
A Linear Encoding of Pushdown Control-Flow Analysis ∗

Steven Lyde Thomas Gilray Matthew Might
University of Utah

{lyde,tgilray,might}@cs.utah.edu

Abstract
We describe a linear-algebraic encoding for pushdown control-
flow analysis of higher-order programs. Pushdown control-
flow analyses obtain a greater precision in matching calls
with returns by encoding stack-actions on the edges of a
Dyck state graph. This kind of analysis requires a number of
distinct transitions and was not amenable to parallelization
using the approach of EigenCFA. Recent work has extended
EigenCFA, making it possible to encode more complex anal-
yses as linear-algebra for efficient implementation on SIMD
architectures. We apply this approach to an encoding of a
monovariant pushdown control-flow analysis and present a
prototype implementation of our encoding written in Octave.
Our prototype has been used to test our encoding against a
traditional worklist implementation of a pushdown control-
flow analysis.

Keywords abstract interpretation, program analysis, flow
analysis, GPU

1. Introduction
The goal of static analysis is to produce a bound for pro-
gram behavior before run-time. This is desirable for proving
the soundness of code transformations, the absence or pro-
gramming errors, or the absence of malware.

However, static analysis of higher-order languages such
as Scheme is nontrivial. Due to the nature of first-class
functions, data-flow affects control-flow and control-flow
affects data-flow, resulting in the higher-order control-flow
problem. This vicious cycle has resulted in even the simplest
of formulations being nearly cubic [6, 7]. However, a trade-
off exists in any analysis between precision and scalability,
and finding the right balance for a particular application
requires special attention and effort [8].

One way to increase the scalability of an analysis is to
parallelize its execution. To this end we provide a linear en-
coding of a pushdown control-flow analysis, giving potential
speedups on many-core or SIMD architectures such as the
GPU.

Prabhu et al. demonstrated the possibility of running a
higher-order control flow analysis on the GPU [9]. However,
their encoding has the major drawback that it only supports

∗ Copyright (c) 2014, Steven Lyde, Thomas Gilray, and Matthew Might

binary continuation-passing-style (CPS). It was restricted to
a simple language which could be implemented as a sin-
gle transition rule as not to introduce thread-divergence in
SIMD implementations. Currying all function calls and be-
ing forced to encode all language forms and program values
in the lambda calculus is not ideal for real applications be-
cause it distorts the code under analysis.

Gilray et al. addressed this issue with a demonstration
that richer language forms and values can be used within
this style of encoding by partitioning transfer functions and
more precisely encoding analysis components [5]. We build
on this work, demonstrating that it is not only possible to en-
code richer language forms, but a fundamentally richer anal-
ysis. Specifically, we demonstrate that a pushdown analysis
may also be encoded using this transfer-function partition-
ing. A pushdown analysis has the benefit that it precisely
matches function calls with function returns [10].

In this paper, we review the concrete semantics of ANF
λ-calculus within a CESK machine. We then provide a di-
rect abstraction of the pushdown-machine semantics to a
monovariant pushdown control-flow analysis (0-PDCFA).
We then partition the transfer function and show a linear en-
coding of that analysis which is faithful to its original preci-
sion.

We have also implemented an Octave prototype of our
encoding. Octave allowed us to quickly implement all the
matrix operations from the encoding and compare the out-
put of this implementation with an implementation of the
traditional worklist algorithm for 0-PDCFA. We were able
to verify that on a range of examples their precision was
identical. Our hope is that this linear encoding can be used
for a GPU implementation and attain similar speedups as
EigenCFA [9].

2. Concrete Semantics
We give semantics for a pure λ-calculus in Administrative
Normal Form (ANF). ANF is a core direct-style language
which strictly let-binds all intermediate-expressions [1].
This structurally enforces an order of evaluation and greatly
simplifies a formal semantics. ANF is at the heart of com-
mon intermediate-representations for Scheme and other
higher-order programming languages.

For simplicity we permit only call-sites, let-forms, and
atomic-expressions (variables and λ-abstractions):

e ∈ E ::= (let (x e) e)l

| (ae ae . . .)l

| ael

ae ∈ AE ::= x | lam
lam ∈ Lam ::= (λ (x . . .) e)

x ∈ Var ::= 〈set of program variables〉
l ∈ Label ::= 〈set of unique labels〉

The concrete semantics for this machine will be given
using a CESK machine [4], which has the following state
space:

ς ∈ Σ = E× Env × Store× Time×Kont
ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

t ∈ Time = Label∗

κ ∈ Kont = Frame∗

φ ∈ Frame = E× Env × Var

a ∈ Addr = Var × Time
v ∈ V alue = Lam× Env

Each state in the abstract-machine represents control at a
particular expression-context e, with a binding environment
ρ encoding visible bindings of variables to addresses and
a value-store (a model of the heap) mapping addresses to
values. Each state is also specific to a timestamp t encoding a
perfect program-trace and a current continuation κ encoding
a stack of continuation frames.

The only values for this language are closures. To gen-
erate values given an atomic-expression, we will use an
atomic-evaluator. Given a variable, it looks up the address of
the value in the environment and then the value in the store.
Given a λ-abstraction, we simply close it over the current
environment.

A : AE× Σ ⇀ V alue

A(x, (e, ρ, σ, t, κ)) = σ(ρ(x))

A(lam, (e, ρ, σ, t, κ)) = (lam, ρ)

Looking at the grammar for our language, we can see that
there are three expression forms: let bindings, applications,
and atomic expressions. To fully present the semantics, we
will provide a transition relation that has a rule for each form.

The first form we will describe is for let bindings. A let
expression pushes a frame on the stack that captures the
expression to evaluate when we return, the environment to
be used, what variable we will bind, along with the stack as
it exists when we push the new frame.

((let (x e) eκ)
l, ρ, σ, t, κ)︸ ︷︷ ︸

ς

⇒ (e, ρ, σ, t′, κ′)

where κ′ = (eκ, ρ, x) : κ

t′ = l : t

Function calls are a little bit more involved but not too
complicated. We evaluate the function we are applying, as
well as all the arguments. We create new address and set the
values in the store. Note that since these are tail calls the
stack is unchanged.

((λ (x1 . . . xj) e), ρλ) = A(aef , ς)

((aef ae1 . . . aej)
l, ρ, σ, t, κ)︸ ︷︷ ︸

ς

⇒ (e, ρ′, σ′, t′, κ)

where ρ′ = ρλ[xi 7→ (xi, t
′)]

σ′ = σ[(xi, t
′) 7→ A(aei, ς)]

t′ = l : t

Finally, when we come across an atomic expression, we
need to return. We do this by extracting the needed informa-
tion from the top frame, extend and update the environment
and return to using the previous stack.

κ = (e, ρκ, xκ) : κ′

(ael, ρ, σ, t, κ)︸ ︷︷ ︸
ς

⇒ (e, ρ′, σ′, t′, κ′)

where ρ′ = ρκ[xκ 7→ (xκ, t
′)]

σ′ = σ[(xκ, t
′) 7→ A(ae, ς)]

t′ = l : t

These semantics may be used to evaluate a program e by
producing an initial state ς0 = (e, ∅,⊥, (), ()) and comput-
ing the transitive closure of (⇒) from this state. Naturally,
concrete executions may take an unbounded amount of time
to compute in the general case. This manifests itself in the
above semantices as an unbounded set of timestamps lead-
ing to an unbounded address-space, and as an unbounded
stack used to represent the current continuation.

3. Abstract Semantics
We will now provide the abstract semantics of the analysis.
Because our analysis is monovariant and only maintains one
approximation for each variable, there is only one environ-
ment for a given expression-context. Thus it is elided from

the state space. The stack is now the only source of unbound-
edness in these semantics:

ς̂ ∈ Σ̂ = E× Ŝtore× K̂ont

σ̂ ∈ Ŝtore = V̂ ar → V̂ alues

κ̂ ∈ K̂ont = F̂ rame
∗

φ̂ ∈ F̂ rame = E× Var

v̂ ∈ V̂ alues = P(V̂ alue)

d̂ ∈ V̂ alue = Lam

In providing the abstract semantics, we will once again
need a way to evaluate atomic expressions. The atomic eval-
uator is very similar to its concrete counterpart. However,
since there is only one environment, we look up the value
of a variable using it directly. Also, we don’t need to close
lambdas over an environment as their expression-body is al-
ready specific to a particular monovariant environment.

Â : AE× Σ̂ ⇀ V̂ alues

Â(x, (e, σ̂, κ̂)) = σ̂(x)

Â(lam, (e, σ̂, κ̂)) = {lam}

The abstract transition relation is also very similar to its
concrete counterpart. Note that the frames no longer store
environments.

((let (x e) eκ)
l, σ̂, κ̂)︸ ︷︷ ︸

ς̂

≈> (e, σ̂, κ̂′)

where κ̂′ = (eκ, x) : κ̂

Also note that when updating the store we use the least-
upper-bound to remain sound. This permits values to merge
within flow-sets: (σ1 t σ2)(â) = σ1(â) ∪ σ2(â).

(λ (x1 . . . xj) e) ∈ Â(aef , ς̂)

((aef ae1 . . . aej), σ̂, κ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′, κ̂)

where σ̂′ = σ̂ t [xi 7→ Â(aei, ς̂)]

Finally, when we return, we update the variable found in
a stack-frame.

κ̂ = (e, x) : κ̂′

(ae, σ̂, κ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′, κ̂′)

where σ̂′ = σ̂ t [x 7→ Â(ae, ς̂)]

Simply enumerating all the states possible given this ab-
stract transition relation is not guaranteed to terminate. How-
ever, there is a finite representation of the infinite state space
of the stacks. If we use this transition relation to generate a
Dyck state graph, our analysis will terminate. This is accom-
plished by taking the infinite stacks and encoding them into
a finite graph, where the stack frames are labels on edges of
that graph. Intuitively, we are making the explicit result of
cycles in control-flow (unbounded stacks) implicit as cycles
in a control-flow graph.

A Dyck state graph is a set of edges.

G ∈ P(Q× Γ×Q)

The nodes in the graph Q are the parts of an abstract state
ς̂ ∈ Σ̂ sans the stack κ̂ ∈ K̂ont.

q ∈ Q = E× Ŝtore

The edges describe transition between nodes and contain
the stack-action that exists between these nodes. There are
three different stack actions: pushing a frame φ̂+, leaving
the stack unchanged ε, and popping a frame φ̂−.

γ ∈ Γ = φ̂+ | ε | φ̂−

Whether an edge exists in the graph can be taken directly
from the abstract transition relation. We introduce the rela-
tion (

γ−→) ⊆ Q × Γ × Q for edges in the Dyck state graph,
defined in terms of the abstract transition relation.

q
φ̂+

−−→ q′ ⇐⇒ (q, κ̂) ≈> (q′, φ̂ : κ̂)

q
ε−−→ q′ ⇐⇒ (q, κ̂) ≈> (q′, κ)

q
φ̂−

−−→ q′ ⇐⇒ (q, φ̂ : κ̂) ≈> (q′, κ̂)

To efficiently compute the Dyck state graph, an epsilon
closure graph is needed. An epsilon closure graph has edges
between all nodes that have no net stack change between
them. For instance, if we push a frame and then pop a frame,
there should be an epsilon edge between the source node of
the push edge and the target node of the pop edge. This is
the epsilon edge between q1 and q3 below.

q0

γ+
0 // q1

γ+

//

ε

��
q2

γ−
// q3

This allows us to immediately see that γ0 is a possible top
frame for q3 when generating successor edges and nodes for
q3.

3.1 Transfer Function
When computing the analysis, we use a transfer function
f̂ : (Q × Γ × Q) → (Q × Γ × Q) that takes a Dyck state

graph and computes new edges at the frontier of the graph,
generating a new Dyck state graph. We continually apply
this transfer function until a fix-point is reached.

f̂(G) = G ∪
{

(q, γ, q′) : q ∈ Q, q γ−→ q′
}

, where

Q = {q′ : (q, γ, q′) ∈ G} ∪ {q0}

3.2 Global Store Widening
In the given abstract semantics, each state had its own store.
However, to ensure the analysis will converge more quickly,
global store-widening is usually employed. This form of
widening is equivalent to using a global-store for all states
which is computed as the least-upper-bound of all stores
visited at any individual state. To accomplish this we will
remove the store from the nodes of the Dyck state graph and
define the store-widened Dyck state graph as follows:

GO ∈ P(E× Γ× E)

The globally store-widened transfer function then individu-
ally computes a new graph of expressions and stack actions,
and a new global store.

f̂O(GO, σ̂) = (G′O, σ̂
′), where

G′O = GO ∪
{

(e, γ, e′) : e ∈ Qe, (e, σ̂)
γ−→ (e′,)

}
σ̂′ =

⊔{
σ̂′ : e ∈ Qe, (e, σ̂)

γ−→ (, σ̂′)
}

Qe = {e : (, , e) ∈ GO} ∪ {e0}

An underscore represents a wildcard, i.e. any value.

3.3 Partitioning the Transfer Function
We can partition this monolithic transfer function, defining
an individualized transfer function for each expression form
in our language: f̂let , f̂calli and f̂ae . These function are de-
fined in precisely the same manner, but only use the rule
applying to their specific language form. After each itera-
tion, we merge the resulting Dyck state graphs and stores,
taking their least-upper-bound. It has been shown that parti-
tioning a system-space transfer function by rule in this man-
ner is sound as the least-upper-bound of the system-spaces
resulting from an application of each, is always equal to the
system-space resulting from a single application of the com-
bined f̂O [5].

4. Linear Encoding
We will construct a transfer function for each abstract transi-
tion relation. This transfer function will update the store and
will also be responsible for creating a Dyck state graph. We
will define these functions using matrix multiplication (×),
outer product (⊗), and boolean or (+). The style of encod-
ing we use is taken directly from the original approach of
EigenCFA [9].

The abstract state space, because it is finite, is easy to
represent in vector and matrix form. If the elements in the
domain are given a canonical order, we can represent a set
of those elements using a bit vector. If an element from the
domain is present in the set, the vector representing that
set should have its bit set at the index corresponding to the
offset of that element in the ordering. In our encoding we
will represent the set of states using a vector ~s ∈ ~S. We
will represent atomic expressions, either variables or values,
with ~a ∈ ~A. And we will use ~v ∈ ~V to represent flow sets of
abstract values.

~s ∈ ~S = {0, 1}|E|

~a ∈ ~A = {0, 1}|V̂ ar|+|V̂ alue|

~v ∈ ~V = {0, 1}|V̂ alue|

We can also encode the abstract syntax tree as matrices.
We can extract the body of a closure using Body or the
variables it binds using Vari. We can also deconstruct the
components of a let expression using Arg1, LetCall and
LetBody.

Body : ~V → ~S

Fun : ~S → ~A

Vari : ~V → ~A

Argi : ~S → ~A

LetCall : ~S → ~S

LetBody : ~S → ~S

The store is a matrix that maps atomic expressions to
abstract values.

σ : ~A→ ~V

We also represent the Dyck state graph using three matri-
ces. These three matrices map states to states, which in the
case of our linear encoding, are expressions in our program.
We use three different matrices to represent the three types
of edges that can be found in the Dyck state graph.

γ+ : ~S → ~S

γε : ~S → ~S

γ− : ~S → ~S

We also use a matrix to represent the epsilon closure
graph which aids in the construction of the matrices encod-
ing the Dyck state graph.

ε : ~S → ~S

We now define the transfer function for the three types of
expressions our language supports, let bindings, applications
and atomic expressions.

For let expressions, we first extract the sub-expression
whose value will be bound to the variable of the let expres-
sion, ~slet × LetCall. We then record the push edge in the
Dyck state graph, γ+ + (~slet ⊗ ~snext).

f~slet (γ+) = (γ+
′)

where ~snext = ~slet × LetCall

γ+
′ = γ+ + (~slet ⊗ ~snext)

Applications are somewhat more involved. We first pull
out of the store the abstract values that we are applying
for the given call site. We then extract the values of the
arguments. We then get variables that we are binding from
the closures we are applying. We then record the updated
values in the store. We must also record that we made a tail-
call in the Dyck state graph. We do this by updating γε. We
then must also update any epsilon edges.

f~scallj
(σ,γε, ε) = (σ′,γε

′, ε′)

where ~vf = ~scallj × Fun× σ

~vi = ~scallj ×Argi × σ

~ai = ~vf ×Vari

σ′ = σ + (~a1 ⊗ ~v1) + . . .+ (~aj ⊗ ~vj)
~snext = ~vf ×Body

γε
′ = γε + (~scallj ⊗ ~snext)

ε′ = fε(ε, ~scallj , ~snext)

Finally, we come to the last case where we have an atomic
expression and must return. We first must compute the flow
set of the atomic expression. We then look up the top frames
of our stack. We then update the environment by binding
the variable found at the top stack frame. We also extract
the expression that we will be executing next. Finally, we
record the pop edge and update the epsilon closure graph
accordingly.

f~sæ(σ, γ+, γ−, ε) = (σ′, γ+
′, γ−

′, ε′)

where ~v = ~sæ ×Arg1 × σ

~spush = ~sæ × ε> × γ+
>

~a = ~spush ×Arg1

σ′ = σ + (~a⊗ ~v)

~snext = ~spush × LetBody

γ−
′ = γ− + (~sæ ⊗ ~snext)

ε′ = fε(ε, ~sæ, ~spush)

The epsilon closure graph aids in the construction of the
Dyck state graph. It contains edges between states that have
no net stack change. This allows us to quickly find the top
frames when we need to return. When updating the epsilon
closure graph, we not only need to record the new edges, but
take all existing predecessors and successors into account.

fε(ε, ~ss, ~st) = ε′

where ~sn = ~st × ε

~sp = ~ss × ε>

ε′ = ε + (~ss ⊗ ~st)
+ (~ss ⊗ ~sn)

+ (~sp ⊗ ~st)
+ (~sp ⊗ ~sn)

5. Example
To help give a better understanding of how the encoding
works, we provide a short example.

(let (idx0 (lambda (vx1) vl2)l1 d̂0)

(id (lambda (wx2)

(let (ax3 (w id)l5)

(a a)l6)l4)d̂1)l3)l0

For this program there are only two denotable values, the
two lambda terms. There are two let expressions, three call
sites, and one atomic reference as the body of a lambda.
There are also four variables in this program.

We will first discuss how you would encode the abstract
syntax tree using matrices. Recall that there are six matrices
that are needed.

First, given a flow set, we want to be able to extract which
expressions are the body of a lambda term. Below we can see
that l2 is the body of the first lambda and l4 is the body of
the second lambda.

Body =

[l0 l1 l2 l3 l4 l5 l6

d0 0 0 1 0 0 0 0
d1 0 0 0 0 1 0 0

]
We also need a way to extract the function being applied

at a call site, whether it be a lambda term or a variable refer-
ence. Because there are only three call sites in the program,
only three rows in the matrix have entries with non-zero val-
ues. In our example, every call site has a variable reference
in function position.

Fun =



x0 x1 x2 x3 d̂0 d̂1

l0 0 0 0 0 0 0
l1 0 0 0 0 0 0
l2 0 0 0 0 0 0
l3 1 0 0 0 0 0
l4 0 0 0 0 0 0
l5 0 0 1 0 0 0
l6 0 0 0 1 0 0


There must also be a way to extract the arguments of a call

site. This matrix can also be used to determine what atomic
expression we are evaluating when our control state is at an
atomic expression.

Arg1 =



x0 x1 x2 x3 d̂0 d̂1

l0 1 0 0 0 0 0
l1 0 0 0 0 0 0
l2 0 1 0 0 0 0
l3 0 0 0 0 0 1
l4 0 0 0 1 0 0
l5 1 0 0 0 0 0
l6 0 0 0 1 0 0


Once we have a flow set, we want to be able to extract the

variable that we are binding when we apply the functions in

our flow set.

Var1 =

[x0 x1 x2 x3 d̂0 d̂1

d̂0 1 0 0 0 0 0
d̂1 0 0 1 0 0 0

]
We also need to be able to know what the expression is

whose value we will bind to a variable when we have a let
expression. This lets us know what our successor state will
be. This is used when we push a frame onto our stack.

LetCall =



l0 l1 l2 l3 l4 l5 l6

l0 1 0 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 1 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


Given a let expression, we also need to know where

we should return to once we have evaluated the expression
which will provide the value we are binding.

LetBody =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 1 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 1
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


The store for this program is actually rather small. We are

interested in finding out which lambda terms flow to which
variables. With four variables and two lambda terms there
are only eight entries that can be set. Note that we have an
identity matrix at the bottom of the store.

σ =



d̂0 d̂1

x0 0 0
x1 0 0
x2 0 0
x3 0 0

d̂0 1 0
d̂1 0 1


To encode a Dyck state graph we actually need three

separate matrices. A value of one represents that there exists
an edge between two states. The contents of the frame (the
variable to bind and the expression to execute next) are
both available using Arg1 and LetBody. After running
the analysis on the above program, the results of the three

matrices would be as follows.

γ+ =



l0 l1 l2 l3 l4 l5 l6

l0 0 1 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0



γ− =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 0 0 0 0
l1 0 0 0 1 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0



γε =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 1 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


We also need the epsilon closure graph. Initially it is an

identity matrix because every state has an implicit epsilon
edge to itself.

ε =



l0 l1 l2 l3 l4 l5 l6

l0 1 0 1 1 0 0 0
l1 0 1 0 0 0 0 0
l2 0 0 1 0 0 0 0
l3 0 0 1 1 0 0 0
l4 0 0 0 0 1 0 0
l5 0 0 0 0 0 1 0
l6 0 0 0 0 0 0 1


6. Prototype Implementation
To help verify our encodings we produced a prototype im-
plementation in Octave. Octave allowed us to quickly im-
plement the encoding as a sanity check, without having to
worry about all the intricacies of coding for the GPU. Oc-
tave is a programming language for numerical analysis and
as such has strong support for various matrix operations.

We wrote a Scheme front end that would parse the pro-
grams and write the abstract syntax tree in matrix form to
be consumed by our Octave implementation. We also wrote
utility code that would consume the output of our Octave
implementation and produce output in a more human con-
sumable format. This allowed us to easily view the store and
Dyck state graph generated from the analysis.

We ran our prototype implementation on a small suite of
simple benchmarks. We then compared the results of our

Octave implementation to the output of a traditional work
list based pushdown control-flow analysis implementation.
We took the implementation of Sergey [3] and modified it to
use a single store so it would perform the same analysis as
the analysis using our linear encoding. The output from both
implementations were identical.

7. Conclusion
We have described a linear encoding for a pushdown control-
flow analysis as originally formulated by Earl et al. [3]
building upon the general framework of abstract interpreta-
tion [2]. By precisely matching calls and returns a pushdown
control-flow analysis gives even more precision than a tradi-
tional finite state control-flow analysis. By demonstrating the
feasibility of a linear encoding, we have demonstrated that it
is at least possible to run a pushdown control-flow analysis
on a SIMD architecture. Though a direct translation would
likely be inefficient as the matrices are very sparse. Novel
techniques such as those used in EigenCFA would need to
be employed [9]. In the future we hope to demonstrate that
this encoding is not only feasible, but practical and useful as
well.

Acknowledgments
This material is partially based on research sponsored by
DARPA under agreement number FA8750-12-2-0106 and
by NSF under CAREER grant 1350344. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright nota-
tion thereon.

References
[1] C. Cormac Flanagan, A. Sabry, B. F. Duba, and M. Felleisen.

The essence of compiling with continuations. In Proceedings
of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, pages 237–247, 1993.

[2] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proceedings of the Symposium on
Principles of Programming Languages, pages 269–282, San
Antonio, TX, 1979. ACM Press, New York.

[3] C. Earl, I. Sergey, M. Might, and D. V. Horn. Introspective
pushdown analysis of higher-order programs. In Proceedings
of the International Conference on Functional Programming,
pages 177–188, September 2012.

[4] M. Felleisen and D. P. Friedman. A calculus for assignments
in higher-order languages. In Proceedings of the Symposium
on Principles of Programming Languages, page 314, New
York, NY, 1987. ACM.

[5] T. Gilray, J. King, and M. Might. Partitioning 0-cfa for the
gpu. In Proceedings of the 23rd International Workshop on
Functional and (Constraint) Logic Programming, 2014.

[6] D. V. Horn. The Complexity of Flow Analysis in Higher-
Order Languages. PhD thesis, Mitchom School of Computer
Science, Brandeis University, Boston, MA, August 2009.

[7] D. V. Horn and H. G. Mairson. Deciding k-CFA is complete
for EXPTIME. ACM Sigplan Notices, 43(9):275–282, 2008.

[8] M. Might. Environment Analysis of Higher-Order Languages.
PhD thesis, Georgia Institute of Technology, Atlanta, GA,
2007.

[9] T. Prabhu, S. Ramalingam, M. Might, and M. Hall.
EigenCFA: Accelerating flow analysis with GPUs. In Pro-
ceedings of the Symposium on the Principals of Programming
Languages, pages 511–522, January 2010.

[10] D. Vardoulakis and O. Shivers. CFA2: a context-free approach
to control-flow analysis. In European Symposium on Pro-
gramming, pages 570–589, 2010.

