Environment Analysis via ACFA

Matthew Might Olin Shivers

Georgia Tech

POPL 2006

Control-flow analysis is not enough

Problem
» Closure = A term + environment;
> eg, A O x)+[x— 3
» CFA: good with control (what X invoked from which call sites);
» ...not so good with environments.

Control-flow analysis is not enough

(et ((f (A (x h) (if (zero? x)
(h)
A O NN
(f 0 (£ 3 #£)))

Fact: (A () x) flowsto (h).
Question: Safe to inline?

Control-flow analysis is not enough

(let ((f (A (x h) (if (zero? x)

(h)
A0 NN

(f 0 (£ 3 #£)))

Fact:
Question:
Answer:
Why:

(A O x) flows to (n).
Safe to inline?
No.

Only one variable x in program;
but multiple dynamic bindings.
A O x)+[x—0]

%

A O x) +[x— 3]

Control-flow analysis is not enough

Folding infinite set of binding contours
down to finite set causes merging.
Can lead to unsound conclusions.

Problem: |x| = |y| does not imply x = y

Why it matters

We frequently use closures as general “carriers” of data:
» Create closure at point a.
» Ship to point b and invoke.

a & b have same static scope and same dynamic bindings =

» inline closure’s code at b (super-£ inlining),
» communicate data via shared context.

Avoid heap allocating & fetching data.

Why it matters

We frequently use closures as general “carriers” of data:
» Create closure at point a.
» Ship to point b and invoke.

a & b have same static scope and same dynamic bindings =

» inline closure’s code at b (super-£ inlining),
» communicate data via shared context.

Avoid heap allocating & fetching data.

Need to reason about environment relationships
between two control points.

Tool 1: Procedure strings

Classic model (Sharir & Pnueli, Harrison)
» Program trace at procedure level
» String of procedure activation/deactivation actions

Actions
control: call/return

Intuition: call extends environment; return restores environment.

Tool 1: Procedure strings

Classic model (Sharir & Pnueli, Harrison)
» Program trace at procedure level
» String of procedure activation/deactivation actions

Actions
control: call/return

Intuition: call extends environment; return restores environment.

(fact 1)

call fact / call zero? / return zero? / call - / return -/
call fact / call zero? / return zero? / return fact /
call * / return x / return fact

Note: Call/return items nest like parens.

Problems with procedure strings

» In functional languages, not all calls have matching returns.
(e.g., iteration)
» Procedure strings designed for “large-grain” procedures.

» What about other control/env operators?
(loops, conditionals, coroutines, continuations, .. .)

Tool 2: CPS

A is universal representation of control & env.

Construct encoding
fun call callto A

Tool 2: CPS

A is universal representation of control & env.

Construct encoding
fun call callto A
fun return callto A

Tool 2: CPS

A is universal representation of control & env.

Construct encoding
fun call callto A
fun return callto A
iteration callto A

Tool 2: CPS

A is universal representation of control & env.

Construct encoding

fun call call to A
fun return call to A
iteration call to A

sequencing callto A

Tool 2: CPS

A is universal representation of control & env.

Construct encoding

fun call call to A
fun return call to A
iteration call to A

sequencing callto A
conditional callto A

Tool 2: CPS

A is universal representation of control & env.

Construct encoding

fun call call to A
fun return call to A
iteration call to A

sequencing callto A
conditional callto A
exception callto A

Tool 2: CPS

A is universal representation of control & env.

Construct encoding

fun call call to A
fun return call to A
iteration call to A

sequencing callto A
conditional callto A
exception callto A
coroutine callto A

Now X is fine-grained construct.

Adapt procedure-string models to CPS =
have universal analysis.

CPS & stacks

But wait! CPS is all calls, no returns!

Procedure strings won’t nest properly:
calla/callb/callc/calld/...

CPS & stacks

But wait! CPS is all calls, no returns!

Procedure strings won’t nest properly:
calla/callb/callc/calld/...

Unless...

CPS & stacks

Solution
» Syntactically partition CPS language into
“user” & “continuation” world.
We still have calls & returns;
have just decoupled them somewhat.
» Shift from call/return view
to push/pop view.

Calls & returns no longer nest,
but pushes & pops always nest.

Example: recursive factorial

A\ ()
(letrec ((f (A (m)
(if0m 1
GGm (£ (-m DN
(f n)))

Example: recursive factorial

(A (n ktop)
(letrec ((f (N (m k)

(%if0 m
A O (k1)
(A O
(-m1 (A3 (m2)
(f m2 (\y (2
(* m a k)
)))))))))

(f n ktop)))

Example: recursive factorial

(A (n ktop)
(letrec ((f (N (m k)

(%if0 m
M O & 1)
(X O
(-m1 (A3 (m2)
(f m2 (N4 (a)
(* m a k)
)))))))))

(f n ktop)))

But. ..
Blue # call/push
Red # return/pop

Putting it all together: frame strings

Frame strings, F
» Record push/pop sequences.
» Each character: push or pop.
» Calls push frames.
» Continuations restore stacks.

Anatomy of a push character

Anatomy of a push character

Procedure

-
P

t

Anatomy of a push character

Procedure

/
i

Timestamp

Anatomy of a pop character

Procedure

/
;

Timestamp

Net & inverse operators

Net Examples
» Written |p]. > [GIGRE)] = e
» Cancels opposite neighbors. > | |3e) (Gl = €

> G130 Gl = G4l

Net & inverse operators

Net Examples
» Written |p]. > (GG = ¢
» Cancels opposite neighbors. > | |3e) (Gl = €

> G130 Gl = G4l

Two views
Absolute |p:] is picture of stack at time .
Relative |p!' | is summary of stack change.

Net & inverse operators

p~' = reverse |p| and swap “push” & “pop”:

Example

(E1E’E) ™ =191

Frame strings mod |- isgroup: p+p '=p '+ p=e
(+ is concatenation)

The inverse operator

Use: restoring stack to previous state

Time Frame string Stack

t p LP]
b p+q lp+q]
ty p+q+???7 |[p]

The inverse operator

Use: restoring stack to previous state

Time Frame string Stack
] p lp]

tp p+q lp+q|
s p+qg+qg ' |[p]

This is what continuations do in CPS. ..
but expressed in terms of change.

lterative factorial example

(X (n ktop)
(letrec ((f (N (m a k)
(%if0 m
A O &k a))
A2 O
(-m1 (A3 (m2)
(xma (A (a2)

(f m2 a2 k)
)
(f n 1 ktop)))
Call site Description Stack A Stack

lterative factorial example

(X (n ktop)
(letrec ((f (N (m a k)
(%if0 m
A O &k a))
A2 O
(-m1 (A3 (m2)
(xma (A (a2)

(f m2 a2 k)
)
(f n 1 ktop)))
Call site Description Stack A Stack

(i

lterative factorial example

(X (n ktop)
(letrec ((f (N (m a k)
(%if0 m
A O &k a))
A2 O
(-m1 (A3 (m2)
(xma (M (a2)

(f m2 a2 k)
)
(f n 1 ktop)))
Call site Description Stack A Stack

(il
(f n 1 ktop) tailcallto Ag [§)(3| 3|

lterative factorial example

(X (n ktop)
(letrec ((f (N (m a k)
(%if0 m
A O &k a))
A2 O
(-m1 (A3 (m2)
(*ma (A (a2)

(f m2 a2 k)
23333330
(f n 1 ktop)))
Call site Description Stack A Stack
(il
(f n 1 ktop) tailcallto A [$)(§| 3|

(%ifo m ...) callto%ifo (5 315

lterative factorial example

(A (n ktop)
(letrec ((f (N (m a k)
(%if0 m
M O &k a)
A2 O
(-m1 (A3 (m2)
G ma (A (a2)

(f m2 a2 k)
23333330
(f n 1 ktop)))
Call site Description Stack A Stack
(il

(f n 1 ktop) tailcallto A |§) (5| {
(%ifo m ...) callto%ifo (4 {
%if0 internal returnto), [5¥%) (] {

(

#ifo
3|
@l

DR

lterative factorial example

(X (n ktop)
(letrec ((f (N (m a k)
(%if0 m
M O &k a)
A2 O
(-m1 (A3 (m2)
G ma (A (a2)

(f m2 a2 k)
)))))))))
(f n 1 ktop)))
Call site Description Stack A Stack
(il
(f n 1 ktop) tailcallto A [$)(§| 3|
(%ifo m ...) callto%ifo (4 G315
%ifo internal returnto), [50) (] G1G)
(-m1..) calto- G GG

lterative factorial example

(X (n ktop)
(letrec ((f (N (m a k)
(%if0 m
M O &k a)
A2 O
(-m1 (A3 (m2)
G ma (A (a2)

(f m2 a2 k)
)))))))))
(f n 1 ktop)))
Call site Description Stack A Stack
(il
(f n 1 ktop) tailcallto A [$)(§| 3|
(%ifo m ...) callto%ifo (4 G315
%ifo internal returnto), [50) (] G1G)
(-m1..) calto- G GG
- internal returnto d; |5) (3| GIGIGI

lterative factorial example

(X (n ktop)
(letrec ((f (N (m a k)
(%if0 m
M O &k a)
A2 O
(-m1 (A3 (m2)
G ma (A (a2)

(f m2 a2 k)
)))))))))
(f n 1 ktop)))
Call site Description Stack A Stack
(il
(f n 1 ktop) tailcallto A [$)(§| 3|
(%ifo m ...) callto%ifo (4 G315
%ifo internal returnto), [50) (] G1G)
(-m1...) calto- G Gle1G
- internal returnto A [5) (3l GlGIGl
(*ma...) calltox Gl E1CIE)

*

—~
<

lterative factorial example

(M (n ktop)
(letrec ((f (N (m a k)
(%if0 m
M O &k a)
A2 O
(-m1 (A3 (m2)
(xma (A (a2)

(f m2 a2 k)
)))))))))
(f n 1 ktop)))
Call site Description Stack A Stack
(il
(f n 1 ktop) tailcallto A [$)(§| 3|
(%ifo m ...) callto%ifo (4 G315
%ifo internal returnto), [50) (] G1G)
(-m1..) calto- Gl El1CIG
- internal returnto Ay [5)(] Gl1G|E
(*ma...) callto* Gl E1CI16
* internal returnto A, [3) (| G1EIE

—~

—~
Lol

lterative factorial example

(M (n ktop)
(letrec ((f (N (m a k)
(%if0 m
M O &k a)
A2 O
(-m1 (A3 (m2)
(xma (A (a2)

(f m2 a2 k)
)00
(f n 1 ktop)))
Call site Description Stack A Stack
(i1

(f n 1 ktop) tailcallto A [$)(§| 3|
(ifom ...) calltoyifo (4 (1|
%ifo internal returnto), [50) (] G1G)
(-m1...) calto- (51 G166
- internal returnto ds [5) (3| 31GIG
(*ma..) caltox (7| (116161
* internal returnto), |7)(l (14161
(f m2 a2 k) tailcallto A [DR)DEE G

Adding frame strings to concrete CPS semantics

Key steps
» Give states time stamps.

» Give states frame-string log, § : Time—F.
Log is “relative” definition.
(Just what we need!)

» Give values “birthdates”: creation time stamps.

Example

If 13 is the log from time 13, then d13(7) is the frame-string change
between time 7 and time 13.

To invoke continuation with birthday t,

Perform §(t,) ! on stack.
(That is, add 6(#,)~" to frame string.)

Interval notation for frame-string change

[,] = 0u(2)

That is, [t, t'] is the frame-string change between time t and t’.

A taste of environment theory

Theorem (Pinching Lemma)
No stack change between two times iff the times the same.

Hﬁ,tg]J =€ <= H =b.

Theorem

Environments separated by continuation frame actions differ by the
continuations’ bindings.

[to,] + [t 8]) = [Z,"><Z1/ "'<7r,é| = By |B(Y) = By B().

(Notes: (3’s represent environments; inferring ty/t; environment
relationship from log at time t,.)

Building ACFA

ACFA
» Straightforward abstract interpretation.
» Extends Harrison’s abstract procedure strings.

Abstract frame strings
» Map from procedure to net change in procedure.
» Net change described by finite set of regular expressions.

F = ProcedureLabels — P(A)
A= e, (L 1)y CICE T DY

ACFA: Eval

([¢f e* gl B, ve, t) = (proc,d,c,ve,

where

proc = Apvetf
d=Apvete;
ci=Apvetq;

t)

ACFA: Eval

([¢f e*)], B, ve,d,t) = (proc,d,c,ve,d', t)

where

\

proc = Apvetf

d=Apvete;

ci=Apvetq;
| (agesproc)™t fe EXPC
| (youngestsc)™"' otherwise

§ =6+ (ALVS)

ACFA: Eval

(I¢F e gx], 3,ve,8,1) ~ (proc,d, ¢, ve, s, 1)
(proce Apvetf
5’, = A\BVE? e
where 6= ﬁﬁf?qi/\ —1
A — {(age/gﬁ)roc}) f € EXPC
(youngesl‘gﬁ)_1 otherwise
& =0 @ (\L.AD)

ACFA: Apply

length(d) = length(u) length(c) = length(k)

) =
([w* k*) cald], B, tp).d,c,ve, t) = (call,5,ve/, t)
t' = tick(t)
6/ _ ,B[U,' N t/,k/' N t/]
where { ve' = ve[(u;, t') — d;, (ki t') — ¢]]

ACFA: Apply

length(d) = length(u) length(c) = length(k)

) =
(I w* k*) cald], B, tp).d,c, ve,s,t) = (call,5,ve',d,t)
t' = tick(t)
6/ _ ,B[U,' N t/,k/' N t/]
where { ve' = ve[(u;, t') — d;, (ki t') — ¢]]
Ve = (1|
§' = (6 + ALV — €

ACFA: Apply

/ength(a) = length(u length(c) = length(k)

)
([oy W k*) cald], 3, 1).d. €, ve,5,t) ~ (call, 7', ve', &', t)
= tlck(t)
ﬁ = Bluj ',k 1]
where { v&' = ve U [(u;,T) — d;, (K,) — C]
Ap = |< |
5 = (5 @ (XLAP)) U [f +— |e]]

Correctness of ACFA

Theorem
ACFA simulates the concrete semantics.

Il c .

§—>‘§|—>g
|

= |~
. \
¢ s fol| E-

Concrete super-5 inlining condition

When is it safe to inline \ term ¢’ at call site «'?

» All calls at x’ are to ©'.
» Environment in closure = environment at «’.

Concrete super-5 inlining condition

When is it safe to inline \ term ¢’ at call site «'?

» All calls at x’ are to ©'.
» Environment in closure = environment at «’.

Inlinable((x', '), pr) <=
V([(f e*)], 3, ve,d,t) € V(pr) :
if & = & and (Lpr(¥), B, tp) = A3 vetf

y=u
then {ﬁb‘free(Lpr(w/)) = plfree(Lpr(¢"))

Correctness of super-3 inlining

Theorem

Inlining under Super-3 condition does not change meaning.

Sketch of Proof.

Definition of R

Bisimulation Relation
1] 1] <>
S —1
[[<]] S s :j l:
Sj 871 / !
S TR/~ Ss
S¢ l|<s]] S
[l 1 commutes.

Some ACFA super-/3 conditions

General Escaping < Escaping

Inlinable

~ N _

General Local <——— [ocal

Implementation

vV VvV V.V vV vV vV VY

3500 lines of Haskell.

Direct-style front end for small Scheme.
Choice of stack behavior models.
Super-g inlining.

3 /n-reduction.

Useless-variable elimination.

Dead-code elimination.

Sparse conditional constant propagation.
Optimizes/fuses loops and co-routines.

A quick example: transducer/coroutine fusion

The put5 transducer

(letrec ((puts (A (chan)
(let ((chan (put 5 chan)))
(put5 chan)))))
puts)

)
—_—

A quick example: transducer/coroutine fusion

The doubler transducer

(letrec ((doubler (A (uchan dchan)
(let* (((x uchan) (get uchan))
(dchan (put (x 2 x) dchan)))
(doubler uchan dchan)))))
doubler)

A quick example: transducer fusion

ACFA can fuse composed transducers into a single loop:
(compose/pull putb5 doubler)

10
—_—

Still to come

“Gradient” filtering.

Contour GC.

More experience with implementation.
Context-free grammar or PDA abstractions for F?

vV v v Vv

Questions, Comments, Suggestions?

Question
What do you mean by “beyond the reach of 3 reduction?”

Answer

Certain loop-based optimizations are not possible with 5 reduction
alone.

Example

(letrec ((1p1 (A (4 x)
(if-zero i x
(letrec ((1p2 (A (j £ y)
(if-zero j
(Ipt (-1 1) ¥
(1p2 (- j 1)
f
[£f y1)))))
(1p2 10 [A () (+ n 1)] x))))))
(1pt 10 0))

Question
What did you mean by frame strings “form a group”?

Answer
» Elements of group: Equivalence classes under net.
Canonical member: The shortest.
Identity element: {p: [p]| = €}.
+ operator: Concatenate the cartesian product.

>
>
>
» Inverse: Invert every member of the class.

Concrete super-3 |

Local-Inlinable((x', "), pr) <

Y([(f e* %], B, ve, o, t) € V(pr) :
if &« = k" and (Lpr(¢), Bp,) = AB vetf

Y=
then {3“- {L[tb, f]] =7 e
- | free(Lpr(v")) € B(7)-

Abstract super-3 |

Locamable((n’, W), pr) <

V(I e q]. B ve 0.) e Vipr) s
if v =" and (Lpr(v), Bp, tp) = AB Vet f

¥ =1
then 37 {5(tb) Ev e

Concrete super-3 i

Escaping-Inlinable((x', "), pr) <

Y([(f e* g*)il, B, ve, 6, t) € V(pr) :
if &« = k" and (Lpr(¥), By, tp) = AB vetf

=
then {VV € free(Lpr(v)) : 37 : {‘{/[é(\g(,%j =7 [y, 1]

Abstract super-3 I

Escapin/gIﬂinable((v, 0"), pr) <=
V([(f e)], 3, ve,8,1) € V(pr) :
if = ' and (Lor(1), Bp, 1) = ABVEtf
P =1 - o
then vy e free(Lor(v)) : 37 - {5(5(V))57 0(t)

v

Concrete super-3 Il

General-Inlinable((x', "), pr) <
Y([(f e gl B, ve,d,t) € V(pr) :
if &« = k" and (Lpr(¢¥), Bp, th) = AB vetf

¥ =1
then {VV € free(Lp(¥)) : L1B(v), t]] = [[B6(v), 1]].

Abstract super-3 IlI

Generz-zl/—/?linable((n’, W), pr) <
V(I(f e "], B, ve,6,1) € V(pr) :
if k = 1" and (Lpr(v), Bp, 1) = AGvetf

=1
then {vv & free(Lp (1)) : 3(B(v)) =0 3(Bo(v)).

