Environment Analysis via △CFA

Matthew Might Olin Shivers

Georgia Tech

POPL 2006

Problem

- ▶ Closure = λ term + environment;
- e.g., $(\lambda \ () \ x) + [x \mapsto 3]$
- ▶ CFA: good with control (what λ invoked from which call sites);
- ... not so good with environments.

```
(let ((f (\lambda (x h) (if (zero? x) (h) (\lambda () x))))) (f 0 (f 3 #f)))

Fact: (\lambda () x) flows to (h).

Question: Safe to inline?
```

```
(let ((f (\lambda (x h) (if (zero? x)
                              (h)
                              (\lambda () x))))
  (f 0 (f 3 #f)))
       Fact: (\lambda \ () \ x) flows to (h).
  Question: Safe to inline?
   Answer: No.
       Why: Only one variable x in program;
              but multiple dynamic bindings.
               (\lambda \ () \ x) + [x \mapsto 0]
               V.
               (\lambda \ () \ x) + [x \mapsto 3]
```

Folding infinite set of binding contours down to finite set causes merging. Can lead to unsound conclusions.

Problem: |x| = |y| does not imply x = y

Why it matters

We frequently use closures as general "carriers" of data:

- Create closure at point a.
- Ship to point b and invoke.

a & b have same static scope and same dynamic bindings ⇒

- inline closure's code at b (super- β inlining),
- communicate data via shared context.

Avoid heap allocating & fetching data.

Why it matters

We frequently use closures as general "carriers" of data:

- Create closure at point a.
- Ship to point b and invoke.

a & b have same static scope and same dynamic bindings ⇒

- ▶ inline closure's code at b (super- β inlining),
- communicate data via shared context.

Avoid heap allocating & fetching data.

Need to reason about environment relationships between two control points.

Tool 1: Procedure strings

Classic model (Sharir & Pnueli, Harrison)

- Program trace at procedure level
- String of procedure activation/deactivation actions

Actions

control: call/return

Intuition: call extends environment; return restores environment.

Tool 1: Procedure strings

Classic model (Sharir & Pnueli, Harrison)

- Program trace at procedure level
- String of procedure activation/deactivation actions

Actions

control: call/return

Intuition: call extends environment; return restores environment.

(fact 1)

call fact / call zero? / return zero? / call - / return - /
call fact / call zero? / return zero? / return fact /
call * / return * / return fact

Note: Call/return items nest like parens.

Problems with procedure strings

- ► In functional languages, not all calls have matching returns. (*e.g.*, iteration)
- Procedure strings designed for "large-grain" procedures.
- What about other control/env operators? (loops, conditionals, coroutines, continuations, ...)

Construct	encoding	
fun call	call to λ	

Construct	encoding
fun call	call to λ
fun return	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ
exception	call to λ

 λ is universal representation of control & env.

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ
exception	call to λ
coroutine	call to λ
:	:

Now λ is fine-grained construct.

Adapt procedure-string models to CPS \Rightarrow have universal analysis.

CPS & stacks

But wait! CPS is all calls, no returns!

Procedure strings won't nest properly: call a / call b / call c / call d / . . .

CPS & stacks

But wait! CPS is all calls, no returns!

Procedure strings won't nest properly: call a / call b / call c / call d / . . .

Unless...

CPS & stacks

Solution

Syntactically partition CPS language into "user" & "continuation" world.

We still have calls & returns; have just decoupled them somewhat.

Shift from call/return view to push/pop view.

Calls & returns no longer nest, but pushes & pops *always* nest.

Example: recursive factorial

Example: recursive factorial

```
\begin{array}{c} (\lambda_t \ (\text{n ktop}) \\ (\text{letrec ((f ($\lambda_f$ (m k))$} \\ (\text{%if0 m} \\ (\lambda_1 \ () \ (\text{k 1})) \\ (\underline{\lambda_2} \ () \\ (\text{- m 1 ($\underline{\lambda_3}$ (m2)} \\ (\text{f m2 ($\underline{\lambda_4}$ (a)} \\ (* \ \text{m a k)} \\ )))))))))))\\ (\text{f n ktop}))) \end{array}
```

Example: recursive factorial

```
(\lambda_t \text{ (n ktop)})
   (letrec ((f (\lambda_f (m k)
                          (%if0 m
                             (\underline{\lambda}_1 () (k 1))
                             (\lambda_2)
                                (- m 1 (\lambda_3 (m2))
                                               (f m2 (\lambda_4 (a)
                                                            (* m a k)
                                                           )))))))))
      (f n ktop)))
```

```
But...
Blue ≠ call/push
Red ≠ return/pop
```

Putting it all together: frame strings

Frame strings, F

- Record push/pop sequences.
- Each character: push or pop.
- Calls push frames.
- Continuations restore stacks.

Anatomy of a push character

$$\left\langle egin{array}{c} \psi \ t \end{array} \right|$$

Anatomy of a push character

Anatomy of a push character

Anatomy of a pop character

Net & inverse operators

Net

- ▶ Written |*p*|.
- Cancels opposite neighbors.

Examples

- $\blacktriangleright \ \lfloor | {}^{\mathbf{q}}_{38} \rangle \langle {}^{\mathbf{q}}_{38} | \rfloor = \epsilon$
- $\blacktriangleright \ \left\lfloor \langle {{\mathop{\rm r}}\atop{{21}}} | {{\mathop{\rm r}}\atop{{21}}} \rangle \langle {{\mathop{\rm a}}\atop{{71}}} | \right\rfloor = \langle {{\mathop{\rm a}}\atop{{71}}} |$

Net & inverse operators

Net

- ▶ Written $\lfloor p \rfloor$.
- Cancels opposite neighbors.

Examples

- $\blacktriangleright \ \lfloor \langle {}_6^{\rm a} | \langle {}_7^{\rm b} | {}_7^{\rm b} \rangle | {}_6^{\rm a} \rangle \rfloor = \epsilon$
- $\blacktriangleright \ \lfloor |{}^{\rm q}_{38}\rangle \langle {}^{\rm q}_{38}| \rfloor = \epsilon$
- $\blacktriangleright \ \left\lfloor \langle {{_{21}^r}|_{21}^r} \rangle \langle {{_{71}^a}} \right\rfloor = \langle {{_{71}^a}} |$

Two views

Absolute $\lfloor p_t \rfloor$ is picture of stack at time t.

Relative $\lfloor p_t^{t'} \rfloor$ is summary of stack change.

Net & inverse operators

$$p^{-1}$$
 = reverse $\lfloor p \rfloor$ and swap "push" & "pop":

Example

$$\left(\langle {}_4^a|\langle {}_5^b|{}_5^b\rangle\langle {}_6^c|\right)^{-1}=|{}_6^c\rangle|{}_4^a\rangle$$

Frame strings mod $\lfloor \cdot \rfloor$ is group: $p + p^{-1} \equiv p^{-1} + p \equiv \epsilon$. (+ is concatenation)

The inverse operator

Use: restoring stack to previous state

Time	Frame string	Stack
<i>t</i> ₁	р	[p]
<i>t</i> ₂	p+q	$\lfloor p+q floor$
<i>t</i> ₃	p + q + ???	$\lfloor p \rfloor$

The inverse operator

Use: restoring stack to previous state

Time	Frame string	Stack
<i>t</i> ₁	р	$\lfloor p \rfloor$
<i>t</i> ₂	p+q	$\lfloor p+q \rfloor$
t_3	$p + q + q^{-1}$	$\lfloor p \rfloor$

This is what continuations do in CPS... but expressed in terms of *change*.

Iterative factorial example

Iterative factorial example

```
(\lambda_t \text{ (n ktop)} \\ (\text{letrec ((f } (\lambda_f \text{ (m a k)} \\ \text{ (%if0 m } \\ \text{ ($\lambda_1$ () (k a)) } \\ \text{ ($\lambda_2$ () } \\ \text{ (- m 1 } (\underline{\lambda}_3 \text{ (m2)} \\ \text{ (* m a } (\underline{\lambda}_4 \text{ (a2)} \\ \text{ (f m2 a2 k)} \\ \text{))))))))))} \\ (\text{f n 1 ktop)))} \\ \underline{\text{Call site }} \quad \underline{\text{Description }} \quad \underline{\text{Stack}} \Delta \quad \underline{\text{Stack}} \\ \frac{\langle t_1^t | \text{ (abs)} \rangle}{\langle t_1^t | \text{ (abs)} \rangle} \\ \underline{\text{Call site }} \quad \underline{\text{Description }} \quad \underline{\text{Stack}} \Delta \quad \underline{\text{Stack}} \\ \underline{\langle t_1^t | \text{ (abs)} \rangle} \\ \underline{\text{(b)}} \quad \underline{\text{
```

Iterative factorial example

```
(\lambda_t \text{ (n ktop)})
   (letrec ((f (\lambda_f (m a k)
                          (%if0 m
                              (\underline{\lambda}_1 () (k a))
                              (\lambda_2)
                                 (- m 1 (\lambda_3 (m2))
                                                (* m a (\lambda_4 (a2)
                                                             (f m2 a2 k)
                                                             )))))))))
      (f n 1 ktop)))
Call site
                         Description
                                              Stack A
                                                                    Stack
                                                                     (t1
 (f n 1 ktop) tail call to \lambda_f = |\frac{t}{1}\rangle\langle \frac{f}{2}|
```

```
(\lambda_t \text{ (n ktop)})
   (letrec ((f (\lambda_f (m a k)
                            (%if0 m
                                (\underline{\lambda}_1 () (k a))
                                (\lambda_2)
                                   (- m 1 (\lambda_3 (m2))
                                                   (* m a (\lambda_4 (a2)
                                                                 (f m2 a2 k)
                                                                 )))))))))
       (f n 1 ktop)))
Call site
                          Description
                                                 Stack A
                                                                         Stack
                                                                         (t1
 (f n 1 ktop) tail call to \lambda_f
                                                 |{}_{1}^{t}\rangle\langle {}_{2}^{f}|
                                                  \binom{\%if0}{3}
                                                                         \langle {}_{2}^{f}|\langle {}_{3}^{\%if0}|
 (%if0 m ...) call to %if0
```

```
(\lambda_t \text{ (n ktop)})
   (letrec ((f (\lambda_f (m a k)
                            (%if0 m
                                (\underline{\lambda}_1 () (k a))
                                (\lambda_2)
                                   (- m 1 (\lambda_3 (m2))
                                                   (* m a (\lambda_4 (a2)
                                                                  (f m2 a2 k)
                                                                  )))))))))
       (f n 1 ktop)))
Call site
                          Description
                                                  Stack A
                                                                         Stack
                                                                          \binom{t}{1}
                                                                          \langle _{2}^{\mathrm{f}}|
 (f n 1 ktop)
                        tail call to \lambda_f
                                                  \binom{t}{1} \binom{f}{2}
                                                                          \langle {}_{2}^{f}|\langle {}_{3}^{\% if0}|
 (%if0 m ...) call to %if0
%if0 internal
                          return to \lambda_2
```

```
(\lambda_t \text{ (n ktop)})
    (letrec ((f (\lambda_f (m a k)
                                    (%if0 m
                                        (\lambda_1 () (k a))
                                        (\lambda_2)
                                            (- m 1 (\lambda_3 (m2))
                                                                (* m a (\lambda_4 (a2)
                                                                                   (f m2 a2 k)
                                                                                  )))))))))
         (f n 1 ktop)))
Call site
                                 Description
                                                              Stack A
                                                                                            Stack
                                                                                             (†|
 (f n 1 ktop)
                               tail call to \lambda_f
                                                              |{}_{1}^{t}\rangle\langle {}_{2}^{f}|
                                                                                            \begin{pmatrix} f \\ 2 \end{pmatrix} \begin{pmatrix} \% if0 \\ 3 \end{pmatrix} \begin{pmatrix} f \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix}
                                                               \binom{\%if0}{3}
 (%if0 m ...) call to %if0
 %if0 internal return to \lambda_2
                                                                                            \langle {}_{2}^{f} | \langle {}_{4}^{2} | \langle {}_{5}^{-} |
 (- m 1 ...) call to -
                                                               \langle 5 |
```

```
(\lambda_t \text{ (n ktop)})
    (letrec ((f (\lambda_f (m a k)
                              (%if0 m
                                  (\lambda_1 () (k a))
                                  (\lambda_2)
                                      (- m 1 (\lambda_3 (m2))
                                                       (* m a (\lambda_4 (a2)
                                                                      (f m2 a2 k)
                                                                      )))))))))
       (f n 1 ktop)))
Call site
                            Description
                                                     Stack A
                                                                              Stack
                                                                               (†|
 (f n 1 ktop)
                            tail call to \lambda_f
                                                     \binom{t}{1} \binom{f}{2}
                                                     \binom{\%if0}{3}
                                                                              \langle _{2}^{\mathtt{f}}|\langle _{3}^{\mathtt{\%if0}}|
 (%if0 m ...) call to %if0
%if0 internal return to \lambda_2
                                                                              \langle {}_{2}^{f}|\langle {}_{4}^{2}|\langle {}_{5}^{-}|
 (- m 1 ...) call to -
                                                     \langle 5 |
                                                     |\frac{1}{5}\rangle\langle_{6}^{3}|
internal
                            return to \lambda_3
```

```
(\lambda_t \text{ (n ktop)})
    (letrec ((f (\lambda_f (m a k)
                                (%if0 m
                                    (\lambda_1 () (k a))
                                    (\lambda_2)
                                        (- m 1 (\lambda_3 (m2))
                                                          (* m a (\lambda_4 (a2)
                                                                          (f m2 a2 k)
                                                                          )))))))))
        (f n 1 ktop)))
Call site
                              Description
                                                        Stack A
                                                                                  Stack
                                                                                   (†|
 (f n 1 ktop)
                            tail call to \lambda_f
                                                        |{}_{1}^{t}\rangle\langle {}_{2}^{f}|
                                                         \(\frac{\%if0}{3}\)
                                                                                   \langle _{2}^{\mathtt{f}}|\langle _{3}^{\mathtt{\%if0}}|
 (%if0 m ...) call to %if0
%if0 internal
                             return to \lambda_2
                                                                                  \langle {}_{2}^{f}|\langle {}_{4}^{2}|\langle {}_{5}^{-}|
 (- m 1 ...) call to -
                                                         \langle 5 |
                                                        |\frac{1}{5}\rangle\langle_{6}^{3}|
                                                                                  \langle {}_{2}^{f}|\langle {}_{4}^{2}|\langle {}_{6}^{3}|
- internal
                             return to \lambda_3
 (* m a ...)
                             call to *
```

```
(\lambda_t \text{ (n ktop)})
    (letrec ((f (\lambda_f (m a k)
                              (%if0 m
                                  (\lambda_1 () (k a))
                                  (\lambda_2)
                                     (- m 1 (\lambda_3 (m2))
                                                       (* m a (\lambda_4 (a2)
                                                                      (f m2 a2 k)
                                                                      )))))))))
       (f n 1 ktop)))
Call site
                            Description
                                                     Stack A
                                                                              Stack
                                                                              (†|
 (f n 1 ktop)
                          tail call to \lambda_f
                                                     |{}_{1}^{t}\rangle\langle {}_{2}^{f}|
                                                     \(\frac{\%if0}{3}\)
                                                                              \langle _{2}^{\mathtt{f}}|\langle _{3}^{\mathtt{\%if0}}|
 (%if0 m ...) call to %if0
%if0 internal
                            return to \lambda_2
                                                                              \langle {}_{2}^{f}|\langle {}_{4}^{2}|\langle {}_{5}^{-}|
 (- m 1 ...) call to -
                                                     \langle 5 |
                                                     |\frac{1}{5}\rangle\langle_{6}^{3}|
internal
                            return to \lambda_3
                                                     \binom{*}{7}
 (* m a ...)
                         call to *
* internal
                            return to \lambda_{4}
```

```
(\lambda_t \text{ (n ktop)})
    (letrec ((f (\lambda_f (m a k)
                                 (%if0 m
                                     (\lambda_1 () (k a))
                                     (\lambda_2)
                                         (- m 1 (\lambda_3 (m2))
                                                            (* m a (\lambda_4 (a2)
                                                                             (f m2 a2 k)
                                                                             )))))))))
        (f n 1 ktop)))
Call site
                               Description
                                                          Stack A
                                                                                      Stack
                                                                                       (†|
                             tail call to \lambda_f
                                                           |{}_{1}^{t}\rangle\langle {}_{2}^{f}|
 (f n 1 ktop)
                                                           \binom{\%if0}{3}
                                                                                      \langle {}_{2}^{f}|\langle {}_{3}^{\text{%if0}}|
 (%if0 m ...) call to %if0
%if0 internal
                                                          \binom{\%if0}{3} \binom{2}{4}
                              return to \lambda_2
                                                                                      \langle {}_{2}^{f}|\langle {}_{4}^{2}|\langle {}_{5}^{-}|
 (- m 1 ...) call to -
                                                           \langle 5 |
                                                           |\frac{1}{5}\rangle\langle_{6}^{3}|
internal
                               return to \lambda_3
                                                           \(^*_7|
 (* m a ...)
                              call to *
                                                                                      \langle {}_{2}^{f}|\langle {}_{4}^{2}|\langle {}_{6}^{3}|\langle {}_{8}^{4}|
* internal
                               return to \lambda_4
                                                                                       \binom{f}{9}
 (f m2 a2 k)
                               tail call to \lambda_f
```

Adding frame strings to concrete CPS semantics

Key steps

- Give states time stamps.
- Give values "birthdates": creation time stamps.

Example

If δ_{13} is the log from time 13, then $\delta_{13}(7)$ is the frame-string change between time 7 and time 13.

To invoke continuation with birthday t_b

Perform $\delta(t_b)^{-1}$ on stack. (That is, add $\delta(t_b)^{-1}$ to frame string.)

Interval notation for frame-string change

$$[t,t'] = \delta_{t'}(t)$$

That is, [t, t'] is the frame-string change between time t and t'.

A taste of environment theory

Theorem (Pinching Lemma)

No stack change between two times iff the times the same.

$$\lfloor [t_1, t_2] \rfloor = \epsilon \iff t_1 = t_2.$$

Theorem

Environments separated by continuation frame actions differ by the continuations' bindings.

$$\lfloor [t_0,t_2]+[t_1,t_2]^{-1}\rfloor=|_{i_1}^{\gamma_1}\rangle\cdots|_{i_n}^{\gamma_n}\rangle\langle_{t_1}^{\gamma_1'}|\cdots\langle_{t_m}^{\gamma_n'}|\Rightarrow\beta_{t_1}|\overline{B(\vec{\gamma'})}=\beta_{t_0}|\overline{B(\vec{\gamma})}.$$

(Notes: β 's represent environments; inferring t_0/t_1 environment relationship from log at time t_2 .)

Building △CFA

ΔCFA

- Straightforward abstract interpretation.
- Extends Harrison's abstract procedure strings.

Abstract frame strings

- Map from procedure to net change in procedure.
- Net change described by finite set of regular expressions.

$$\widehat{F} = \text{ProcedureLabels} \to \mathcal{P}(\Delta)$$

$$\Delta = \{\epsilon, \langle : |, | : \rangle, \langle : | \langle : |^+, | : \rangle | : \rangle^+, | : \rangle^+ \langle : |^+\}$$

ΔCFA: Eval

```
 \begin{array}{l} \hline{(\llbracket (f\ e^*\ q^*)_\kappa \rrbracket, \beta, ve, \quad t) \Rightarrow (proc, \mathbf{d}, \mathbf{c}, ve, \quad t)} \\ \text{where} & \begin{cases} proc = \mathcal{A}\,\beta\, ve\, t\, f \\ d_i = \mathcal{A}\,\beta\, ve\, t\, e_i \\ c_j = \mathcal{A}\,\beta\, ve\, t\, q_j \end{cases} \end{aligned}
```

ΔCFA: Eval

```
 \begin{split} & \underbrace{\left( \llbracket (f \ e^* \ q^*)_\kappa \rrbracket, \beta, ve, \delta, t \right) \ \Rightarrow (proc, \mathbf{d}, \mathbf{c}, ve, \delta', t) }_{ \text{where}} \\ & \begin{cases} proc = \mathcal{A} \, \beta \, ve \, t \, f \\ d_i = \mathcal{A} \, \beta \, ve \, t \, e_i \\ c_j = \mathcal{A} \, \beta \, ve \, t \, q_j \\ \end{cases} \\ & \nabla \varsigma = \begin{cases} (age_\delta \, proc)^{-1} & f \in EXPC \\ (youngest_\delta \, \mathbf{c})^{-1} & \text{otherwise} \\ \delta' = \delta + (\lambda t. \nabla \varsigma) \end{cases}
```

△CFA: Eval

$$\text{where} \begin{cases} \begin{bmatrix} (f \ e^* \ q^*)_\kappa \end{bmatrix}, \widehat{\beta}, \widehat{ve}, \widehat{\delta}, \widehat{t}) & \leadsto (\widehat{proc}, \widehat{\mathbf{d}}, \widehat{\mathbf{c}}, \widehat{ve}, \widehat{\delta}', \widehat{t}) \\ \widehat{q}_i = \widehat{\mathcal{A}} \ \widehat{\beta} \ \widehat{ve} \ \widehat{t} \ e_i \\ \widehat{c}_i = \widehat{\mathcal{A}} \ \widehat{\beta} \ \widehat{ve} \ \widehat{t} \ q_i \\ \Delta \widehat{p} = \begin{cases} (\widehat{age}_{\widehat{\delta}} \{\widehat{proc}\})^{-1} & f \in EXPC \\ (youngest_{\widehat{\delta}} \widehat{\mathbf{c}})^{-1} & \text{otherwise} \\ \widehat{\delta}' = \widehat{\delta} \oplus (\widehat{\lambda}\widehat{t}.\Delta \widehat{p}) \end{cases}$$

△CFA: Apply

$$\begin{split} & \underbrace{\textit{length}(\mathbf{d}) = \textit{length}(\mathbf{u}) \quad \textit{length}(\mathbf{c}) = \textit{length}(\mathbf{k}) }_{ (([\![\triangle_{\psi} \ (u^* \ k^*) \ \textit{call})]\!], \beta, t_b), \mathbf{d}, \mathbf{c}, \textit{ve}, \quad t) \ \Rightarrow (\textit{call}, \beta', \textit{ve}', \quad t') } \\ & \text{where} \left\{ \begin{aligned} t' &= \textit{tick}(t) \\ \beta' &= \beta[u_i \mapsto t', k_j \mapsto t'] \\ \textit{ve}' &= \textit{ve}[(u_i, t') \mapsto d_i, (k_j, t') \mapsto c_j] \end{aligned} \right. \end{split}$$

△CFA: Apply

$$\begin{split} & \underbrace{\textit{length}(\mathbf{d}) = \textit{length}(\mathbf{u}) \quad \textit{length}(\mathbf{c}) = \textit{length}(\mathbf{k})}_{ (([\![\lozenge_{\psi} \ (u^* \ k^*) \ \textit{call})]\!], \beta, t_b), \mathbf{d}, \mathbf{c}, \textit{ve}, \delta, t) \ \Rightarrow (\textit{call}, \beta', \textit{ve}', \delta', t') \\ & \begin{cases} t' = \textit{tick}(t) \\ \beta' = \beta[u_i \mapsto t', k_j \mapsto t'] \\ \textit{ve}' = \textit{ve}[(u_i, t') \mapsto d_i, (k_j, t') \mapsto c_j] \\ \nabla_{\varsigma} = \langle_{t'}^{\psi} | \\ \delta' = (\delta + (\lambda t. \nabla_{\varsigma}))[t' \mapsto \epsilon] \end{split}$$

△CFA: Apply

$$\begin{split} & \underbrace{\textit{length}(\widehat{\mathbf{d}}) = \textit{length}(\mathbf{u}) \quad \textit{length}(\widehat{\mathbf{c}}) = \textit{length}(\mathbf{k})}_{ \big((\llbracket \triangle_{\psi} \; (u^* \; k^*) \; \textit{call}) \rrbracket, \widehat{\beta}, \widehat{t}_b), \widehat{\mathbf{d}}, \widehat{\mathbf{c}}, \widehat{\textit{ve}}, \widehat{\delta}, \widehat{t} \big) \, \leadsto (\textit{call}, \widehat{\beta}', \widehat{\textit{ve}}', \widehat{\delta}', \widehat{t}') \\ & \text{where} \, \begin{cases} \widehat{t}' = \widehat{\textit{tick}}(\widehat{t}) \\ \widehat{\beta}' = \widehat{\beta}[u_i \mapsto \widehat{t}', k_j \mapsto \widehat{t}'] \\ \widehat{\textit{ve}}' = \widehat{\textit{ve}} \sqcup \big[(u_i, \widehat{t}') \mapsto \widehat{d}_i, (k_j, \widehat{t}') \mapsto \widehat{c}_j \big] \\ \triangle \widehat{\rho} = |\langle_{\widehat{t}'}^{\psi}|| \\ \widehat{\delta}' = \big(\widehat{\delta} \oplus (\lambda \widehat{t}. \triangle \widehat{\rho})\big) \sqcup \big[\widehat{t}' \mapsto |\epsilon|\big] \end{split}$$

Correctness of Δ CFA

Theorem

 \triangle CFA simulates the concrete semantics.

$$\begin{array}{ccc}
\varsigma & \stackrel{|\cdot|}{\longrightarrow} |\varsigma| & \stackrel{\sqsubseteq}{\longrightarrow} \widehat{\varsigma} \\
\downarrow & & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow \\
\varsigma' & \stackrel{|\cdot|}{\longrightarrow} |\varsigma'| & \stackrel{\sqsubseteq}{\longrightarrow} \widehat{\varsigma}'
\end{array}$$

Concrete super- β inlining condition

When is it safe to inline λ term ψ' at call site κ' ?

- ▶ All calls at κ' are to ψ' .
- ▶ Environment in closure \equiv environment at κ' .

Concrete super- β inlining condition

When is it safe to inline λ term ψ' at call site κ' ?

- ▶ All calls at κ' are to ψ' .
- ▶ Environment in closure \equiv environment at κ' .

```
\begin{split} \textit{Inlinable}((\kappa', \psi'), \textit{pr}) &\iff \\ \forall (\llbracket (\textit{f e}^* \ \textit{q}^*)_{\kappa} \rrbracket, \beta, \textit{ve}, \delta, \textit{t}) \in \mathcal{V}(\textit{pr}) : \\ & \text{if } \kappa = \kappa' \text{ and } (\textit{L}_{\textit{pr}}(\psi), \beta_{\textit{b}}, \textit{t}_{\textit{b}}) = \mathcal{A} \, \beta \, \textit{ve} \, \textit{t} \, \textit{f} \\ & \text{then } \begin{cases} \psi = \psi' \\ \beta_{\textit{b}} | \textit{free}(\textit{L}_{\textit{pr}}(\psi')) = \beta | \textit{free}(\textit{L}_{\textit{pr}}(\psi')) \end{cases} \end{split}
```

Correctness of super- β inlining

Theorem

Inlining under Super- β condition does not change meaning.

Sketch of Proof.

Definition of R

Bisimulation Relation

$$\begin{array}{c|c}
\varsigma & \xrightarrow{R} \varsigma_{S} \\
\Rightarrow \downarrow & \downarrow \Rightarrow \\
\varsigma' & \xrightarrow{R} \varsigma'_{S}
\end{array}$$

commutes.

Some $\triangle CFA$ super- β conditions

Implementation

- 3500 lines of Haskell.
- Direct-style front end for small Scheme.
- Choice of stack behavior models.
- Super-β inlining.
- \triangleright β/η -reduction.
- Useless-variable elimination.
- Dead-code elimination.
- Sparse conditional constant propagation.
- Optimizes/fuses loops and co-routines.

A quick example: transducer/coroutine fusion

The put5 transducer

```
(letrec ((put5 (\lambda (chan)
	(let ((chan (put 5 chan)))
	(put5 chan)))))
	put5)
```

$$(put5) \xrightarrow{5}$$

A quick example: transducer/coroutine fusion

The doubler transducer

$$\longrightarrow^X$$
 doubler $\xrightarrow{2x}$

A quick example: transducer fusion

 Δ CFA can fuse composed transducers into a single loop:

(compose/pull put5 doubler)

Still to come

- "Gradient" filtering.
- Contour GC.
- More experience with implementation.
- Context-free grammar or PDA abstractions for F?

Questions, Comments, Suggestions?

Question

What do you mean by "beyond the reach of β reduction?"

Answer

Certain loop-based optimizations are not possible with β reduction alone.

```
Example
```

Question

What did you mean by frame strings "form a group"?

Answer

- Elements of group: Equivalence classes under net.
- Canonical member: The shortest.
- ▶ Identity element: $\{p : \lfloor p \rfloor = \epsilon\}$.
- + operator: Concatenate the cartesian product.
- Inverse: Invert every member of the class.

Concrete super- β I

$$\begin{split} \textit{Local-Inlinable}((\kappa', \psi'), \textit{pr}) \iff \\ \forall (\llbracket (\textit{f} \ e^* \ q^*)_\kappa \rrbracket, \beta, \textit{ve}, \delta, t) \in \mathcal{V}(\textit{pr}) : \\ \text{if } \kappa = \kappa' \text{ and } (\textit{L}_{\textit{pr}}(\psi), \beta_b, t_b) = \mathcal{A} \, \beta \, \textit{ve} \, t \, f \\ \text{then } \begin{cases} \psi = \psi' \\ \exists \vec{\gamma} : \begin{cases} \lfloor [t_b, t] \rfloor \succ^{\vec{\gamma}} \epsilon \\ \textit{free}(\textit{L}_{\textit{pr}}(\psi')) \subseteq \overline{\textit{B}(\vec{\gamma})}. \end{cases} \end{split}$$

Abstract super- β I

$$\begin{split} \widehat{Local\text{-Inlinable}}((\kappa',\psi'),pr) \iff \\ \forall (\llbracket (f \ e^* \ q^*)_{\kappa} \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{\delta}, \widehat{t}) \in \widehat{\mathcal{V}}(pr) : \\ \text{if } \kappa = \kappa' \ \text{and} \ (L_{pr}(\psi), \widehat{\beta}_b, \widehat{t}_b) = \widehat{\mathcal{A}} \, \widehat{\beta} \, \widehat{ve} \, \widehat{t} \, f \\ \text{then} \ \begin{cases} \psi = \psi' \\ \exists \overrightarrow{\gamma} : \begin{cases} \widehat{\delta}(\widehat{t}_b) \succsim^{\overrightarrow{\gamma}} |\epsilon| \\ \mathit{free}(L_{pr}(\psi')) \subseteq \overline{B(\overrightarrow{\gamma})}. \end{cases} \end{split}$$

Concrete super- β II

```
\begin{split} \textit{Escaping-Inlinable}((\kappa', \psi'), \textit{pr}) \iff \\ \forall (\llbracket (\textit{f } e^* \ \textit{q}^*)_\kappa \rrbracket, \beta, \textit{ve}, \delta, t) \in \mathcal{V}(\textit{pr}) : \\ & \text{if } \kappa = \kappa' \text{ and } (\textit{L}_{\textit{pr}}(\psi), \beta_\textit{b}, t_\textit{b}) = \mathcal{A} \, \beta \, \textit{ve} \, t \, f \\ & \text{then } \begin{cases} \psi = \psi' \\ \forall \textit{v} \in \textit{free}(\textit{L}_{\textit{pr}}(\psi)) : \exists \vec{\gamma} : \begin{cases} \lfloor [\beta(\textit{v}), t] \rfloor \succ^{\vec{\gamma}} \lfloor [t_\textit{b}, t] \rfloor \\ \textit{v} \not \in \textit{B}(\vec{\gamma}). \end{cases} \end{split}
```

Abstract super- β II

$$\begin{split} \textit{Escaping-Inlinable}((\kappa', \psi'), \textit{pr}) \iff \\ \forall (\llbracket (\textit{f } e^* \ \textit{q}^*)_{\kappa} \rrbracket, \widehat{\beta}, \widehat{\textit{ve}}, \widehat{\delta}, \widehat{t}) \in \widehat{\mathcal{V}}(\textit{pr}) : \\ \text{if } \kappa = \kappa' \text{ and } (\textit{L}_{\textit{pr}}(\psi), \widehat{\beta}_{\textit{b}}, \widehat{t}_{\textit{b}}) = \widehat{\mathcal{A}} \, \widehat{\beta} \, \widehat{\textit{ve}} \, \widehat{t} \, f \\ \text{then } \begin{cases} \psi = \psi' \\ \forall \textit{v} \in \textit{free}(\textit{L}_{\textit{pr}}(\psi)) : \exists \vec{\gamma} : \begin{cases} \widehat{\delta}(\widehat{\beta}(\textit{v})) \succsim^{\vec{\gamma}} \, \widehat{\delta}(\widehat{t}_{\textit{b}}) \\ \textit{v} \not\in \textit{B}(\vec{\gamma}). \end{cases} \end{split}$$

Concrete super- β III

```
\begin{split} \textit{General-Inlinable}((\kappa', \psi'), \textit{pr}) \iff \\ \forall (\llbracket (\textit{f} e^* \ \textit{q}^*)_{\kappa} \rrbracket, \beta, \textit{ve}, \delta, \textit{t}) \in \mathcal{V}(\textit{pr}) : \\ & \text{if } \kappa = \kappa' \text{ and } (\textit{L}_{\textit{pr}}(\psi), \beta_{\textit{b}}, \textit{t}_{\textit{b}}) = \mathcal{A} \, \beta \, \textit{ve} \, \textit{t} \, \textit{f} \\ & \text{then } \begin{cases} \psi = \psi' \\ \forall \textit{v} \in \textit{free}(\textit{L}_{\textit{pr}}(\psi)) : \lfloor [\beta(\textit{v}), \textit{t}] \rfloor = \lfloor [\beta_{\textit{b}}(\textit{v}), \textit{t}] \rfloor. \end{cases} \end{split}
```

Abstract super-*β* III

$$\begin{split} \textit{General-Inlinable}((\kappa', \psi'), \textit{pr}) \iff \\ \forall (\llbracket (\textit{f} \ \textit{e}^* \ \textit{q}^*)_{\kappa} \rrbracket, \widehat{\beta}, \widehat{\textit{ve}}, \widehat{\delta}, \widehat{t}) \in \widehat{\mathcal{V}}(\textit{pr}) : \\ \text{if } \kappa = \kappa' \ \text{and} \ (\textit{L}_{\textit{pr}}(\psi), \widehat{\beta}_{\textit{b}}, \widehat{t}_{\textit{b}}) = \widehat{\mathcal{A}} \, \widehat{\beta} \, \widehat{\textit{ve}} \, \widehat{t} \, f \\ \text{then} \ \begin{cases} \psi = \psi' \\ \forall \textit{v} \in \textit{free}(\textit{L}_{\textit{pr}}(\psi)) : \widehat{\delta}(\widehat{\beta}(\textit{v})) \succsim^{\emptyset} \, \widehat{\delta}(\widehat{\beta}_{\textit{b}}(\textit{v})). \end{cases} \end{split}$$