14.5 Must-alias analysis via garbage-collectible pointer

arithmetic

In languages like C, pointer arithmetic makes even may-alias analysis unusually challenging.
In the absence of knowledge about memory structure, a write to the pointer p+1 could write
to virtually any location in the program. Constructing a model of pointer arithmetic that
abstracts to a form suitable for abstract garbage collection and counting should provide
similar improvements to precision.

In the spirit of Peano’s model of arithmetic [31], we can construct a similar model for
pointer arithmetic. In this model, we dynamically construct a successor-address map ι :
Addr → Addr in the concrete that is kept as part of the program’s configuration (Conf ).

Upon executing a primitive operation such as malloc(n), where n = A([[n]], β, σ), the
store would be updated as follows:

σ′ = σ[a0 7→ 0, . . . , an−1 7→ 0, an 7→ >].

and the successor map would be updated as follows:

ι′ = ι[a0 7→ â1, . . . , an−2 7→ an−1, an−1 7→ a∞].

The C string "foo" would create a footprint like the following:

?>=<89:;f ?>=<89:;o ?>=<89:;o ?>=<89:;0

a0
ι //

σ

OO

a1
ι //

σ

OO

a2
ι //

σ

OO

a3
ι //

σ

OO

a∞

In the abstract, the successor mapping ι̂ : Âddr → P(Âddr) becomes non-deterministic.

In addition, if ΘCFA is in use, a transitive-successor mapping ι̂? : Âddr × B̂ind → P(Âddr)
may also be employed.
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The expression malloc(n), given Â([[n]], β̂, σ̂) = {pos}, could lead to the following up-
dates to the abstract store σ̂, abstract measure µ̂ and successor mappings ι̂ and ι̂?:

σ̂′ = σ̂ t [â′ 7→ {0}, â′′ 7→ {0}, â′′′ 7→ {>}]
µ̂′ = µ̂′ ⊕ [â′ 7→ 1, â′′ 7→ ∞, â′′′ 7→ 1]

ι̂′ = ι̂ t [â′ 7→ {â′′, â′′′}, â′′ 7→ {â′′, â′′′}, â′′′ 7→ {}]
ι̂′? = ι̂? t [(â′, ([[n]], β̂(n))) 7→ {â′′′}].

Thus, in the abstract, the C string "foo" might look like:

?>=<89:;f ?>=<89:;o ?>=<89:;0

â′
ι̂ //

σ̂

OO

ι̂?

4

??D O T X [ ] _ a c f j o z
â′′

ι̂ //

σ̂

OO

ι̂
		

â′′′
ι̂ //

σ̂

OO

â′′′′

Given the graph-like nature of ι̂ and ι̂?, both structures are readily susceptible to abstract
garbage collection. This representation of the heap, combined with the must-alias analy-
sis provided by counting, makes bounds-checking easier—even in the presence of pointer-
bumping array traversals such as the following:

char* a_end = a + len ;

char* a_ptr = a ;

while (a_ptr < a_end) {

... *a_ptr ...

a_ptr++ ;

}

Paradoxically, it even becomes advantageous to transform loops of the form:

for (int i = 0; i < len; i++) {

... a[i] ...

}

into the prior example—thereby introducing pointer arithmetic where none had existed.

14.6 Advanced Super-β rematerialization

In super-β inlining, it is a requirement that the free variables in the λ term be available at
the call site where the function is to be inlined. This restriction can be relaxed to require
only that the values of those free variables be available, or, going even further, that these
values be (re)computable at the call site.
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Using ΘCFA or LFA, the compiler can check whether the unavailable free variables in
the λ term are equal to some other expression. If the components of that expression are
available at the call site, then the λ term can be inlined, but with those variables replaced
by appropriate expressions instead.

14.7 Static closure allocation via λ-counting

The concrete counterparts to abstract bindings and store addresses are hardly the only
abstract resource we can count. Another example of a countable resource is closures over a
given λ term. In this case, the domain of the measure µ̂ would include the set LAM . And,
each time the argument evaluator Â closed over the term lam, it would bump its entry in
the measure µ̂ by 1. When no abstract closures over the term lam are reachable, its count
resets to 0.

If, during the entire abstract interpretation, a λ term’s count never exceeds 1, then the
environment and the closure for that λ term can be allocated at compile time. In other
words, all instances of closures over that λ term have non-overlapping lifetimes and can
therefore share the same memory for their environments.

All globally-defined functions are guaranteed to be statically-allocated closures. In ad-
dition, many intermediate functions used during functional iteration are eligible as well,
e.g.:

(map (λ (x) (+ x 1)) lst)

What remains to be done is a formalization of this transformation, and the development
of a machine that can prove the preservation of meaning under it.

14.8 Backward environment analysis

Given that the environment analyses in this dissertation have a strictly whole-program for-
mulation, it would be interesting to investigate the possibility of a backward formulation.
Intuition suggests that the non-monotonic growth of the configuration across transition may
make such formulations impossible.

14.9 Modular environment analysis

In lieu of a backward formulation, it would also be interesting to investigate the existence of
a modular version of these analyses that could be applied at the function, module or library
level. To some extent, such a formulation is already possible—the value > could be passed
in place of external entities or arguments. This, however, could lead to unnecessarily coarse
approximations, particularly if even a little information, such as “non-side-effecting,” were
available about external entities.
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It would also be interesting to investigate the notion of partial abstract interpretation. In
the same vein as partial evaluation, a module could be compiled into a continuation whereby
as much of the abstract interpretation had been performed on the module as possible, and
that given the rest of the program (or perhaps other continuations representing modules),
the analysis would be completed.
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Appendix A

Conventions

This is the sort of pedantry up with which I will not put.
— Winston Churchill

A.1 Definitions

To draw attention to the “definitional” character of an equation, the symbol
def
= indicates

that the left-hand side is defined to be the right-hand side. For example, we might write

n ≡ m
def
= n = m mod 5.

A.2 Lattices

For all of the domains used in this work, we use the “natural” meaning for the lattice operator
t as well as the order v; that is, a point-wise lifting (for functions), or an index-wise lifting
(for vectors and tuples).

A.2.1 Pointing

Given a set A that lacks a natural top or bottom, we can add them:

A>
def
= A+ {>}

A⊥
def
= A+ {⊥}.

A.2.2 Flat lattices

For a flat domain A, e.g., a syntactic domain like CALL or LAM , given a 6= b ∈ A:

a tA b = >A a uA b = ⊥A
a tA a = a a uA a = a.
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The elements >A and ⊥A are the implicit top and bottom.

A.2.3 Product lattices

For a product lattice A = B × C, e.g., Clo:

⊥A
def
= (⊥B,⊥C)

>A
def
= (>B,>C)

(b1, c1) vA (b2, c2)
def
= b1 vB b2 and c1 vC c2.

and lift the u and t operators pointwise.

A.2.4 Sum lattices

For a disjoint-sum lattice, A = B + C, e.g., Ŝtate, we add implicit bottom ⊥A and top >A
elements, and define the relation x vA y to hold when either (1) x, y ∈ B and x vB y, (2)
x, y ∈ C and x vC y, (3) x = ⊥A, or (4) y = >A.

A.2.5 Power lattices

For a power lattice A = P(B), e.g., D̂ , we define:

⊥A = ∅
>A = B

X vA Y
def
= ∀x ∈ X : ∃y ∈ Y : x vB y

X tA Y
def
= X ∪ Y .

A.2.6 Sequence lattices

For a sequence/vector lattice A = B∗, e.g., D̂∗, we add ⊥A and >A elements, and:

〈x1, . . . , xn〉 vA 〈y1, . . . , yn〉
def
= ∀i : xi vB yi

〈x1, . . . , xn〉 tA 〈y1, . . . , yn〉
def
= 〈x1 tB y1, . . . , xn tB yn〉

〈x1, . . . , xn〉 uA 〈y1, . . . , yn〉
def
= 〈x1 uB y1, . . . , xn uB yn〉.

And, naturally, for any a ∈ A:

⊥A v a

a v >A.

Joining two vectors of different length jumps straight to >A. Their meet is ⊥A.
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A.2.7 Function lattices

For a function lattice A = B → C, we lift v, u and t pointwise over the domain B. That
is:

⊥A
def
= λb.⊥C

>A
def
= λb.>C

f tA g
def
= λb.f(b) tC g(b)

f uA g
def
= λb.f(b) uC g(b)

f vA g
def
= ∀b : f(b) vC g(b).

A.3 Sequences

A vector is represented by a variable in boldface, e.g., d; its valid indices are 1 through
length(d), inclusive. We explicitly write the members of a vector with angle brackets: d =
〈d1, . . . , dlength(d)〉.

A.4 Functions

We write f |A to restrict the domain of function f to set A, and lift functions to operations

over their ranges in pointwise fashion, e.g., f+g
def
= λx . f(x)+g(x). We write fg to “shadow”

function f with g, so that

fg
def
= λx.if x ∈ dom(g) then g(x) else f(x).

The notation [x 7→ y] specifies the partial function mapping x to y; it can be extended in the

natural way: [x1 7→ y1, . . . , xn 7→ yn]
def
= [x1 7→ y1][x2 7→ y2, . . . , xn 7→ yn]. Taken together,

we have the familiar function-update notation of f [x1 7→ y1, x2 7→ y2, . . .].

A.5 Mathematical logic

For displaying logical conjunction, we use two additional curly-brace forms:

p1
...
pn

 def
= p1 and · · · and pn

def
=


p1
...
pn.

We make use of an “if b then e1 else e2” conditional form, as well as a more general
“cases” conditional: 

val1 guard1
...

...
valn guardn,
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which evaluates to val i, where i is the first index that makes guard i true.

A.6 Languages

The set L(r) contains all strings matching regular expression r.
The function free returns the set of free variables for a given piece of syntax.

A.7 Abstract interpretation

The “absolute value” notation |x| should be read and interpreted as “the abstraction of

x.” Hats are consistently use to denote abstract counterparts, e.g., the domain D̂ is the
abstraction of D .
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