
Issue 3 August 2010

Lessons
Learned
From 13
Failed
Software
Products
By Andy Brice

LET’S GET

5.2
SOCIAL

http://mailchimp.com

influence

30,000
programmers & startup founders

Advertise
with us

To advertise with Hacker Monthly,
drop us an email at ads@hackermonthly.com.

*

 *Circulation number is based on the average number of digital downloads and print purchases for each issue.

mailto:ads@hackermonthly.com
mailto:ads@hackermonthly.com

4

Curator’s Note

In every new issue, I try something different. This issue, I
have included more technical articles, based on suggestions
from our programmer-heavy readership. I have also taken

a big risk by including longer (up to 10-page) articles, bumping
our total pages to a whopping 56 pages — a 16-page increase
from the usual issue. Another new experiment is the ‘Tech
Jobs’ section (huge props to Zach Epstein, who suggested it)
where companies can post programming and other technical-
related jobs. You might notice most of the URLs in this issues
are shortened under hn.my. It is Hacker Monthly’s own URL
shortening service.

Design-wise, the font is slightly (1pt) smaller in this issue
with a wider leading. I’ve combined the use of left-justified and
left-aligned paragraphs instead of choosing one style for the
entire issue. This issue also marks the first time a real person
(Andy Brice, who wrote and edited the fantastic featured
article) has made it onto the front cover.

Hacker Monthly is slowly taking shape, one issue at a time. I
need your feedback the most at this stage in particular. Reach
me directly at cheng.soon@hackermonthly.com. n

— Lim Cheng Soon

ContentsCurator
Lim Cheng Soon

Contributors
Andy Brice
Jason L. Baptiste
Jason Schuller
Hillel Cooperman
Scott Edward Walker
Xavier Shay
Nikos Moraitakis
Dave Pell
Matt Might
Brian Carper
Alan Skorkin
Daniel Spiewak
John D. Cook

Proofreader
Ricky de Laveaga

Illustrators
Jaime G. Wong

Printer
MagCloud

Advertising
ads@hackermonthly.com

Contact
cheng.soon@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

HACker MontHly is the print magazine version of Hacker
News — news.ycombinator.com — a social news website wildly
popular among programmers and startup founders. The submis-
sion guidelines state that content can be “anything that gratifies
one’s intellectual curiosity.”
Every month, we select from the top voted articles on Hacker
News and print them in magazine format.
For more, visit hackermonthly.com.

on the Cover: Andy Brice
Photo: Andrew Fosker (http://www.secondsleft.co.uk/)

http://hn.my
mailto:cheng.soon@hackermonthly.com
mailto:ads@hackermonthly.com
mailto:cheng.soon@hackermonthly.com
http://news.ycombinator.com
http://hackermonthly.com
http://www.secondsleft.co.uk/

 5

Contents

StArtUP

22 How I Monetized My Passion
By JASoN SCHULLER

26 How I Almost Ignored Our Single
Best Source For Customer Feedback
By HILLEL CooPERMAN

36 What Are The Biggest Legal
Mistakes That Startups Make?
By SCoTT EDWARD WALkER

SPeCIAl

21 Why I Quit A Six Figure Job
By XAvIER SHAY

25 What Kind Of Girl Do You Think I Am?
By NIkoS MoRAITAkIS

30 Say Hello To My Little Friend
By DAvE PELL

ProGrAMMInG

32 Advanced Programming Languages
By MATT MIGHT

36 Emacs Isn’t For Everyone
By BRIAN CARPER

38 What Every Developer Should Know
About URLS
By ALAN SkoRkIN

42 Understanding And Applying
Operational Transformation
By DANIEL SPIEWAk

53 Math Library Functions That Seem
Unnecessary
BY JoHN D. Cook

54 teCH JoBS

FeAtUreS

06 Lessons Learned From
13 Failed Software Products
By ANDY BRICE

16 How To Become A
Millionaire In Three Years
By JASoN L. BAPTISTE

Illustration: Jaime G. Wong (http://retrazos.pe/)

http://retrazos.pe/

6 FEATURES

Lessons Learned
From 13 Failed

Software Products

Software entrepreneur
culture is full of stories of
the products that suc-
ceeded. But what about

the products that failed? We rarely hear
much about them. This can lead to a
very skewed perspective on what works
and what doesn’t (survivor bias). But I
believe that failure can teach us as much
as success. So I asked other software
entrepreneurs to share their stories of
failure in the hope that we might save
others from making the same mistakes.
To my surprise I got excellent 12
responses, which I include below along
with one of my own. It is a small sample
and biased by self-selection, but I think
it contains a lot of useful insights. It is an
unashamedly a long post, as I didn’t want
to lose any of these insights by editing it
down.

FEATURES

By ANDY BRICE

“No physician is really
good before he has killed
one or two patients. — Proverb”

 7

CAse #1

DrAMA
DRAMA (Design RAtionale MAnage-
ment) was a commercialization of a
University prototype for recording
the decision-making process during
the design of complex and long-lived
artefacts, for example nuclear reactors
and chemical plants. By recording it
in a structured database this informa-
tion would still be available long after
the original engineers had forgotten it,
retired or been run over by buses. This
information was believed to be incred-
ibly valuable to later maintainers of the
system, engineers creating similar designs
and industry regulators. The develop-
ment was part funded by 4 big process
engineering companies.

Why it was judged a commercial failure:
Everyone told us what a great idea
it was, but no-one bought it. despite
some early funding from some big
process engineering companies, none
of them put it into use properly and
we never sold any licences to anyone
else.

What went wrong:
•	 Lack of support from the people who

would actually have to use it. There
are lots of social factors that work
against engineers wanting to record
their design rationale, including:

 » The person taking the time to record
the rationale probably isn’t the
person getting the benefit from it.
 » Extra work for people who are
already under a lot of time pressure.
 » It might make it easier for others to
question decisions and hold compa-
nies and engineers accountable for
mistakes.
 » Engineers may see giving away this
knowledge as undermining their job
security.

•	 Problems integrating with the other
software tools that engineers spend
most of their time in (e.g. CAD pack-
ages). This would probably be easier
with modern web-based technology.

•	 It is difficult to capture the subtleties
of the design process in a structured
form.

•	 A bad hire. If you hire the wrong
person, you should face up to it and
get rid of them. Rather than keep
moving them around in a vain attempt
to find something they are good at.

•	 We took a phased approach, starting
with a single-user proof of concept
and then creating a client-server ver-
sion. In hindsight it should have been
obvious that not enough people were
actively using the single-user system
and we should have killed it then.

Time/money invested: At least 3 man
years of work went into this product,
with me doing most of it. Thankfully I
was a salaried employee. But the lack
of success of this product contributed
to the demise of the part of the
company I was in.

Current product status: The product is
long dead.

Any regrets? It was a fairly painful
experience. I would rather have spent
all that money, time and energy on
something that someone actually used.
But at least I learnt some expensive
lessons without using my own money.

Lessons learned:
•	 Creating a new market is difficult and

risky.
•	 Changing people’s working habits is

hard.
•	 Social factors can make or break a

product. The end-users didn’t see
anything in it for them.

•	 If the end-users don’t like a product,
they will find a way not to use it, even
if their bosses appear to be enthusias-
tic about it.

•	 Talk is cheap. Lots of people telling
you how great your product is doesn’t
mean much. You only really find out
if your product is commercially viable
when you start asking people to buy it.

Contributor: Andy Brice
(http://successfulsoftware.net/)

CAse #2

CleanChief
CleanChief was to be ‘The easy
management solution for cleaning
organisations’. Managing assets, employee
schedules, ordering supplies, you name
it CleanChief handled it. Essentially it
was light weight accounting software for
cleaning companies.

Why it was judged a commercial failure:
A small number of copies were sold.
No one is actively using it at pres-
ent. once I realised that it wasn’t a
complete product and that additional
development was required I moved on
to other product ideas. I had basically
run out of enthusiasm for the product.

What went wrong:
•	 I am not an accountant.
•	 I have never run a cleaning company.
•	 I developed it for more than two years

without getting feedback from real
cleaning companies. I was arrogant
enough to think that I knew what they
wanted (or could work it out on my
own). or maybe it was that I was just
where I was most happy and comfort-
able – writing software. Talking to real
users was new and to be honest a bit
scary for me.

•	 A successful cleaning company
operator, a friend of a friend, offered
to become involved for a 30% share.
This was a gift from the heavens,
exactly what I needed. I refused.

•	 In a way, even though I spent so long
on the product, I gave in too soon, I
was just getting feedback from real
users, just getting my first batch of
sales when I decided to move on.

•	 I developed the application in vB6
even though I knew it was outdated
technology when I started the project.
This meant there was no ‘cool factor’
when discussing it with other develop-
ers, I told myself it didn’t bother me,
but it probably did.

Time/money invested: I worked on it at
night and weekends for about 2 1/2
years. I paid for graphic design work,

http://successfulsoftware.net/

8 FEATURES

purchased stock icons and images. I
probably spent a couple of thousand
Australian dollars in total and an awful
lot of time.

Current product status: I moved on to
other products that have gone much
better. My newer products were
released in months rather than years
and I looked for real feedback from
real users from day one. They are:

•	 QueryCell – an Excel add-in making
SQL in Excel easy.

•	 QuizNightChief – the easy way to
organise a quiz Night.

•	 CustomerCradle – The easiest way
to record and report on where your
customers come from.

I do occasionally ponder returning
to CleanChief and trying to raise it
from the ashes.

Any regrets? No. Looking back I learned
a few lessons from a huge amount of
time and work, it was a very inefficient
way to learn those lessons. But when
you are new to something like starting
a business or creating useful software
being inefficient at learning lessons is
the best you can do, it’s a thousand
times better than not learning lessons
at all.

I learned so much more in my two
and a half years of trying to develop
CleanChief than I did in the two and
a half years prior to that, during which
time I really wanted to start a software
business but didn’t take any action.

Lessons learned: Hearing or reading
some piece of advice is totally dif-
ferent to living it. Here are some of
the ideas that I always agreed were
true but didn’t fully understand the
implications of until I had lived them
out:

•	 Force yourself to get out and talk
to people. Ask their advice. Almost
everyone will help if you ask them for
feedback.

•	 Force yourself to cold call a few busi-
nesses in your target market.

•	 Create a plan of how to market your
product.

•	 Try and use your product as much as
possible as you build it.

•	 Get out of your comfort zone from
day one.

•	 Do not have the mind set that the day
you release version 1.0 is the finish
line, it’s the starting line, so hurry up
and get there.

Contributor: Sam Howley
(http://oakfocus.net/)

CAse #3

ChimSoft
ChimSoft – Software for Chimney
Sweeps.

Why it was judged a commercial failure:
I believe this failed for two reasons:

•	 Focusing on too small of a niche
•	 Me not being able to work full time

on it.
I don’t consider it a complete

failure because I sold two copies when
it retailed for $2k, and maybe 10-15
more copies when I lowered the price
to $200. Those sales proved that I
wasn’t completely off base in thinking
there was a market for the software,
but the cost of customer acquisition
and the size of the market were too
small. Customers wanted to have a
bunch of phone calls, face-to-face
etc… the type of stuff you only see
with much more expensive software.
The problem was that for a niche this
small we had to charge a lot of money
to make it worthwhile for us, but
the customers were small businesses
where this is a major investment, so
the fit was never right. The other issue
was the people that did buy it were
not super tech-savvy, so there was a

“Go for it, maybe you win,
maybe you fail, but you will
grow and get tons of useful
knowledge on the way.”

http://oakfocus.net/

 9

high cost of support that made even a
$200 product not worth it.

What went wrong:
•	 Having all partners who were not full-

time, and had equal equity. I ended
up doing most of the work and this is
the main reason I didn’t force success
is I felt I was in it alone.

•	 Focusing on too narrow of a niche.
The plan all along was to expand for
all service industries, but it was much
harder to make that move than we
expected.

•	 Not researching pricing more, we
knew small businesses made major
purchases for things that really helped
their business, but I think it would
have been better to have a cheaper
product with wider appeal than
an expensive product with narrow
appeal.

Time/money invested: I invested maybe
a year of time and $3k into the
company. I did not take any huge risks
on it, so there were no big negative
outcomes.

Current product status: The company
folded in 2007, I refocused my efforts
on my existing companies (AUsedCar.
com and BudgetSimple.com) and both
have been doing well enough that I
quit my day job.

Any regrets? I don’t regret it entirely, I
think I learned several valuable lessons
about working with other people,
small business sales, trade-shows and
software development.

Lessons learned:
•	 Pick partners wisely. Don’t try to be

even-steven with equity. Use restricted
stock to ensure everyone does their
part.

•	 know what your customers expect
(24/7 phone support?) to determine
if you can do this while working a day
job.

Contributor: Phil Anderson
(http://www.startupdetails.com/)

CAse #4

PC Desktop
Cleaner
PC Desktop Cleaner. Simple software
that cleans your desktop and archives
your files.

Why it was judged a commercial failure:
My goal was to sell 10 units per
month. I’ve sold less than 1 unit per
month.

What went wrong:
•	 I think that the product concept is

not useful enough. It’s not a thing that
people would pay for.

•	 The market exists (some people buy)
but it’s too little or difficult to reach.

•	 I didn’t do any market research. I just
got in love with the idea and did it.
Later, I’ve learnt to use “lazy instantia-
tion marketing” and have trashed a lot
of embryo projects. :-)

Time/money invested: I think I wasted
near $500 in development tools and
some freelancers. Not too much.

Current product status: I’m still selling
it. I’ve thought about other products,
but not really decided yet.

Any regrets? No, it was a lot of fun and
I learnt lot of things. In my “day job”
I own a small firm that sells software
for production scheduling. I learnt a
lot about SEo and AdWords in the
DesktopCleaner project that I’m now
using with great results.

Lessons learned: Go for it, maybe you
win, maybe you fail, but you will grow
and get tons of useful knowledge on
the way.

Contributor: Javier Rojas Goñi
(http://tekblues.com/)

CAse #5

Smart Diary
Suite
Smart Diary Suite.

Why it was judged a commercial failure:
It sells and the profits cover current
investments in the product, but there
is little left over on top of that.

What went wrong: If I had a chance to
do anything differently:

•	 Take it seriously from day one.
•	 Never stop developing and supporting.
•	 Invest as much as possible in market-

ing early on.
•	 Don’t stop believing in your creation.
Time/money invested: Up to this point,

I have spent 13 years on Smart Diary
Suite and a lot of money went into
buying hardware, software, hosting,
marketing, etc… All of that money
came from my day job, but at this
point SDS has recovered all of that
back and is now making a small profit.
The actual amount is hard to calculate
(over the 13 year span), but we would
be talking in tens of thousands of US
dollars.

Current product status: For a while it
may have seemed like SDS was not
going to be successful, but that’s prob-
ably my fault – I stopped believing for
a little while. Now I am back, starting
again and this time I’ll make sure it
doesn’t fail.

Any regrets? I do not regret doing it. I
regret allowing myself to stop working
on it, basically bailing out on it for a
while – that is my biggest mistake.

Lessons learned: If you want a successful
product – believe in it and let others
know that you believe in it.

Contributor: Dennis volodomanov
(http://smartdiarysuite.blogspot.com/)

http://www.startupdetails.com/
http://tekblues.com/
http://smartdiarysuite.blogspot.com/

10 FEATURES

CAse #6

Highlighter
Highlighter. A utility to print neatly
formatted, syntax highlighted source
code listings.

Why it was judged a commercial failure:
I earnt a grand total of £442.52 (about
$700 in todays money) in just over
two years, so I guess it paid for itself if
you exclude my time.

What went wrong: Since it was my first
product I was very green about both
marketing and product development.
I suggest the following would have
made things better:

•	 Get feedback from potential users
about the product (e.g. from the ASP
forums). Some parts of the program
where probably too option-heavy and
geeky.

•	 Diversify. If people didn’t want to
print fancy listings, maybe they would
have wanted them formatted in
HTML.

•	 Better marketing. I’m not sure this
would have saved it, but all I knew in
those days was uploading to shareware
sites. I never even sent a press release.

I figure it failed simply because
it was a product nobody wanted.
Actually, more importantly than that,,
it was a product *I* didn’t want to use,
but it developed from a larger product
I was working on, on the assumption
I could earn some money on the side
from part of the code. Since then I’ve
stuck to products which I’ve actually
wanted to use myself. There’s a lot to
be said for dogfooding, not just for
debugging, but for knowing where the

pain points are and what extra features
could be added.

Time/money invested: I would guess a
couple of months of evening/weekend
development time. Financially there
was little spent, except that I offered
the option of a printed manual and
CD for an extra charge. one customer
took me up on the offer, so I had to
get 100 manuals printed and 99 of
them went in the bin.

Current product status: I moved on to
another product which has sold over
£50,000 and a third which has earnt
even more than that. Not enough to
retire on but considering I only do this
part-time it must work out at a great
hourly rate. There’s a lot to be said for
not giving up…

Any regrets? Nope. I figure every failure
in life teaches you valuable lessons.
of course if I’d made a large financial
investment I may feel differently, but
that’s one of the big advantages of
software over physical product sales.

Lessons learned: Just to reiterate –
develop something which you find
useful, instead of second guessing
others.

Contributor: Mike Sutton
(http://www.rudabet.com/)

CAse #7

r10Clean
R10Clean. A data cleaning and manipu-
lation tool.

Why it was judged a commercial failure:
In the 18 months or so it’s been on the
market I have sold 6. It has been £199,
£99 and £19 – with no effect on sales!

What went wrong: Not sure what I did
wrong? The product is maybe too
techie?

Time/money invested: No effect finan-
cially as at the time I was in a strong
financial position.

Current product status: I still have it for
sale but do not market it at all. I have
other products.

Any regrets? I don’t regret it as it saved
me a ton of time when I was working
with legacy databases, as a commercial
product it has been raved about
(once!) and received a good review
from the kleper report, but has failed
totally.

Lessons learned: Advice to others? Just
because you need it personally, don’t
assume the rest of the world does too.

Contributor: Steve Cholerton
(http://lonelyhacker.net/)

“Develop something which you find useful,
instead of second guessing others.”

http://www.rudabet.com/
http://lonelyhacker.net/

 11

CAse #8

nBinder
nBinder, packs multiple files into a stand
alone executable with over 50 advanced
output and file unpack options, condi-
tional run and commands.

Why it was judged a commercial failure:
It was the first product I began selling.
It sold to 300+ customers in 4 years.
But for about a year the sales began
to go down and have finally stopped
completely.

What went wrong:
•	 The biggest problem was that because

it was a packer intended for people
that wanted to pack their products
(software or games) into a single pack-
age (compressed and encrypted) many
have used it for creating malware by
binding malware files to legit files
and then distributing the output so
it isn’t detected by antivirus software
(although it would be detected at
runtime). Because of this I had lots of
problems with antivirus companies
that flagged files create with nBinder
as malware. This was of course
affecting legit users as their files would
be falsely marked as malware. I used
virustotal.com to see which antivirus
detected it and contacted the antivirus
manufacturer as soon as I detected the
problem. In most cases they would
remove it from their definitions. But it
was an uphill battle because it would
appear again in a matter of weeks.
Some small Av companies didn’t
event bother to reply to my emails to
fix the problem. others were using
heuristics to flag files create with my

applications and Av developers were
reluctant to whitelist files created with
nBinder. You can imagine it that it was
enough for an Av such as kaspersky or
Norton to pick my files as malware for
a day and customers would be affected
and not use my product any more,
especially that it took about 3 days for
Avs to remove the false positive.

•	 Infrequent updates. Due to lack of
time I only updated the product once
or twice a year and this affected the
product a lot.

•	 No marketing. I decided that I didn’t
want to invest money in marketing so,
except for a short AdWords campaign,
I invested no money in marketing.

•	 My decision to develop 3 products
instead of concentrating on one or
two affected development time and
quality. I have worked on 3 products
simultaneously instead of concentrat-
ing on making a single good one. The
reason I worked on 3 is because I
enjoyed developing different software
in different categories. I didn’t start
this for money but for the fun of
development.

Time/money invested: I invested almost
no money (except for hosting costs).
Time invested I can’t really say exactly,
but not too much as I only worked on
nBinder in short bursts like 6 hours a
day for a week or so before releases.

Current product status: Still for sale. My
other products are:

•	 nCleaner – a free system cleaner that
has gone quite well (over 2 million
downloads).

•	 nMacro – an automation tool that has
seen some limited success (bought by
over 100 customers in a year or so).

Any regrets? It’s not a total failure as I
did make some money out of it with
no investment, so I don’t regret start-
ing it, but it could have been much
better.

Lessons learned: Words of advice for
others trying to make money from
software development:

•	 Study the market and the current
trends very well.

•	 Before deciding to take on large
competition make sure you have
something better (at least from one
point of view) than the competition
(for example you might not have the
same features but you have a better
GUI and general presentation).

•	 Do not get scared of an overly popu-
lated market segment. For example
with nBinder I picked a segment with
very little competition but also few
possible users and the results were not
so great (I didn’t have many users).
With nCleaner I went head-to-head
with lots of already established
products but also the market is very
big. Although nCleaner is free it has
had the most success because there are
so many potential users (anyone with
a PC actually), so it had over 2 mil-
lions downloads and I still receive lots
of mails regarding it, even if the last
update was in 2007. So it is possible
to have success in a market with lots
of competition with no investment
but it’s hard to reach the level of more
established products.

Contributor: Boghiu Andrei
(http://www.nkprods.com/)

“Do not get scared of an overly populated
market segment. ”

http://www.nkprods.com/

12 FEATURES

CAse #9

net-Herald
Net-Herald – a monitoring application
for water supply companies. It was a
complex client server application that
would receive monitoring data from
specialized hardware and store that
data inside a SQL database. The client
displays that data in different graphs,
provides printable reports or sends alarm
messages via SMS if a monitored value is
not within its specified limits.

I developed Net-Herald as a perfect
fit for that specialized hardware that is
provided by a local manufacturer. That
way, so I hoped, I could profit from their
sales leads and would find a smoother
way into these water supply companies.
The downside of course, was that my
software would only work with their
hardware.

Why it was judged a commercial failure:
I sold a first license fairly soon after
I had a sellable product, although it
took the customer nearly a year until
they finally bought. But since then I
sold only one more license within the
last 4 years or so.

What went wrong:
•	 I didn’t do my own marketing and the

hardware guys weren’t really con-
cerned with selling my software.

•	 Water management companies have a
terribly long sales cycle. other vendors
monitoring applications usually cost
tens of thousands and are geared
toward large suppliers. Whenever a
supplier buys into such a product he
is unlikely to change within the next
decade or more. I tried to position my
software towards small suppliers but
even then most of them were already
locked into another vendor’s solution.

•	 My software only worked with a
specific hardware. That narrowed the
market down substantially.

•	 In the end the software became too
complex for one poor mortal to
maintain. Because the software didn’t
produce any substantial income I had
to stop adding new features which

would make it attractive for more
prospective clients.

•	 This kind of software is not sold over
the Internet. Rather it needs very
active sales people that nurture clients
over a rather long period of time.

•	 All these facts indicate that software
like this should not be developed by a
one man show.

Time/money invested: The development
time for the first sellable version was
maybe about 9 months. I didn’t have a
job income at that time, but got fund-
ing due to government support for
small start-up businesses. So I didn’t
drain our family’s personal finances.
But I did of course invest a great deal
of time and sweat.

Current product status: Now, I have
drawn a line and stopped active
development of Net-Herald. I still do
some custom extensions for my first
clients. But I no longer market the
software. I have instead focused on my
consulting services. I also develop and
sell my cross-platform drag-and-drop
product Simidude.

Any regrets? I didn’t succeed yet selling
my own software (which is still my
goal) but I do not regret doing it. I
developed Net-Herald using (Java)
technologies that now give me lever-
age at my consulting gigs. All in all it
was a heavy ride. But it was fun and I
would do it again.

Lessons learned:
•	 My biggest mistake was the lack of

market analysis. I trusted the word of
the hardware manufacturer without
verification.

•	 I have written more about the above
and some other failures on my blog.

Contributor: Torsten Uhlmann
(http://www.agynamix.de/)

CAse #10

HabitShaper
HabitShaper – set and track daily targets
for your goals (weight loss, quit smoking,
jogging, writing, etc…).

Why it was judged a commercial failure:
I sold a few copies, but not enough
to make back the time I invested in it
and my conversion numbers and traffic
are below average.

What went wrong:
•	 Did not do enough pre-production

research (talking to customers, etc).
•	 Did not do a large enough beta to

make up for lack of initial research.
•	 Ignored gut-feeling that my product is

better suited to being web-based and
multi-platform (incl. mobile).

•	 Did EvERYTHING myself (logo, web
design, video, software, AdWords, etc).

Time/money invested: I worked on it
two years, part-time, while doing
Masters/PhD in Physics. It had no
impact on my finances (very little
money invested) or circumstances.

Current product status: I am relaunching
as a web-based product this summer.

Any regrets? Not in the least! I learned
about as much from making Habit-
Shaper as I have from my MSc thesis
and PhD work.

Lessons learned:
•	 Most important: PAPER prototypes,

minimum viable product, and iterate.
•	 Don’t be afraid to launch early.
•	 Launch a little bigger than you’d

expect (it’s harder to find those initial
customers than you think).

•	 Don’t be afraid to change directions,
especially early on.

•	 Doing things yourself is a great
learning experience, but if you want
to get your product out to customers
as fast as possible, don’t be afraid to
invest money and outsource your
weaknesses.

Contributor: Adriano Ferrari
(http://blog.habitshaper.com/)

http://www.agynamix.de/
http://blog.habitshaper.com/

 13

CAse #11

BPl
BPL – Batch Programming Language
Interpreter.

Why it was judged a commercial failure:
I sold about 10 copies.

What went wrong:
•	 I didn’t really do enough research to

find out if the target market was in
existence. I was hoping that network
admins and support staff members
would find it easier to use than batch
files and less complicated than any
of the free scripting language options
available. So, I just rushed to get the
MvP (Minimum viable Product) out
the door.

•	 I never did provide a compiler that
would build a stand-alone EXE. I
think that might have met with more
success.

•	 I didn’t do much as far as advertising
the existence of the product.

Time/money invested: I only spent a
few weeks coding and documenting
it in my spare time. Support issues
sometimes took a whole evening,
but nothing major. It did not have
any impact on my finances as I had
invested nothing but my time.

Current product status: I will still
address support issues with this prod-
uct for registered users, but I don’t
actively sell it. I’ve open-sourced the
program and it still really isn’t seeing
heavy use.

I was more successful with other
products. I have a few retired products
that saw some good bulk-purchase
deals (command-line DUN HangUp,
command-line scheduler) and I still
sell the following (for Windows):

•	 MailSend – Command-line SMTP
mailer.

•	 MailGrab – Command-line PoP3
reader.

•	 CMD2EXE – Packages up a batch file
into an EXE.

•	 Screenkap – Command-line screen
capture.

All of the above still bring in a
modest passive income.

Any regrets? Not at all. “Nothing
ventured,…”

Lessons learned: Had I not attempted to
bring the BPL product to life, I might
still be sitting here wondering “what
if?” I think it was very beneficial for
me to invest the time to try out this
idea.

Contributor: Jim Lawless
(http://www.mailsend-online.com/blog/)

CAse #12

Anonymous
A time tracker.

Why it was judged a commercial failure:
Because it is not my primary income. I
have about 150 customers in one year.

What went wrong:
•	 No marketing.
•	 No real thought into features.
•	 I don’t spend any time on it.

In my defense, the reason I do not
spend much time on it is that the
market became saturated with ‘me
toos’ right after I released, which
was quite expected. In fact, as I was
looking for users, I got an email from
a competitor suggesting that I don’t
enter the market because they are
working on the same thing! I don’t
know what I would do differently.
Maybe spend more time on it? I think
the law of diminishing returns applies
quite early in this space so I am not
sure.

Time/money invested: Since inception
(Nov 2008), I’ve spent close to 250
hours total. Total cash outlay was
something like $500.

Current product status: I never tried to
make it succeed, to be honest. It was

“Launch a little bigger
than you’d expect.”

http://www.mailsend-online.com/blog/

14 FEATURES

only a learning experience for me.
What I probably need now is to go all
in. Quite frankly, if I double the sales
for this product, I can quit all consult-
ing work. But I really do not think it
is a good idea to work on this app full
time as it is too simple.

Any regrets? Definitely not.
Lessons learned:
•	 Do it!
•	 Solve a problem people know they

have.
•	 Don’t invest too much time and

money at the beginning.
•	 Don’t be wedded to a particular idea.
•	 Don’t only listen to your custom-

ers. Listen to yourself. After all, you
created the idea which attracted the
customers.

•	 Never promise a feature for a sale. I’ve
never done it but the pressure is really
great. My stock response is always:
“While such a feature may be available
in the future, I recommend that you
only use current features when decid-
ing on your purchase.”

•	 Do use Google to your advantage.

Contributor: Anonymous

CAse #13

Screenrest
ScreenRest - a consumer software prod-
uct that reminds users to take regular
rest breaks while using their computer.

Why it was judged a commercial failure:
ScreenRest failed commercially
because we built a product without
having a clearly defined market.
This was compounded by it offering
prevention, not a solution. ScreenRest
continues to regularly sell a small
number of licences but not in suf-
ficient quantity to justify further
enhancements. The conversion rates
are good, but there are simply not
enough visitors to the website.

What went wrong:
•	 Not doing market research first.
•	 Creating a prevention rather than

solution product – people generally
wait until they have a problem and
then look for a solution.

•	 Creating a product with medical
associations – the SEo and PPC
competition for related keywords is
prohibitive for a product with a low
purchase price.

Time/money invested: At least £2000
was spent on the project, including
software licences and additional
hardware. The product and website
were created over roughly 12 months
by myself and my wife Lindsay, some
during spare time, then part-time and
finally full-time so it is difficult to
determine the total number of hours.
Working part-time and then full-time
on ScreenRest caused a significant
impact on our finances. Although
right from the beginning we saw
this as in investment for building a
business.

Current product status: once the
product was complete and we started
learning SEo it became all too
apparent that organic search traffic
for related keywords was going to be
insufficient. Research into PPC then
revealed that the price point was too
low to support purchasing medical
terms. Planned features for ScreenRest
have been put on hold and no further
marketing is planned. We continue to
support new and existing ScreenRest
customers and plan to do so for the
foreseeable future. Rather than create
another software product we chose
to use what we had learned about

01 02 03

04 05

 15

marketing, copywriting and SEo to
create a series of websites targeting a
range of topics (often known as niche
sites). The most successful of these
sites we are expanding in value and
functionality to fill gaps not serviced
by the competition.

Any regrets? No. ScreenRest suc-
ceeded in every way intended, other
than commercially. Creating it was
a rewarding learning exercise that
started us down a path to finding the
intersection of our skills, experience
and market opportunities.

Lessons learned:
•	 Start with market research – creating a

high-quality product you believe in is
not enough on its own.

•	 Make sure you can identify a specific
target market, that you can reach that
market and that it is large enough to
support your financial goals.

Contributor: Derek Pollard
(http://www.kimotaprime.com/)

Conclusion
Analysing the above (admittedly small
and self-selected sample) it is clear that
by far the commonest causes of failure
were:
•	 lack of market research
•	 lack of marketing

With the benefit of 20/20 hindsight it
seems blindingly obvious that we should:
•	 spend a few days researching if a

product is commercially viable before
we spend months or years creating it

•	 put considerable effort into letting
people know about the products we
create
Yet, by my count, a whopping 6 out

of 13 of us admitted to failing to do each
of these adequately. Probably we were
too busy obsessing over the features and
technical issues so beloved of developers,
which actually contributed to far fewer
failures.

It is also noticeable that, despite the
failure of these products, there are few
regrets. Important lessons were learned
and no-one lost their house. Many of
us have gone on to develop successful
products and the others will be in a
much stronger position if they do decide
to try again.

A big thank you to everyone who ate
a large slice of humble pie and submitted
the above. I hope we can prevent other
budding software entrepreneurs making
the same mistakes. Even if you don’t
succeed, you will learn a lot. n

Andy Brice is a UK-based software developer
with over twenty years of professional expe-
rience. He runs a one-man software product
company at www.perfecttableplan.com, blogs
at www.successfulsoftware.net and provides a
one-day consulting package to other small soft-
ware companies interested in improving their
marketing and usability.

06 07

08

1. ScreenRest
2. ChimSoft
3. nBinder
4. BPL
5. Smart Diary Suite
6. PC Desktop Cleaner
7. R10Clean
8. HabitShaper

Reprinted with permission of the original author. First appeared in http://hn.my/softwarelesson/.

http://www.kimotaprime.com/
http://www.perfecttableplan.com
http://www.successfulsoftware.net
http://hn.my/softwarelesson/

16 FEATURES

Illustration by Jaime G. Wong (http://retrazos.pe/)

 17

How To Become A Millionaire
In Three Years

Market opportunity
A million dollars is not a lot
in the grand scheme of things,
but it certainly is a lot if the
market opportunity is not
large enough. Even if you put
Bill Gates and Steve Jobs as
founders in a new venture
with a total market size of 10
million, there is no way they
could become too wealthy
without completely changing
the business (i.e. failing).

Inequality of information
Find a place where you know
something that many under-
value. Having this inequality
of information can give you
your first piece of leverage.

Leverage skills you know
You can go into new fields
such as say Finance, but
make sure you’re leveraging
something you already know
such as technology and/or
product. Someone wanted
to start a documentary with
me. I said that would be
fun, but it would be my first
documentary regardless of
what happened. There was
a glass ceiling due to that. If
I do something leveraging a
skill I know, I’m already ahead
of the game.

Look in obscure places
We’re often fascinated with
the shiny things in the inter-
net industry. Many overlook

the obscure and unsexy. Don’t
make that mistake. If your
goal has primarily monetary
motivations, look at the
unsexy. one example would
be email newsletters, which
I’ve profiled before.

Surround yourself with smart
people
Smart people that are success-
ful usually got there by doing
the same and have an innate
desire to help the people
surrounding them achieve the
same success. It’s the ecosys-
tem that’s currently happen-
ing with the PayPal mafia and
can be traced all the way back
to Fairchild Semiconductor.

Charge for something
Building a consumer property
dependent upon advertis-
ing has easily made many
millionaires, but it isn’t the
surest path. It takes a lot of
time and scale, which due to
cash-flow issues will require
large outside investment
probably before you are a mil-
lionaire. Build something that
you can charge for. That’s
how business has worked for
thousands of years prior to
the 1990s. Make something,
charge for it, repeat it. DHH
explained this really well at
Startup School 08.

I’m going to go ahead and replace 3 years with a “short time frame”.
Some things to focus on:

By JASoN L. BAPTISTE

“I move forward the only direction
Cant be scared to fail in search of perfection

— Jay-Z, On To The Next One

”

18 FEATURES

Information products are
valuable
E-Books, screencasts, and
anything that can teach others
to be good at something is
a very lucrative business.
Look at guys like PeepCode...
they’re killing it. There are
also things like Parrot Secrets
that make 400k a year. Bonus
points if the information
helps a person make money
(directly or indirectly) or
improves their self image.
FYI, this doesn’t mean sell
snake oil ebooks. That may
get you a somewhere in the 5
figures, but word will spread
that your shit smells.

Your primary metric
shouldn’t be dollars
If you are going after a big
enough market and charging
a reasonable amount, you can
hit a million dollars. Focus on
growth, customer acquisition
costs, lifetime value of the
customer, and churn.

Get as many distribution
channels as possible
There is some weird sense
that if you build something
they will just come. That a
few “like” + retweet but-
tons and emails to editor@
techcrunch.com will make
your traffic explode + grow
consistently. It fucking won’t.
Get as many distribution
channels as possible. Each
one by itself may not be large,
but if you have many it starts
to add up. It also diversifies
your risk. If you’re a 100%
SEo play, you’re playing a
dangerous dangerous game.
You’re fully dependent
upon someone else’s rules. If
Google bans you, you will be
done. You could easily replace
the SEo example with: App
store, Facebook, etc.

Go with your gut and do not
care about fameballing
Go with what your gut says,
regardless of how it might
look to the rest of the world.
Too often we (I) get lost in
caring about what people
think. It usually leads to a
wrong decision. Don’t worry
about becoming internet
famous or appearing on teh
maj0r blogz. Fame is fleet-
ing in the traditional sense.
Become famous with your
customers. They’re the ones
that truly matter. What they
think matters and they will
ultimately put their money
where their mouth is.

Be an unrelenting machine
Brick walls are there to
show you how bad you want
something. Commit to your
goals and do not waver from
them a one bit regardless of
what else is there. I took this
approach to losing weight and
fitness. I have not missed a
single 5k run in over a year.
(I profiled this in my article
“Hacking Calories” if you’re
interested). It did not matter
if I had not slept for two days,
traveling across the country,
or whatever else. If your goal
is to become a millionaire,
you need to be an unrelenting
machine that does not let
emotions make you give up/
stop. You either get it done
with 100% commitment or
you don’t. Be a machine.

If it’s a mass market “trend”
that’s all over the news, it’s
too late
This means the barriers to
entry are usually too high at
this point to have the greatest
possible chance of success.
Sure you could still make a
lot of money in something
like the app store or the
Facebook platform, but the
chances are significantly
less than they were in the
summer of 08 or spring of
2007. You can always revisit
past trends though. Peter
Cooper and I clarified some
of the semantics about what
is a trend over here.

If you do focus on a dollar
amount, focus on the first
$10,000
This usually means you’ve
found some repeatable
process/minimal traction,
i.e. if you’re selling a $100
product, you’ve already
encountered 100 people who
have paid you. From here you
can scale up. It’s also a lot
easier to take in when you’re
looking at numbers. Making
1 million seems hard, but
making $10,000 doesn’t seem
so hard, right?

Be a master of information
Many think it might be waste-
ful that I spent so much time
on newsyc or read so many
tech information sites. It’s not,
it’s what gives me an edge. I
feel engulfed.

Get out and be social
Even if you’re an introvert,
being around people will give
you energy. I’m at my worst
when I’m isolated from people
and at my best when I’ve at
least spent some time with
close friends (usually who I
don’t know from business.)

Make waves, don’t ride them
There was a famous talk
Jawed karim gave from
YouTube. He described the
factors that made YouTube
take off in terms of secondary/
enabling technologies. I think
they included (1- broadband
in the home 2- emergence of
flash, so no codecs required
3- proliferation of digital cam-
eras 4- cheap hosting 5- one
click upload 6- ability to share
embed). Find those small
pieces and put them together
to make the wave. That’s what
YouTube did imho. The other
guys really just rode the wave
they created (which is okay).

Say NO way more than you
say YES
I bet almost every web
entrepreneur has encountered
this: You demo your product/
explain what you’re doing and
someone suggests that you do
“X feature/idea”. X is a really
good idea and maybe even
fits in with what you’re doing,
but it would take you So
FAR off the path you’re on. If
you implemented X it would
take a ton of time and morph
what you’re doing. It’s also
really really hard to say no
when it comes from someone
well respected like a vC or
famous entrepreneur. I mean
how the fuck could they be
wrong? Hell, they might even
write me a check if I do what
they say!!!!! Don’t fall for that
trap. Instead write the feed-
back down somewhere as one
single data point to consider

“If you do focus on a
dollar amount, focus
on the first $10,000.”

 19

amongst others. If that same
piece of feedback keeps
coming up AND it fits within
the guidelines of your vision,
then you should consider it
more seriously. Weight sugges-
tions from paying customers
a bit more, since their vote is
weighted by dollars.

Be so good they can’t ignore
you
I first heard this quote from
Marc Andreessen, but he stole
it from Steve Martin. Just be
so good with what you do that
you can’t be ignored. You can
surely get away with a boring
product with no soul, but
being so good you can’t ignore
is much more powerful.

Always keep your door/inbox
open
You never know who is going
to walk through your door +
contact you. Serendipity is a
beautiful thing. At one point
Bill Gates was just a random
college kid calling an Albu-
querque computer company.

Give yourself every
opportunity you can
I use this as a reason why
starting a company in silicon
valley when it comes to
tech is a good idea. You can
succeed anywhere in the
world, but you certainly have
a better chance in the valley.
You should give yourself
every opportunity possible,
especially as an entrepreneur
where every advantage counts.

Give yourself credit
This is the thing I do the least
of and I’m trying to work on
it. What may seem simple
+ not that revolutionary to
anyone ahead of the curve
can usually be pure wizardry
to the general public, whom
is often your customer. Give
yourself more credit.

Look for the accessory
ecosystem
iPod/iPhone/iPad case manu-
facturers are making a fortune.
Armormount is also making
a killing by making flat panel
wall mounts. WooThemes
makes millions of dollars a
year (and growing) selling
Wordpress themes. There are
tons of other areas here, but
these are the ones that come
to mind first. If there’s a huge
new product/shift, there’s
usually money to be made in
the accessory ecosystem.

Stick with it
Don’t give up too fast. Being
broke and not making any
money sucks + can often
make you think nothing will
ever work. Don’t quit when
you’re down. If this was easy
then everyone would be a
millionaire and being a mil-
lionaire wouldn’t be anything
special. Certainly learn from
your mistakes + pivot, but
don’t quit just because it
didn’t work right away.

Make the illiquid, liquid
I realized this after talking
to a friend who helps trade
illiquid real estate securities.
A bank may have hundreds of
millions of assets, but they’re
actually worth substantially
less if they cannot be moved.
If you can help people make
something that is illiquid,
liquid they will pay you a

great deal of money. Giving
you a 20-30% cut is worth it,
when the opposite is making
no money at all.

Productize a service
If you can make what might
normally be considered a ser-
vice into a scaleable, repeat-
able, and efficient process that
makes it seem like a product
you can make a good amount
of money. In some ways, I feel
this is what Michael Dell did
with DELL in the early days.
Putting together a computer
is essentially a service, but he
put together a streamlined
method of doing things that
it really turned it into a

product. on a much smaller
scale, PSD2XHTML services
did this. It’s a service, but the
end result + what you pay for
really feels like a product.

Look for something that is
required or subsidized by law
Motorists are required to have
insurance, public companies
have to go through sarbox
laws, doctors get tens of
thousands of dollars for
EHR systems, etc. Look for
something that is required
by law and capitalize on
that. Usually things that are
required and/or subsidized by
law are mind numbing with
complexities. Find a way to
simplify that process.

Make sure you’re robbing a
bank
When Willie Sutton was asked
why he robbed banks, he
said because that’s where the
money is (Thanks to edw519
for this quote). Make sure
whatever you’re going after
is where the money actually
is, i.e. a customer that will
pay you. Consumer markets
are tough, especially with
web based products. People
expect everything to be free.
Businesses are usually your
best bet.

Don’t be emotional
Emotions can let you make
stupid decisions. It can make
you not walk away because
you’re attached to some-
thing. Most importantly it
will lead to indecision and a
loss of confidence. Put your
emotions into your product
or save them for your lover,
family, friends,etc.

Don’t leave things up to
chance
People feel that things will
just work out due to carpe
diem. They usually don’t.
People can be unreliable, deals
can fall through, and shit will
always happen. Prepare for
multiple scenarios and contin-
gencies. You can mitigate this
by working with smart AND
reliable people.

“If this was easy then
everyone would be a
millionaire.”

20 FEATURES

Raise revenue, not funding
Everyone is always so damn
fixated on getting funded
because it’s the cool thing to
do. Focus on getting people
to pay you at first and then
scale things outwards with
funding IF and WHEN you
need it. If your goal is to
make a million dollars in
three years, funding probably
isn’t the way to go. vCs
won’t let you take a salary
of ~300k per year. Selling
a company in < 3 years is a
crapshoot. The lifespan of an
investment is usually about 7
years from what I’ve read.

Don’t get comfortable
You will probably get
comfortable somewhere
around 200k, maybe less or
more, but it will certainly be
before 1 million dollars. If
you get comfortable you start
getting off balance and having
the hunger to move forward.
Reward yourself a little bit,
but live as frugally as possible.
I have friends who have made
some okay money, but blow
it all away on stupid shit
because they got comfortable.

Look for those who are
comfortable
Who is comfortable in a
certain industry? Go in
and knock them off their
hammock so they spill their
mojitos on themselves.
This can also be considered
stagnation. Industries often
mature and people get com-
fortable keeping the status
quo. Stagnation is the mid-
life crisis for a former trend.
This is usually a good point to
come in with something.

Don’t skimp on the important
things
When it comes to things that
need to be reliable such as
infrastructure, delivery, or
even your own personal tech
equipment - don’t skimp
out. These are the tools that
ensure reliability and your
product being delivered.
You can skimp on the office
space, the desks, coach airfare,
budget motel in mountain
view, etc.

Companies spend just as
much or more on services as
they do on software
Paying for the ERP, CRM, or
custom built system is just
the first step. Then there’s
the maintenance, training, and
service contracts.

Keep the momentum going
I’ve had projects where
things were moving a million
miles an hour, then BooM,
they just lost a lot of momen-
tum. That is the worst
possible thing you can have
happen. keep moving the
ball everyday.

Listen (or read the transcrip-
tions of) to every Mixergy
interview you can
Most of my audience will
probably know about Mixergy,
but I can’t let a single reader
leave without making sure
they know it exists. It is by far
the most practical resource on
the Internet if your goal is to
do well. Andrew has inter-
viewed entrepreneurs from
all walks of life and levels of
success. Most of them had
real business models and boot-
strapped. Most importantly,

he finds out what specifically
led to their success.

Last, but not least: Learn how
to filter
I just wrote upwards of 2,200
words. Some of the points
are even contradictory. Start
adding in other sources of
information and you will feel
like you’re being pulled in a
five million directions. You
will then become indecisive.
Take in information and then
filter the good bits while
synthesizing them to be a part
of your overall plan. What
works for person A doesn’t
always work for person B. n

Jason L. Baptiste, is currently the
co-founder of Cloudomatic, which
provides an easy to integrate affili-
ate engine specifically made for
SaaS and web app developers.
He is also on the board of the MIT
Enterprise Forum of South Florida.
You can learn more about Jason at
jasonlbaptiste.com.

“Reward yourself a
little bit, but live as
frugally as possible. ”

Reprinted with permission of the original author. First appeared in http://hn.my/millionaire/.

http://jasonlbaptiste.com
http://hn.my/millionaire/

 21

Why I Quit A Six Figure Job

I had the best job in the world. My
immediate team of ten people were
all world class, and everyday I was

able to work on hard and interesting
challenges with them. Hours were flex-
ible—many of us worked seven to four
(by choice!)—and there was virtually
never any overtime. It wasn’t unheard of
to have our end of week review down at
the pub. I was paid a six figure salary.

After six months, I quit.
I need to be working for a reason.

Salaried work isn’t necessarily a bad
thing, but the benefits it provided me
weren’t benefits I actually wanted.

the Up
A job is easy money. This is the obvious
one. The easiest, most comfortable way
to get money is to work for someone else.
I currently have enough assets to sustain
me for about two years, and there’s noth-
ing that I want to buy, so I don’t need
any more money.

A job is low risk. Related to the last
point but worth stating separately. You
get a paycheck every month, whether
or not the company makes money. This
risk is shouldered by the owners of the
company, and that’s why they stand to
gain (or lose) a lot more. I can provide
my own safety net at the moment, I
don’t need someone else to do it for me.

A job fills the time. This isn’t relevant
to me, but I’ve heard a few times “Won’t
you get bored without a job?” This is so
far outside my conceptual space I didn’t
even think of it. If you are worried about
being bored without a job, first try cut-
ting Tv out of your life and see how you

find ways to fill that space. A job is a Tv
that takes up even more time.

A job allows you to work on large
challenges. The type and scale of
problems you are able to work on in IT
at a big company are totally different to
those you have the opportunity to attack
flying solo. It was a fantastic experience
working on these projects, but I’m no
longer feeling inspired by them.

A job allows you to work with smart
people. This is actually the primary
reason I accepted the job. The opportu-
nity to work in such a high calibre team
in such an environment was one that
doesn’t come up often outside of salaried
positions. There are many other smart
people I will get to work with outside of
a job, but I will have to work harder to
make that happen.

They’re pretty fantastic benefits, and
I don’t regret the last six months in the
slightest. None of them are particularly
relevant to me any more though, and
when matched with the downsides the
balance is no longer positive.

the Down
A job is working on someone else’s
schedule. I was expected to be produc-
tive for eight hours in the middle of
the day, five out of seven days a week.
This doesn’t match my natural rhythm.
Some days I can work for fourteen
hours, others I just need a day off. If I
work in the mornings only, I don’t need
a weekend. I’m really keen to explore
different modes of working to find what
is most productive for me.

A job means you have to show up.
Forty hours of every week were sold to
someone else. That’s a huge opportunity
cost. I couldn’t put everything on hold
for a few days to chase a new idea. I
couldn’t use the burst of energy I get
often when I had a great idea late at
night, because I had to be up early the
next day.

A job is working on someone else’s
dream. This isn’t necessarily bad —
helping people achieve their dreams is
fantastic — but those dreams didn’t align
with my own.

A job is selling your time. When
I’m working by the hour, there is an
economic incentive to take longer to
complete a task, but a professional one
to be efficient. I don’t want competing
motivations. Why are the hours spent on
a task even relevant? I want to sell value
rather than my time.

So what am I going to do? For a large
part, I don’t know, and that’s kind of the
point. I have a few projects I’m working
on — A tour of the US and this blog
being two major ones — but now the
biggest benefit is that I’m free to say yes.
Yes to projects, yes to schemes, yes to
travel, yes to “let’s stay up on a week-
night and watch B-grade sci-fi.” I don’t
want the best job in the world, I want
the best life. n

Since quiting his job, Xavier Shay has taken up
beat boxing, performed as a life-sized giraffe,
become a dance teacher, organized a tech train-
ing tour through the US, and started a blog with
his brother Jared about personal development
and being more awesome at www.two-shay.com.

By XAvIER SHAY

Reprinted with permission of the original author. First appeared in http://hn.my/millionaire/. Reprinted with permission of the original author. First appeared in http://hn.my/sixfigure/.

http://www.two-shay.com
http://hn.my/millionaire/
http://hn.my/sixfigure/

22 STARTUPS

How I
Monetized
My Passion

Just over 2 years ago, I was
sitting in what seemed like
an ever-shrinking cubicle at a
major Seattle based company

making updates to websites for upper
management. I suppose I made a decent
(average) living, and my job was secure,
but at the same time I felt that I was
under-challenged, under-utilized and

ready for a major change in my life.
Needless to say, I thought about quitting
my job more than once per day (sound
familiar?), but to what end?

There were countless times during my
years at that company when I tried to
make a difference by presenting alterna-
tive ways to implement and manage their
internal network of websites. In the end,

all of these ideas were either dismissed or
put off on the basis that these “alterna-
tives” were unknown, untested and
unsupported open source technologies
such as Joomla, WordPress, etc. I specifi-
cally remember one manager telling me
that my ideas sounded amazing, but a
little “wild and crazy” for the company.

STARTUPS

By JASoN SCHULLER

 23

Making the Decision to Change
It was pretty much at that point that
I realized if I didn’t at least try and
do something different, I would wake
up one day (years later) in that same
ever-shrinking cubicle working the same
dead end job. I was ready to step up to
the plate.

As much as I wanted to, I knew that I
couldn’t just walk into work one day and
quit on the spot. I had responsibilities – a
wife, a house and bills to pay. With that in
mind, I researched and then approached
my manager about taking a 2 month
“sabbatical”…a trial run if you will.
Basically a leave without pay, but at least
I would still have a job if I needed one at
the end of those two months. Manage-
ment signed off on it (no questions asked)
and off I went into the unknown.

Getting your Feet Wet
My plan was simple… I had a passion
for web design and I was determined to
turn that passion into a career. The first
step was to get my name out there, and
I figured the best way to do that was to
start a blog and begin writing about web
design, development and other related
topics. Please keep in mind that my skills
as a designer/developer were all self
taught to that point (still are actually), so
I really was not all that confident about
doing this – but I had to try.

WordPress seemed to be a trendy
topic at the time, so in January of 2008 I
launched a site called WPelements.com
and started blogging about WordPress.
Really, all I was doing was writing about
things that I myself was learning at

the time as I played around with the
platform. I spent hours on end every
day working with WordPress, reverse-
engineering themes and tweaking code.
WPelements.com gained some traction
right after I released my first free theme
called “Massive News” which was down-
loaded a few hundred times within the
first week. Right after Massive News, I
released my first WordPress plugin called
the “Featured Content Gallery” which
was also an instant success. I remember
thinking that this was my ticket into
something new, a step toward that “big
change” in my life that I was searching
for. Soon after I released Massive News,
the emails started rolling in from people
looking for custom WordPress develop-
ment services which is how I started my
(short) freelance career.

By the time my two month sabbatical
was up, I was confident enough to walk
back into work and put in my two weeks
notice. Actually, what I said was: “I am
prepared to give you two weeks, but if
you can let me go in a week that would
be great because I’m really really busy.”

trial and error
During the first two months of 2008, I
was able to build enough of a name for
myself where I could sustain my income
by doing freelance WordPress design
and development work. However, it was
about that same time that I realized that
I still was not quite happy with what I
was doing for a living. Basically, it was
the exact same thing I was doing at my
previous job, just with clients instead of
managers. Back to square one. Something
needed to change once again just two
months into my entrepreneurial career.

The WordPress community was grow-
ing, and I took note of a trend which was
on the rise… “Commercial WordPress
Themes.” Brian Gardner pioneered (or
at least was one of the first to pioneer)
the idea of selling commercial WordPress
themes in August of 2007 with a theme
called “Revolution” (now StudioPress.
com). Shortly after Brian, a few others
popped up selling their own themes as
well including Adii with his “Premium
News Theme” (now WooThemes.com).
To say the least, the idea of creating a
theme and selling it as a commercial
product perked my interests. I remember
emailing both Brian and Adii about their
businesses looking for tips on how to
get started. Surprisingly, both of them
already knew about me and what I was
doing with WPelements.com, and gave
me the inspiration to try selling some
themes of my own. Let me say that
Brian and Adii are some real stand-up
guys who I am happy to consider my
friends even though we are each others
competition.

“I had a passion for web design and I was
determined to turn that passion into a career. ”

24 STARTUPS

then Success
I had created a site called TrailerFlick.
com in December of 2007 which never
became popular, but there was always
interest in the site design by random
users who just happened upon it one way
or another. I created TrailerFlick.com to
provide an alternative method of view-
ing movie trailers, and the design was
simple… just a grid of movie posters that
when clicked would display the trailer in
a pop-up window. This was actually the
first live website I had ever built entirely
on WordPress. In February of 2008 I had
a client that found TrailerFlick.com and
wanted a WordPress theme based on the
design for his own movie production
studio. I spent a week tailoring the theme
for this client who in the end never paid
up. I decided that this would be a good
candidate for my first commercial theme,
so I cleaned up the code, called it “video
Flick” and threw it on WPelements.com
for just $5.00 per download. I just want
to take a second to thank that client for
never paying his tab.

The interest in video Flick blew me
away, and I immediately knew that had
something on my hands that I could
build into a real business. one theme
at $5.00 per download was definitely
not enough to make a living, but it was
good extra cash to throw on top of the
freelance work I had at the time. As the
months rolled by, I released two more
video-centric WordPress themes (Tv Ele-
ments followed by video Elements) and
started charging $25 a piece. By June of
2008 I knew there would be no looking
back and that I had a substantial business

on my hands. Not many theme develop-
ers (if any) were creating video-centric
WordPress themes at that particular time,
and I think that releasing a commercial
solution for video was the key to growing
my business as fast as I did.

At that time, I was still doing freelance
work and blogging about WordPress on
WPelements.com, but I finally decided
that neither blogging or freelance work
were really what I wanted to do which is
why I designed a simple theme store and
moved all my commercial themes over
to Press75.com separating my theme
business from my freelance business and
blog. By August of 2008, I had doubled
my income on Press75.com with only 4
themes at $50 a piece. This allowed me
to completely close the doors on free-
lance work to focus 100% of my efforts
on commercial WordPress themes.

Nearly one year and about a dozen
themes later, Press75.com continues to
grow and I just launched a second site
called ThemeGarden.com in hopes to
expand beyond my own personal brand.
Needless to say, I could not be happier
with what I do for a living. I get to design
and create WordPress themes that are
used by thousands of people around the
world, and the best part is that the only
one telling me what to do and how to do
it – is me.

let your Passion Drive you
I really don’t consider myself any sort
of talent when it comes to writing, but
if you have stuck with this story to
this point, a few more minutes aren’t
going to kill you. I didn’t write this

for recognition, or to brag about what
I consider my own personal success.
Honestly, I’m sure most of you don’t
even know who I am or what I do, nor
do you probably care. The whole point
of writing this article was to share with
you that life is in fact, what you make
of it. If you want to change, there really
is nothing stopping you from doing so.
That is not to say that change is at all
easy, or something that will happen
overnight. It took me more than 10 years
of working at a company, developing
skills, experimenting with different ideas
and just growing up before I found the
confidence to really go after my passion.

Also, it is my strong belief that if
making money is your only goal in life,
you will probably spend the rest of your
life chasing that goal and never end up
where you want to be. I realize that the
title of this article is “How I Monetized
My Passion”, but what I really mean by
that is money can sometimes become
a by-product of chasing your passions.
Money is not a bad thing, but it really
should not be your means to happiness.
When I left my day job two years ago,
money was never my end game, and I
hope it’s not yours when/if you decide
to make a major change in your life.
Let your interests and your passions be
the driving force behind change in your
life – I did. n

Jason Schuller is a digital creative professional
living and working in Seattle Washington. He
primarily designs and builds themes and plugins
for the popular WordPress publishing platform
which can be found on Press75.com.

“Money is not a bad thing,
but it really should not be
your means to happiness.”

Reprinted with permission of the original author. First appeared in http://hn.my/passion/.
Photo: Adrià Ariste Santacreu, http://www.flickr.com/photos/manicomi/2537105338/.

Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

http://hn.my/passion/
http://www.flickr.com/photos/manicomi/2537105338/
http://creativecommons.org/licenses/by/2.0/deed.en

 25

What Kind Of Girl
Do You Think I Am?

Guy: “If I gave you a million dollars, would you sleep with me?”
Girl: “A million dollars is a lot of money, and you don’t look
 that bad, so I guess I would consider it”
Guy: “Ok, since I don’t have a million dollars, would you sleep
 with me for $100?”
Girl: (outraged) “What kind of girl do you think I am?”
Guy: “We’ve already established the answer to that question.
 Now we’re just negotiating the price”

Without the million-dollar question, moral choice is easy for
this girl. Yes, she won’t sleep with someone for $100 and that
doesn’t take a lot of thinking. She’s just not that kind of girl. The
million-dollar question is interesting because it forces her to really
decide what kind of girl she is.

If a principle is subject to revision past a price point, then this
is no longer a question of principle, but a question of finding the
price point. Surely not $100, but possibly less that a million.

How many business decisions have you taken without the
privilege of considering the million-dollar option, and its moral
consequences? If you’re like most people, it’s happened to you
several times and you weren’t even aware of it.

I think of this little anecdote every time a cost/benefit question
comes up at work. It’s not uncommon in business to be faced with
the opportunity to do something that is against your standards and
professional practices, but would bring in some extra revenue. In
such circumstances, it’s typical for the people involved to debate
whether it’s “worth” doing X or not. And, inevitably, the “worthi-
ness” of the action is measured in dollars. Sure, no big company will
put its reputation or professional standards at stake for $10,000
(if they’re at all serious about their business) but for an amount
that has an actual impact on its bottom line, morality gets fuzzier.

So here’s a handy tool that may, in some cases, bring more
clarity to your decision-making:
1. Would it be easier/harder to decide if the amounts at stake

were dramatically lower/higher?
2. If so, then what kind of girl are you?

Legislators and moral philosophers have invented fancy terms for
the two possible answers to the “what kind of girl are you”question.

Consequentialist reasoning suggests that morality is context-
sensitive, in the sense that the results of an action have a real effect
on our judgment of its morality. Torture is morally reprehensible,
but what if torturing one man can give you information to save the
lives of thousands? In other words, the potential outcomes of an
action, i.e. what’s at stake, need to be considered in moral judgments.

The girl of our story is a consequentialist kind of girl. (if it
bothers you that the difference between the options is just a bit
more money, consider a case where instead of a million dollars
she was offered the formula for a drug that will cure cancer for
all humanity – and consider whether she should feel equally or
less “dirty” for sleeping with the guy to get it as with the $100)

Categorical reasoning on the other hand suggests that the moral-
ity of action is independent of results. The morality of exchanging
sex for money is the same regardless of the amount. We can debate
if it’s good or bad, moral or immoral, but we would not be prepared
to revise our moral judgment based on what’s at stake. In other
words the girl should happily take the $100 assuming that this is
a fair value for the time she will spend on the activity.

The philosophical debate is in no way decided (it wouldn’t be
a philosophical debate otherwise) and that is really why making
decisions generally sucks. In each case, we have to first decide
whether we are a consequentialist or a categorical girl, whether
we will always be that kind of girl, or whether we will take some
decisions categorically (and set up “commandments”, “golden rules”
and “honour codes” to defend from consequentialist creep) while
allow for consequentialist thinking in others (and use methods
such as “cost-benefit analysis” and “risk valuation” to determine
our moral inflection point).

I find it helpful, before I consider a dilemma, to at least debate
whether I’m in that girl’s situation, and what kind of girl I’m going
to be for this particular question. Imagining different stakes for the
available options is perhaps one of the easiest ways to abstract any
business decision to a level where the consequentialist/categorical
dichotomy is obvious. n

Nikos Moraitakis is vice president of business development at Upstream.
Follow him on Twitter at @moraitakis.

Don’t try this at home:

By NIkoS MoRAITAkIS

Reprinted with permission of the original author. First appeared in http://hn.my/girl/.

http://hn.my/girl/

26 STARTUPS

How I Almost Ignored
Our Single Best Source
For Customer Feedback

Back in mid-2009 when we were building A
Story Before Bed a children’s books online
service for its eventual launch in the fall of

2009 we had a talk about how to support our eventual
customers. I remember reading a blog post (which I
can’t find now) about how putting an 800 number
on your website made people much more willing to
give you their credit card numbers. We decided that
having free 1-800 tech support for our site was going
to be a differentiator for us. It’s not often you find a
consumer website these days that provides that level
of support. Typically if there even is a phone number
it’s buried under layers and layers of FAQs, knowledge
bases, and e-mail forms. It often seems like companies
will do anything possible to avoid actually speaking
to a customer. I’ve experienced this many times as a
customer and I know how it makes me feel. Like crap.
And yet, as a business owner, I read all this reluctance
as an indicator of how costly and time consuming it
is to provide person-to-person customer support. I
was nervous.

At first I suggested that the 1-800 number would
ring my cell phone. This wasn’t some altruistic desire
to connect with customers, but me being cheap. My
partner Walter laughed at me. He pointed out this
would not be a good use of my time as we would no
doubt be inundated by calls, and I had lots of other stuff
to do. I was a little embarrassed, but he’s annoyingly
right almost all of the time. I spent months looking for
firms to which I could outsource our phone support.
I finally found one in the Philippines. our operator

was very nice. She was dedicated to our product. And
I could chat with her over IM, even when she was on
call (to which I could listen in on). Her attitude was
just wonderful, but there was no way she could know
the product the way I did. She also couldn’t know how
much we cared about making our customers happy.
one day I discussed with her when to give a refund.
I told her we had a no questions asked 7 day refund
policy. She asked what to do if the person wanted a
refund on day 8? I told her to go ahead and give it
anyway. There were a lot of situations like this that
had to be spelled out. To the letter.

We launched, and she handled calls. She definitely
did her best, and it was great to know that our custom-
ers had someone they could rely on. And while we
didn’t have a huge number of customers, we woefully
overestimated how many support calls they would gen-
erate. It’s not that our product was perfect. It definitely
wasn’t. It’s just that while the 800 number may have
made people feel comfortable using the site, for the
most part, they didn’t use it. My rough calculations
show about one support call out of every 100 registered
users, if that. After a couple of months of paying an
incredible amount of money to handle the handful of
calls we decided to bail and go back to the original plan.
We set up a new 800 number that rings straight to my
cell phone. Caller ID lets me distinguish between my
mom calling and a customer needing help. And now,
every few days, I get a phone call from a customer who
has a question about our service.

By HILLEL CooPERMAN

 27

When I used to work at a large software company,
I couldn’t imagine many jobs worse than being a tech
support person. Perhaps it was my own interaction with
support folks stuck supporting products they almost
never had control over, and often didn’t have enough
expertise in. or maybe it was all the effort that compa-
nies make to avoid being on the phone with customers
in the context of support that made me assume it’s
something to be avoided. It turns out that answering
our support calls has been an incredibly productive
experience as well as potentially a profit center. When
customers call, not only am I in a great position to help
them as I understand the product inside and out, but
their questions and feedback are essentially a free focus
group. We always have a list of improvements we need
to make to the product, but sometimes prioritizing can
be a crapshoot. vocal customers tell me quickly which
work items need to move to the top of the list. I can
only imagine how many customers of ours experience
the same frustration as these callers but don’t bother
picking up the phone. I think of our support callers as
unelected representatives of our customer population.
Each of them represents a non-trivial number of users
who (understandably) didn’t have the time to call us.

Not only do I get great information that I can empa-
thize with from these customers, but recently I’ve
started finding out how effective our marketing is – “Do
you mind me asking where you heard about A Story
Before Bed?” and turning each support call into a gentle
sales call – “Did you know about our subscription offer?
It could save you a lot of money.” I realize these things

may be obvious to many of you reading this post, but
even if I understood them intellectually, I didn’t *really*
understand them, at an emotional level. It’s still early,
but it looks like answering calls may not only not be
a drag on the bottom line, but a boost.

And while the frequency of calls is on the rise as
our site gets more popular, for now, handling the calls
isn’t just ‘not a problem’ it’s something I look for-
ward to. It makes me understand why Craig’s (a.k.a.
Craigslist Craig) main job is customer support. From
my perspective, there’s no better way to understand
what my customers are thinking. Analytics can tell me
what they’re doing, but not why. When the calls are
frequent enough to impact my other responsibilities, I
honestly wonder which of my tasks I’ll delegate. More
and more I think that someone else might be flying
to New York to sign up new publishers, and I’ll stay
focused on answering calls and e-mails.

A Story Before Bed. This is Hillel. How may I help
you? :) n

Hillel Cooperman is one of the founders of Jackson Fish Market,
a bootstrap startup from Seattle. They have shipped sev-
eral consumer experiences for the web and mobile devices
including A Story Before Bed (www.astorybeforebed.com) that
lets parents and grandparents record a video of themselves
reading a digitized children’s book, and lets kids play it back
in the web browser or on the iPad or iPhone synchronized to
the pages of the book.

“When customers call, their
questions and feedback are
essentially a free focus group. ”

Reprinted with permission of the original author. First appeared in http://hn.my/feedbacksource/.

http://www.astorybeforebed.com
http://hn.my/feedbacksource/

28 STARTUPS

What Are The Biggest
Legal Mistakes That

Startups Make?

My buddy and I are coding up a new
site and we will be ready to launch
the beta in about a month. We have

a couple of angel investors who are interested, and
we don’t want to screw anything up. What are the
biggest mistakes that you’ve seen guys like us make?

Here are ten quick ones (in no particular order):

➊ IP Ownership. Some entrepreneurs make the
mistake of creating IP for their new venture

while they are still working for someone else. They
then quit and launch their startup, not realizing that
the IP is actually owned by their prior employer. This
is a tricky issue, and you should carefully review all
employment-related agreements to determine if there
are any provisions that may inhibit your new venture,
including IP ownership. I discuss this issue in detail in
paragraphs 2 and 4 of my blog post regarding formation
issues (part 2).

➋ Choice of Entity. Some entrepreneurs make the
mistake of forming the wrong entity. Investors

generally invest only in corporations – not LLC’s or
partnerships. You should thus form a corporation – and
consult with an accountant as to whether you should
make an S corporation election (and then convert to
a C corporation down the road). I discuss the issue
of choice of entity in detail in my blog post “Choice
of Entity for Entrepreneurs.”

➌ Place of Incorporation. Some entrepreneurs
make the mistake of incorporating the company

in the wrong state. You should incorporate in Delaware
– that’s what investors generally require. You should
then qualify the company to do business in California
and/or any other State in which it is “doing business.”
I discuss this issue in paragraph 1 of my blog post
regarding formation issues (part 1).

➍ Vesting Restrictions. Some startups make the
mistake of issuing stock to co-founders without

imposing vesting restrictions. Then, one of the found-
ers ends-up leaving in a few months and keeps all
of his or her equity. You should make sure you and
your co-founder execute a restricted stock purchase
agreement with reasonable vesting schedules (typically
four years) upon the issuance of the company’s stock.
I discuss this issue in detail in my blog post “Founder
vesting: Five Tips for Entrepreneurs.”

➎ Securities Law Issues. Some startups make
the mistake of not complying with applicable

securities laws; for example, they issues shares to
“friends and family” who are not “accredited investors”
without proper disclosure documents; or they retain
a consultant who is not a registered “broker-dealer” to
sell company stock for a commission. You should be
very careful when issuing any kind of securities; non-
compliance could cause severe consequences, including

By SCoTT EDWARD WALkER

 29

a right of rescission for the securityholders (i.e., the
right to get their money back, plus interest), injunctive
relief, fines and penalties, and possible criminal prosecu-
tion. I discuss these issues in detail in paragraphs 2 and
4, respectively, of my blog post “Five Common Mistakes
Entrepreneurs Make in Raising Capital.”

➏ Splitting Equity. Some startups make the
mistake of splitting equity equally between or

among the co-founders. The splitting of equity is a
significant business decision which must be negotiated
between or among the co-founders based upon their
respective contributions to date and their expectations
going forward. Simply dividing the shares equally
may sound fair on its face, but it’s usually not the
correct decision. I discuss this issue in detail (and the
various factors to consider) in my blog post “Ask the
Attorney – Splitting Equity.”

➐ Employment Issues. Some startups make the
mistake of not addressing employment-related

issues with respect to new hires. For example, if an
employee is hired by a startup, he or she generally
should be required to execute two documents: (i) an
offer letter and (ii) a confidentiality and IP/invention
assignment agreement. The offer letter will set forth
all of the employee’s respective rights and obligations,
including position, compensation (including stock
options and/or other incentive compensation), benefits
and, most importantly, whether the relationship is “at
will.” The confidentiality and IP/invention assign-
ment agreement is designed to prevent disclosure of
the company’s trade secrets and other confidential
information and to ensure that any IP developed by the
employee is legally owned by the company. I discuss
this issue in paragraph 8 of my blog post “Launching
a venture: Ten Tips for Entrepreneurs.”

➑ 83(b) Elections. Some founders make the
mistake of not making an “83(b) election” in

connection with the restricted stock (i.e., stock subject
to forfeiture) issued to them. Section 83(b) of the
Internal Revenue Code permits the founders to elect
to accelerate the taxation of restricted stock to the
grant date, rather than the vesting date. As a result,
the founder would pay ordinary income tax rates
on the fair market value of the stock at the time of
the grant (which presumably would be quite low or

would be equal to the purchase price if such stock was
purchased), with any subsequent appreciation of the
stock being taxed at capital gains tax rates upon its sale.
Such an election is made by filing the appropriate IRS
form within 30 days after the grant/purchase date (no
exceptions applicable). I discuss this issue in detail
in paragraph 3 of my blog post “Founder vesting: Five
Tips for Entrepreneurs.”

➒ Due Diligence. Some startups make the mistake
of not diligencing the guys or gals on the other

side of the table. Indeed, whether a startup is doing
a financing, a partnering agreement or some other
transaction, it must investigate the other party or par-
ties involved. This means determining the reputation
of both the company/firm (if it’s not a marquee name)
and the particular individuals with whom it is dealing.
Who are these guys? Are they good guys or are they
jerks? Can they be trusted? When they say they
are going to do something, do they do it? Do they
add value? Remember, in certain deals (such as an
angel or venture capital financing), the startup will, in
effect, be married to the firm and the individuals for
a number of years. I discuss this issue in paragraph 1
of my blog post “Five Mistakes Entrepreneurs Make
in Dealmaking – Part I.”

➓ LegalZoom. Finally, some startups make the
mistake of using LegalZoom or other sites to

prepare their legal documentation. Websites like
LegalZoom are not law firms and do not render legal
advice; nor are they able to create the kind of sophis-
ticated documents that you need to protect yourself
and to demonstrate credibility with your prospective
investors. You should retain an experienced corporate
lawyer to help you from the legal side. I discuss this
issue in detail in the FAQ’s section of my website.

Conclusion
I hope the foregoing is helpful. I realize it’s a lot of
information to digest; however, I see these mistakes
made by startups all the time. n

Scott Edward Walker is the founder and CEO of Walker Corpo-
rate Law Group, PLLC, a boutique corporate law firm special-
izing in the representation of entrepreneurs. Scott has built
a strong team of lawyers, with offices in Los Angeles, San
Francisco and Washington, D.C. You can follow him on Twitter
as @ScottEdWalker or check out his blog.

Reprinted with permission of the original author. First appeared in http://hn.my/legalmistakes/.

http://hn.my/legalmistakes/

30 SPECIAL

SPECIAL

Say Hello to
My Little Friend

Back in the early days of the
web I was just a dealer. And I
followed the advice I got from

the movie Scarface: Don’t get high on
your own supply. I used the web as a tool
to be more efficient at achieving goals I
had set for myself in the outside world. I
blogged, I created sites, I worked with a
bunch of interesting startups.

Don’t get me wrong. I dabbled in the
web as a user. But it was always with the
bigger picture in mind. It was always with
a purpose. I was in charge. I was in control.

Those days are over. Like Tony
Montana, I didn’t follow the advice
about getting hooked on the product. As
the realtime, social web has erupted, so
too has my transition from being a dealer
to being a dealer and a hardcore user.
I’ve been denying this reality for years. I
easily convinced myself that I wasn’t the
Nurse Jackie of the internet. I told myself
I was just taking a little taste to make
sure I understood the product I was
serving out to others — the civilians, the

suckers. But it was a lie.
The other day, after spending my

usual ten to twelve hours in front of this
laptop I decided to restart my machine.
I checked my email. I refreshed my
Tweetie. I double-checked Facebook. I
loaded Google Reader to make sure I
was entirely up to date on all the news
from the latest Afghanistan troop levels
to the attempts to stop the gallons of
crude from bubbling into the Gulf to
the current quotes from the Mel Gibson
tapes to the latest reactions to Anten-
nagate. Finally, after a quick check of my
realtime blog stats, I took a deep breath
and pressed the restart button.

Within five seconds, I picked up my
iPhone and checked my email.

Suddenly self-aware, I paused. I looked
at my sweat-beaded reflection in the still
darkened laptop screen and I realized
that yes, I am high on my own supply. I
used the next couple minutes of restart
time for some personal reflection about
the way the internet now controls me

and how, as I’ve written here before, I
went from using a tool to being one.

A few weeks ago I was hosting my
son’s fourth birthday party at an old
school arcade. We were running short
on quarters, so I went to throw a few
dollars in the change machine. While I
waited for my bills to become change, I
pulled my iPhone out of my pocket and
checked my email. It was Sunday morn-
ing. It was my son’s birthday party.

I often fall asleep to audiobooks. That
leaves my iPhone on my nightstand.
Recently, while my wife and I spent
the sunrise hours cuddling and joking
with our kids, I heard the vibration of
an incoming email. I rolled over and
checked it.

In the last year, I haven’t driven a
commute of more than 15 minutes — or
walked more than five — without open-
ing at least one app on my iPhone.

Last weekend, everyone in my house
heard what sounded like a deep breath-
ing sound in our kitchen. Then I open

How I Became the Tony Montana of the Internet
By DAvE PELL

 31

the door and I heard it in the backyard
too. I started to get nervous. It was the
kind of sound that would provide an
appropriate backdrop to a horror movie
that was just about to get scary. I walked
to the front of my driveway. I explored
the garage. I put my ear to heating ducts
and water pipes. Everywhere, I heard the
sound. Inhale, exhale. Inhale, exhale. I
ran back into the house to tell the kids to
pack a bag, we were getting out of there.
Then my daughter pointed to my pocket.
I reached in and pulled out my iPhone
on which I had inadvertently opened the
Balloonimals app which makes a blowing
noise until you start the game.

Suddenly I knew what Tony Montana
meant when he said, “Say hello to my
little friend.”

At the moment, I felt stupid. But then
I realized that the breathing was real. My
iPhone is alive. I hear it breathing right
now. Do you hear yours?

I went from being the Tony Montana
who came to Miami with nothing and

worked his way to the top through a
combination of sheer will, toughness
and a knack for avoiding chainsaws,
to being the Tony Montana who was
unconsciously fantasizing about his sister
and yelling obscenities to an empty room
while soaking neck-deep in a cocaine-
fueled bubble bath.

The realtime web has become a habit.
It’s a twitch. I do it without thinking.
More importantly, when I succumb to
the reflex of checking it every few min-
utes or seconds, I do so at the expense
of thinking. When is the last time you
stood in line at a bank without checking
your iPhone? What about waiting for a
long stoplight or sitting at a restaurant
counter? Those moments, now domi-
nated by the internet reflex must have
been used for something else before all
this technology climbed into our pockets.
What were we thinking about when we
had all that extra time?

I don’t remember. But I’m pretty sure
it was more important than all these

updates I habitually check.
When the WiFi went down during the

official iPhone 4 demo, didn’t you sort of
wish Steve Jobs would turn to the crowd
and say, “You know what, let’s just talk.”

But that could have never happened.
We know from his late night email
exchanges with customers that Steve
Jobs is no longer just a dealer either.

Is there a pill for this twitch or a salve
to slow this reflex? I don’t know. While I
search, I hear the constant repetition of an
updated version of another Scarface quote.

You gotta make the money first. Then
when you get the money, you get the
power. Then when you get the power,
then you get the women.

Then you get the iPhone. n

Dave Pell writes Tweetage Wasteland, Confes-
sions of an Internet Superhero. He is web entre-
preneur and investor and lives in San Francisco.

Reprinted with permission of the original author. First appeared in http://hn.my/tonymontana/.

http://pasqualedsilva.com/hire
http://hn.my/tonymontana/

32 PROGRAMMING

Advanced
Programming
Languages

Students often ask for a
recommendation on what
language they should learn
next. If you’re looking for

a job in industry, my reply is to learn
whatever is hot right now: C++, Java and
C# — and probably Python, Ruby, PHP
and Perl too.

If, on the other hand, you’re interested
in enlightenment, academic research
or a start-up, the criterion by which
you should choose your next language
is not employability, but expressive-
ness. In academic research and in

entrepreneurship, you need to multiply
your effectiveness as a programmer, and
since you (probably) won’t be working
with an entrenched code base, you are
free to use whatever language best suits
the task at hand.

Here you’ll find descriptions of four
good languages to learn — Haskell, Scala,
ML and Scheme — with a list of my
favorite features for each, and pointers
on where to learn more.

of course, this short list is by no
means exhaustive. There are many
uncommon languages that excel at

niches. To name just a few more, there’s
also D for systems programming; Erlang
or Clojure for concurrency; and Datalog
for constraint programming. Then there
are languages like Smalltalk — alternate
yet fully capable universes that branched
off from mainstream computing long ago.

I encourage my students to never
stop learning niche languages. They
expand your modes of thinking, the
kinds of problems you solve quickly and
your appreciation for the meaning of
computation.

PROGRAMMING

By MATT MIGHT

 33

Haskell
Haskell excels as a language for writing
a compiler, an interpreter or a static
analyzer. I don’t do a lot of artificial
intelligence, natural-language processing
or machine-learning research, but if I
did, Haskell would be my first pick there
too. (Scheme would be a strong second.)
Haskell is the only widely used pure, lazy
functional programming language.

Like Standard ML and oCaml,
Haskell uses an extension of Hindley-
Milner-style type inference, which means
that the programmer doesn’t have to
write down (most) types, because the
compiler can infer them. It has been my
experience that it is difficult to get a bug
through the Hindley-Milner type system.
In fact, experienced programmers
become adept at encoding correctness
constraints directly into the Haskell type
system. A common remark after pro-
gramming in Haskell (or ML) for the first
time is that once the program compiles,
it’s almost certainly correct.

As a pure language, side effects
(mutations of variables or data structures
and I/o) are prohibited in the language
proper. This has forced the language’s
designers to think seriously about how to
provide such functionality. Their answer,
monads, enables one to perform side
effects and I/o inside a safely constrained
framework. Naturally, Haskell lets users
define their own monads, and now the
programmer has access to monads for
continuations, transducers, exceptions,
logic programming and more.

Aside from being pure, Haskell is also
lazy. That is, an expression in Haskell is
not evaluated until (and unless) its result
is required to make forward compu-
tational progress. Some have argued
that the promised efficiency gains from
laziness haven’t materialized, but that’s
not of concern for me. I appreciate lazi-
ness for the increase in expressiveness.
In Haskell, it is trivial to describe data
structures of infinite extent. Where other
languages permit mutually recursive
functions, Haskell permits mutually
recursive values.

More pragmatically, I have found
laziness useful in encoding option types,
where utilizing the empty case should
always nuke the program. In Haskell, you
can avoid creating an option type and
instead use error to produce the empty
value. Because of laziness, every type in
Haskell automatically has two additional
values: non-termination and error. Used
well, this eliminates much tedious pat-
tern matching.

My favorite feature of Haskell is type
classes. Haskell’s type system allows
the compiler to infer the correct code
to run based on its type context, even
when that type context is also inferred.
The example of type classes that got me
excited was bounded lattices. A bounded
lattice is a mathematical structure that
has a least element (bot), a greatest ele-
ment (top), a partially ordered less than
relation (<:), a join operation (join) and a
meet operation (meet).

In Haskell, one can define a bounded
lattice as a type class:

class Lattice a where
 top :: a
 bot :: a
 (<:) :: a -> a -> Bool
 join :: a -> a -> a
 meet :: a -> a -> a

This says that if type a is a Lattice,

then a supports the expected operations.
What I really love about Haskell is

that it lets the programmer define condi-
tional instances of a class; for example:

instance (Ord k, Lattice a) =>
 Lattice (Map k a) where
 bot = Map.empty
 top = error $ "Cannot be
 represented."
 f <: g = Map.isSubmapOfBy (<:) f g
 f `join` g = Map.unionWith join f g
 f `meet` g = Map.intersectionWith
 meet f g

This rule says that if the type k is an

instance of an order (class ord) and the

type a is an instance of a lattice, then a
map from k to a is also an instance of a
lattice.

As another example, you can easily
turn the Cartesian product of two lat-
tices into a lattice:

instance (Lattice a, Lattice b) =>
 Lattice (a,b) where
 bot = (bot,bot)
 top = (top,top)
 (a1,b1) <: (a2,b2) = (a1 <: a2) ||
 (a1 == a2 && b1 <: b2)
 (a1,b1) `join` (a2,b2) =
 (a1 `join` a2, b1 `join` b2)
 (a1,b1) `meet` (a2,b2) =
 (a1 `meet` a2, b1 `meet` b2)

It’s easy to make the “natural” lifting of

the lattice operations, relations and ele-
ments to almost any data structure. The
end result is that if you use the expres-
sion bot or the relation <: anywhere in
your code, Haskell can infer, at compile-
time, their “appropriate” meaning based
on the type of the expression (which it
can also infer).

The ML languages have functors to
play the role of type classes, but they
lack the ad hoc polymorphism support
of Haskell’s type classes. Having spent a
considerable amount of time program-
ming in the MLs and in Haskell, the
practical ramifications of inference on
expressiveness cannot be understated.

Favorite features
•	 Type classes.
•	 A rich library.
•	 Monads.
•	 List comprehensions.
•	 Compact, readable, whitespace-guided

syntax.

34 PROGRAMMING

Standard Ml and oCaml
The ML family is a sweet spot in the
language-design space: strict, side-effect-
able and Hindley-Milner type-inferred.
This makes these languages practical
for real-world projects that need high
performance and stronger guarantees of
correctness. The ML family has gained
traction with aerospace engineers (for
its support of bug-free code) and with
programmers in the financial industry
(for the same reason). Standard ML was
the first functional language I learned
well, so I still remember being shocked
by its expressiveness.

Today, oCaml seems to be the
popular ML to learn, but there is at least
one convincing argument in SML’s favor:
MLton. MLton really delivers on the
thesis that functional languages offer the
best opportunities at optimization. As
a whole-program optimizing compiler,
I’ve yet to see another compiler match
its performance. I once created openGL
bindings for MLton to toy around with
3D graphics, and the resulting program

ran faster than the C++-based model I
had used as a reference, with just 10% of
the code.

The functor system in SML, while
more verbose than Haskell’s type class
system, is more flexible. once you
instantiate a type class T for a kind/
type k in Haskell, you can’t instantiate
that type class again for that kind/type.
With functors, each instance gets its own
name, so you can have multiple instances
of a given functor for the same type. It’s
rarely been the case that I needed such
expressiveness, but it has been nice in
those cases where I have.

The other modern branch on the ML
family tree, oCaml, is good to know
because there is a large community
invested in it, which means that there are
a lot of libraries available. The oCaml
tool-chain is also rich, with interpreters,
optimizing compilers and byte-code
compilers available to the developer.

Because the ML languages are more
expressive than all the mainstream

languages, but they still permit side
effects, they make a nice stop on the way
to learning Haskell. In Haskell, program-
mers not yet well versed in functional
program design may find they repeatedly
code themselves into a corner, where
they don’t have access to the monad
that they need. The MLs keep the side
effects “escape hatch” open to patch
over incomplete design, which prevents
projects from coming to a sudden,
unexpected “refactor-or-abort” decision
point. one useful measure of a language
is how well it tolerates a bad or incom-
plete design for the software system,
since design is something that inevitably
changes as a program evolves. In this
regard, the MLs still have the upper hand
over Haskell.

Favorite features
•	 Flex records. (SML only)
•	 Pattern matching.
•	 Structures and functors.

Scheme
Scheme is a language with a pure core
(λ-calculus and the theory of lists) and
a design mandate to maximize freedom
of expression. It’s untyped, which makes
it ideal for web-based programming and
rapid prototyping. Given its Lisp heri-
tage, Scheme is a natural fit for artificial
intelligence.

With its support for arbitrary-preci-
sion numerics, Scheme is also my first
choice for implementing cryptographic
algorithms. [For examples, see my short
implementations of RSA and the Fermat
and Solovay-Strassen primality tests in
Scheme.]

By far, the most compelling reason
to use Scheme is its macro system.
All of the macro systems available
for Scheme, including the standard
syntax-rules and syntax-case systems, are
Turing-equivalent.

Consequently, the programmer can
reconfigure Scheme to reduce the
impedance mismatch between the
language and the task at hand. Combined
with support for first-class continuations,
it is even possible to embed alternate
programming paradigms (like logic
programming).

For example, in the code:

 (let ((x (amb 3 4 5))
 (y (amb 6 7 8)))
 (assert (= (+ x y) 12))
 (display x)
 (display y))

It is possible to write an amb macro
that “chooses” the right argument to
make a subsequent assert statement be
true. (This program prints 4 and then 8.)

In Scheme, during any point in the
computation, the program can capture
the current continuation as a procedure:
invoking this procedure returns the
program to the evaluation context that
existed when the continuation was cap-
tured. Programming with continuations
feels like traveling back and forth in time
and shifting between parallel universes.

Ultimately, Scheme is so minimal and
extensible that there’s not a whole lot to
say about it, except that Scheme allows
the programmer to extract from the
language whatever the programmer is
willing to put into it.

Favorite features
•	 S-Expressions as syntax and data.
•	 Hygienic macros.
•	 Continuations.
•	 Higher-order functions.

Scala
Scala is a rugged, expressive, strictly
superior replacement for Java. Scala is
the programming language I use for tasks
like writing web servers or IRC clients. In
contrast to oCaml, which was a func-
tional language with an object-oriented
system grafted to it, Scala feels more like
a true hybrid. That is, object-oriented
programmers should be able to start
using Scala immediately, picking up the
functional parts only as they choose to.

I learned of Scala from Martin
odersky’s invited talk at PoPL 2006. At
the time, I saw functional programming
as strictly superior to object-oriented
programming, so I didn’t see a need for a
language that fused functional and object-
oriented programming. (That was probably
because all I wrote back then were compil-
ers, interpreters and static analyzers.)

The need for Scala didn’t become
apparent to me until I wrote a concur-
rent HTTPD from scratch to support
long-polled AJAX for yaplet. In order
to get multicore support, I wrote the
first version in Java. I don’t think Java is
all that bad, and I can enjoy well-done
object-oriented programming. As a func-
tional programmer, however, the lack of
terse support for functional programming
features (like higher-order functions)
grates on me. So, I gave Scala a chance.

Scala runs on the JvM, so I could
gradually port my existing project into
Scala. It also means that Scala, in addi-
tion to its own rather large library, has

access to the entire Java library as well.
This means you can get real work done
in Scala.

As I started using Scala, I became
impressed by how tightly the functional
and object-oriented worlds had been
blended. In particular, Scala has a power-
ful case class/pattern-matching system
that addressed annoyances lingering
from my experiences with Standard ML,
oCaml and Haskell: the programmer can
decide which fields of an object should
be matchable (as opposed to being
forced to match on all of them), and
variable-arity arguments are permitted.
In fact, Scala even allows programmer-
defined patterns.

I write a lot of functions that operate
on abstract syntax nodes, so it’s nice to
match on only the syntactic children,
while ignoring fields for annotations or
source location.

The case class system lets one split
the definition of an algebraic data type
across multiple files or across multiple
parts of the same file. Scala also sup-
ports well-defined multiple inheritance
through class-like constructs called traits.
And, Scala allows operator overloading;
even function application and collection
update can be overloaded. Used well, this
tends to make my Scala programs more
intuitive and concise.

one feature that turns out to save a
lot of code, in the same way that type
classes save code in Haskell, is implicits.

You can imagine implicits as an API for
the error-recovery phase of the type-
checker. In short, when the type checker
needs an X but got a Y, it will check to
see if there’s a function marked implicit
in scope that converts Y into X; if it finds
one, it automatically applies the implicit
function to repair the type error.

Implicits make it possible to look
like you’re extending the functional-
ity of a type for a limited scope. For
example, suppose you want to “add” an
escapeHTML() method to type String.
You can’t modify the definition of
String, but with implicits, you can make
it so that when type-checking fails on
myString.escapeHTML(), it will look for
an implicit function in scope that can
convert a String object into a type that
supports the escapeHTML() method.

Implicits also allow cleaner domain-
specific embedded languages (DSELs) in
Scala, since they allow you to transpar-
ently map Scala literals (like 3 or “while”)
into literals in the DSEL.

Favorite features
•	 JvM support.
•	 Intelligent operator overloading.
•	 Extensive library.
•	 Case classes/pattern matching.
•	 Extensible pattern matching.
•	 Multiple inheritance via traits.
•	 Rich, flexible object constructors.
•	 Implicit type conversions.
•	 Lazy fields and arguments.

Resources available on the original post
http://hn.my/apl/. n

Matt Might is a professor of Computer Science
at the University of Utah. His research inter-
ests include programming language design,
static analysis and compiler optimization.
He blogs at http://matt.might.net/articles/ and
tweets from @mattmight.

Reprinted with permission of the original author. First appeared in http://hn.my/apl/.

http://hn.my/apl/
http://matt.might.net/articles/
http://hn.my/apl/

36 PROGRAMMING

Emacs Isn’t For Everyone

Chas emerick recently posted
the results of his State of Clo-
jure survey. It turns out that

the (self-selected) group of Clojure-using
respondents happen to prefer Emacs as
their IDE of choice, eclipsing all other
editors by a large margin.

Chas then has this to say:

“I continue to maintain that broad accep-
tance and usage of Clojure will require
that there be top-notch development
environments for it that mere mortals
can use and not be intimidated by...and
IMo, while emacs is hugely capable, I
think it falls down badly on a number of
counts related to usability, community/
ecosystem, and interoperability.”

As an avid, die-hard vim and Emacs
user for life, I’m going to agree.

Mere mortals?
Emacs isn’t difficult to learn. Not in the
sense of requiring skill or cleverness. It
is however extremely painful to learn. I
think there’s a difference.

The key word is tedium. Learning
Emacs is a long process of rote memori-
zation and repetition of commands until
they become muscle memory. If you’re
smart enough to write programs, you
can learn Emacs. You just have to keep
dumping time into the task until you
become comfortable.

Until you’re comfortable, you face the
unpleasant task of un-learning all of your

habits and forming new ones. And you’re
trying to do this at the same time you’re
undertaking another, even harder task:
writing programs. And if you’re a new
Clojurist, and you’re learning Emacs and
Clojure from scratch at the same time,
well, get the headache medication ready.

As a programmer and someone who
sits in front of a computer 12+ hours a
day, I consider myself pretty flexible and
capable of picking up a new user inter-
face. As someone who had been using
vim for years prior to trying Emacs, I
considered myself more than capable
of learning even a strange and foreign
interface. I’d done it once before.

But learning Emacs still hurt. oh how
it hurt. I blogged while I was learning
it, and you can see my pain firsthand. I
sometimes hear people say “I tried Emacs
for a whole month and I still couldn’t get
it”. Well, it took me over a year to be able
to sit down at Emacs and use it fluidly
for long periods of time without tripping
over the editor.

To be fair, I’m talking here about using
Emacs as a programming environment.
Using Emacs as a Notepad replace-
ment could be learned in short order.
C-x C-f, C-x C-s, or use the menus,
there you go. Using it comfortably as a
full-fledged IDE is significantly harder
and requires you to touch (and master)
many more features. Syntax highlight-
ing, tab-completion, directory traversal
and cwd issues, enabling line numbers,
version-control integration, build tool

integration, Emacs’ funky regex syntax
for search/replace, Emacs’ bizarre kill
rings and undo rings, the list goes on.
These things are very flexible in Emacs,
which is a great thing, but it’s also an
impediment to learning how to configure
and use them. There’s no getting around
the time investment.

And it’s not just a matter of learning
some new keyboard shortcuts. There’s a
new vocabulary to learn. You don’t open
files, you visit them. What’s a buffer?
What’s a window? (Not what you think it
is.) What’s a point? What’s a mark? kill?
Yank? “Apropos”? Huh? C-c M-o means
what exactly? My keyboard doesn’t have
a Meta key. Yeah, you can use CUA mode
and get your modernized Copy/Cut/
Paste shortcuts back, but that’s the tip of
the iceberg. It’s hard even to know where
to begin looking for help.

Yeah, Emacs came first, before our
more common and more modern
conventions were established, and that
explains why it’s so different. That
doesn’t change the fact that Emacs today
is a strange beast.

Community and ecosystem
Personally I find the Emacs community
to be a pretty nice bunch. In the highest
tradition of hackerdom and open source
software, Emacs users seem to be eager
and willing to share their elisp snippets
and bend over backwards to help other
people learn the editor. I got lots of help
when I was struggling and learning Emacs.

By BRIAN CARPER

Reprinted with permission of the original author. First appeared in http://hn.my/emacs/.

 37

The Emacs wiki is an awesome
resource. The official documentation is so
complete (and so long) that it leaves me
speechless sometimes. And there are a
million 3rd-party scripts for it. Whatever
you want Emacs to do is generally a short
google away.

If there’s anything wrong with the
Emacs community, it’d be people who
take Emacs evangelism overboard. The
answer to “I don’t want to have to use
Emacs to use your language” can’t be
“Be quiet and learn more Emacs,” or
“If you’re too dumb to learn Emacs, go
away.” In some communities there is
certainly some of that. But thankfully I
don’t see it much in the Clojure commu-
nity. Let’s hope it stays that way.

Interoperability
once someone spends the time to write
a suitable amount of elisp, Emacs can
interoperate with anything. I think so
many people use SLIME for Clojure
development precisely because it
interoperates so darned well with Lisps.
SLIME is amazing. You probably can’t
beat Paredit either, and Emacs’ flex-
ibility is precisely what makes things like
Paredit possible.

The problem is the amount of time
you have to spend to get that interoper-
ability set up and to learn how to use
it. After two years of using Emacs and
Clojure together, every once in a while I
still find myself bashing my face on my
desk trying to get the latest SLIME or
swank to work just right, or trying to get
a broken key binding fixed, or tweak-
ing some other aspect of Emacs that’s
driving me crazy. one day, curly braces
stopped being recognized as matched
pairs by Paredit. Why? No idea; I fixed it,
but it was a half hour of wasted time.

Emacs is good at integrating with Git
too. So good that there are four or five
different Emacs-Git libraries, each with a
different interface and feature set. I gave
up eventually and went back to using
the command line. (You can embed a
shell / command line right in Emacs.
There are three or four different libraries
to do that too.)

The wealth of options of ways to do
things in Emacs is simultaneously a good
thing, overwhelming and confusing. If all
you want is something that works and
gets out of your way, too many options
can be worse than one option, even if
that one option isn’t entirely ideal.

Emacs’ Java interop, I know nothing
about. Almost certainly, Emacs can come
close to a modern Java IDE for fancy
features like tab-completion and docu-
ment lookups and project management.
But how long is it going to take you to
figure out that tab-completion is called
hippie-expand in Emacs? That and a
million other surprises await you.

What’s my point?
There was a pithy quote floating around
on Twitter a while back (I think quoting
Rich Hickey):

“one possible way to deal with being
unfamiliar with something is to become
familiar with it.”

That’s true, and you could say that
of Emacs. I strongly believe that when
it comes to computers, there’s no such
thing as “intuitive”. There’s stuff you’ve
already spent a lot of time getting used
to, and there’s stuff you haven’t.

But certain things require more of a
time investment than others. Could I
learn Clojure if all the keywords were in
Russian or Chinese instead of my native
English? Sure, but it’d take me a long
time. I’d certainly have to have a good
reason to attempt it.

I learned Emacs partly because it was
hard. I saw it as a challenge. It was fun,
yet painful, but more pain, more glory.
Mastering it makes me feel like I’ve
accomplished something. I’d encourage
other people to learn Emacs and vim
too. I think the benefits of knowing them
outweigh the cost and time investment
of learning them.

But I didn’t learn Emacs with the
goal of being productive. I learned it for
the same reason some people build cars
in their garages, while most people just
buy one and drive it to and from work

every day. I learned Emacs because I love
programming and I love playing with
toys, and vim or Emacs are as nice a toy
as I could ask for. (I love programming
enough to form strong opinions and
write huge blog posts about text editors.)
For me, productivity was a beneficial
side-effect.

There are only so many hours in a
day. There are a lot of other challenges
to conquer, some of which offer more
tangible benefits than Emacs mastery
would get you. Mastering an arcane text
editor isn’t necessarily going to be on the
top of the list of everyone’s goals in life,
especially when there are other editors
that are easier to use and give you a
significant subset of what Emacs would
give you. We have to pick our battles.

So I understand when people say
they don’t want to learn Emacs. I think
maybe so many Clojurists use Emacs
right now because we’re still in the early
adopter stage. If you’re using Clojure
today, you’re probably pretty enthusi-
astic about programming. You’re likely
invested enough to be willing to burn the
required time to learn Emacs.

If Clojure becomes “big”, there are
going to be a lot of casual users. A casual
user of Clojure isn’t going to learn
Emacs. They’re going to silently move
on to another language. And I really
think that new blood is vital to the
strength of a community and necessary
for the continued healthy existence of a
programming language.

So Clojure does need alternatives.
I’ll stick with Emacs myself, but there
should be practical alternatives. I’d
encourage the Clojure community to
continue to support and enjoy Emacs,
but don’t push it too hard. n

Brian is a professional programmer and hobbyist
text-editor enthusiast. He writes about these
topics at http://briancarper.net.

http://hn.my/emacs/
http://briancarper.net

38 PROGRAMMING

What Every
Developer Should
Know About URLs

I have recently written about the value of fundamentals in
software development. I am still firmly of the opinion that
you need to have your fundamentals down solid, if you

want to be a decent developer. However, several people made
a valid point in response to that post, in that it is often difficult
to know what the fundamentals actually are (be they macro
or micro level). So, I thought it would be a good idea to do an
ongoing series of posts on some of the things that I consider to
be fundamental – this post is the first installment.

Being a developer this day and age, it would be almost
impossible for you to avoid doing some kind of web-related
work at some point in your career. That means you will inevi-
tably have to deal with URLs at one time or another. We all
know what URLs are about, but there is a difference between
knowing URLs like a user and knowing them like a developer
should know them.

As a web developer you really have no excuse for not know-
ing everything there is to know about URLs, there is just not
that much to them. But, I have found that even experienced
developers often have some glaring holes in their knowledge of
URLs. So, I thought I would do a quick tour of everything that
every developer should know about URLs. Strap yourself in –
this won’t take long :).

the Structure of A Url
This is easy, starts with HTTP and ends with .com right :)?
Most URLs have the same general syntax, made up of the
following nine parts:

<scheme>://<username>:<password>@<host>:<port>/<path>;
<parameters>?<query>#<fragment>

Most URLs won’t contain all of the parts. The most common
components, as you undoubtedly know, are the scheme, host
and path. Let’s have a look at each of these in turn:

•	 scheme – this basically specifies the protocol to use to access
the resource addressed by the URL (e.g. http, ftp). There are
a multitude of different schemes. A scheme is official if it has
been registered with the IANA (like http and ftp), but there
are many unofficial (not registered) schemes which are also
in common use (such as sftp, or svn). The scheme must start
with a letter and is separated from the rest of the URL by
the first : (colon) character. That’s right, the // is not part of
the separator but is in fact the beginning of the next part of
the URL.

By ALAN SkoRkIN

 39

•	 username – this along with the password, the host and the
port form what’s known as the authority part of the URL.
Some schemes require authentication information to access
a resource this is the username part of that authentication
information. The username and password are very common
in ftp URLs, they are less common in http URLs, but you do
come across them fairly regularly.

•	 password – the other part of the authentication information
for a URL, it is separated from the username by another :
(colon) character. The username and password will be sepa-
rated from the host by an @ (at) character. You may supply
just the username or both the username and password e.g.:

ftp://some_user@blah.com/
ftp://some_user:some_path@blah.com/

If you don’t supply the username and password and the
URL you’re trying to access requires one, the application you’re
using (e.g. browser) will supply some defaults.

•	 host – as I mentioned, it is one of the components that
makes up the authority part of the URL. The host can be
either a domain name or an IP address, as we all should
know the domain name will resolve to an IP address (via a
DNS lookup) to identify the machine we’re trying to access.

•	 port – the last part of the authority. It basically tells us what
network port a particular application on the machine we’re
connecting to is listening on. As we all know, for HTTP the
default port is 80, if the port is omitted from an http URL,
this is assumed.

•	 path – is separated from the URL components preceding
it by a / (slash) character. A path is a sequence of segments
separated by / characters. The path basically tells us where
on the server machine a resource lives. Each of the path
segments can contain parameters which are separated from
the segment by a ; (semi-colon) character e.g.:

http://www.blah.com/some;param1=foo/crazy;param2=bar/path.html

 The URL above is perfectly valid, although this ability of
path segments to hold parameters is almost never used (I’ve
never seen it personally).

•	 parameters – talking about parameters, these can also appear
after the path but before the query string, also separated
from the rest of the URL and from each other by ; characters
e.g.:

http://www.blah.com/some/crazy/path.html;param1=foo;
param2=bar

As I said, they are not very common.

•	 query – these on the other hand are very common as every
web developer would know. This is the preferred way to
send some parameters to a resource on the server. These are
key=value pairs and are separated from the rest of the URL
by a ? (question mark) character and are normally separated
from each other by & (ampersand) characters. What you
may not know is the fact that it is legal to separate them
from each other by the ; (semi-colon) character as well. The
following URLs are equivalent:

http://www.blah.com/some/crazy/path.html?param1=foo
¶m2=bar

http://www.blah.com/some/crazy/path.html?param1=foo
;param2=bar

•	 fragment – this is an optional part of the URL and is used to
address a particular part of a resource. We usually see these
used to link to a particular section of an html document.
A fragment is separated from the rest of the URL with a #
(hash) character. When requesting a resource addressed by a
URL from a server, the client (i.e. browser) will usually not
send the fragment to the server (at least not where HTTP is
concerned). once the client has fetched the resource, it will
then use the fragment to address the relevant part.

That’s it, all you need to know about the structure of a URL.
From now on you no longer have any excuse for calling the
fragment – “that hash link thingy to go to a particular part of
the html file”.

Special Characters In Urls
There is a lot of confusion regarding which characters are
safe to use in a URL and which are not, as well as how a URL
should be properly encoded. Developers often try to infer this
stuff from general knowledge (i.e. the / and : characters should
obviously be encoded since they have special meaning in a
URL). This is not necessary, you should know this stuff solid –
it’s simple. Here is the low down.

There are several sets of characters you need to be aware
of when it comes to URLs. Firstly, the characters that have
special meaning within a URL are known as reserved charac-
ters, these are:

";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | ","

What this means is that these characters are normally used
in a URL as-is and are meaningful within a URL context (i.e.
separate components from each other etc.). If a part of a URL
(such as a query parameter), is likely to contain one of these
characters, it should be escaped before being included in the
URL. I have spoken about URL encoding before, check it out,
we will revisit it shortly.

40 PROGRAMMING

The second set of characters to be aware of is the unreserved
set. It is made up of the following characters:

"-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"

The characters can be included as-is in any part of the URL
(note that they may not be allowed as part of a particular
component of a URL). This basically means you don’t need to
encode/escape these characters when including them as part of
a URL. You CAN escape them without changing the semantics
of a URL, but it is not recommended.

The third set to be aware of is the ’unwise’ set, i.e. it is
unwise to use these characters as part of a URL. It is made up
of the following characters:

"{" | "}" | "|" | "\" | "^" | "[" | "]" | "`"

These characters are considered unwise to use in a URL
because gateways are known to sometimes modify such
characters, or they are used as delimiters. That doesn’t mean
that these characters will always be modified by a gateway, but
it can happen. So, if you include these as part of a URL without
escaping them, you do this at your own risk. What it really
means is you should always escape these characters if a part of
your URL (i.e. like a query param) is likely to contain them.

The last set of characters is the excluded set. It is made up
of all ASCII control characters, the space character as well the
following characters (known as delimiters):

"<" | ">" | "#" | "%" | '"'

The control characters are non-printable US-ASCII char-
acters (i.e. hexadecimal 00-1F as well as 7F). These characters
must always be escaped if they are included in a component
of a URL. Some, such as # (hash) and % (percent) have special
meaning within the context of a URL (they can really be con-
sidered equivalent to the reserved characters). other characters
in this set have no printable representation and therefore
escaping them is the only way to represent them. The <, > and
“ characters should be escaped since these characters are often
used to delimit URLs in text.

To URL encode/escape a character we simply append its 2
character ASCII hexadecimal value to the % character. So, the
URL encoding of a space character is %20 – we have all seen
that one. The % character itself is encoded as %25.

That’s all you need to know about various special characters
in URLs. of course aside from those characters, alpha-numerics
are allowed and don’t need to be encoded :).

A few things you have to remember. A URL should always
be in its encoded form. The only time you should decode parts
of the URL is when you’re pulling the URL apart (for whatever
reason). Each part of the URL must be encoded separately, this
should be pretty obvious, you don’t want to try encoding an
already constructed URL, since there is no way to distinguish
when reserved characters are used for their reserved purpose

(they shouldn’t be encoded) and when they are part of a URL
component (which means they should be encoded). Lastly you
should never try to double encode/decode a URL. Consider
that if you encode a URL once but try to decode it twice and
one of the URL components contains the % character you can
destroy your URL e.g.:

http://blah.com/yadda.html?param1=abc%613

When encoded it will look like this:

http://blah.com/yadda.html?param1=abc%25613

If you try to decode it twice you will get:

http://blah.com/yadda.html?param1=abc%613
Correct

http://blah.com/yadda.html?param1=abca3
Stuffed

By the way I am not just pulling this stuff out of thin air. It is
all defined in RFC 2396, you can go and check it out if you like,
although it is by no means the most entertaining thing you can
read, I’d like to hope my post is somewhat less dry :).

Absolute vs relative Urls
The last thing that every developer should know is the differ-
ence between an absolute and relative URL as well as how to
turn a relative URL into its absolute form.

The first part of that is pretty easy, if a URL contains a
scheme (such as http), then it can be considered an absolute
URL. Relative URLs are a little bit more complicated.

A relative URL is always interpreted relative to another URL
(hence the name :)), this other URL is known as the base URL.
To convert a relative URL into its absolute form we firstly need
to figure out the base URL, and then, depending on the syntax
of our relative URL we combine it with the base to form its
absolute form.

We normally see a relative URL inside an html document. In
this case there are two ways to find out what the base is.

1. The base URL may have been explicitly specified in the
document using the HTML <base> tag.

2. If no base tag is specified, then the URL of the html docu-
ment in which the relative URL is found should be treated
as the base.

 41

once we have a base URL, we can try and turn our relative
URL into an absolute one. First, we need to try and break our
relative URL into components (i.e. scheme, authority (host,
port), path, query string, fragment). once this is done, there are
several special cases to be aware of, all of which mean that our
relative URL wasn’t really relative.

•	 if there is no scheme, authority or path, then the relative
URL is a reference to the base URL

•	 if there is a scheme then the relative URL is actually an
absolute URL and should be treated as such

•	 if there is no scheme, but there is an authority (host, port),
then our relative URL is likely a network path, we take the
scheme from our base URL and append our “relative” URL
to it separating the two by ://

If none of those special cases occurred then we have a real
relative URL on our hands. Now we need to proceed as follows.

•	 we inherit the scheme, and authority (host, port) from the
base URL

•	 if our relative URL begins with /, then it is an absolute path,
we append it to the scheme and authority we inherited from
the base using appropriate separators to get our absolute
URL

•	 if relative URL does not begin with / then we take the
path of the base URL, discarding everything after the last /
character

•	 we then take our relative URL and append it to the resulting
path, we now need to do a little further processing which
depends on the first several characters of our relative URL

•	 if there is a ./ (dot slash) anywhere in a resulting path we
remove it (this means our relative URL started with ./ i.e. ./
blah.html)

•	 if there is a ../ (dot dot slash) anywhere in the path then we
remove it as well as the preceding segment of the path i.e.
all occurrences of “<segment>/../” are removed, keep doing
this step until no more ../ can be found anywhere in the path
(this means our relative path started with one or more ../ i.e.
../blah.html or ../../blah.html etc.)

•	 if the path ends with .. then we remove it and the preceding
segment of the path, i.e. “<segment>/..” is removed (this
means our relative path was .. (dot dot))

•	 if the path ends with a . (dot) then we remove it (this most
likely means our relative path was . (dot))

At this point we simply append any query string or fragment
that our relative URL may have contained to our URL using
appropriate separators and we have finished turning our rela-
tive URL into an absolute one.

Here are some examples of applying the above algorithm:
1)
base: http://www.blah.com/yadda1/yadda2/
yadda3?param1=foo#bar
relative: rel1

final absolute: http://www.blah.com/yadda1/yadda2/rel1

2)
base: http://www.blah.com/yadda1/yadda2/
yadda3?param1=foo#bar
relative: /rel1

final absolute: http://www.blah.com/rel1

3)
base: http://www.blah.com/yadda1/yadda2/
yadda3?param1=foo#bar
relative: ../rel1

final absolute: http://www.blah.com/yadda1/rel1

4)
base: http://www.blah.com/yadda1/yadda2/
yadda3?param1=foo#bar
relative: ./rel1?param2=baz#bar2

final absolute: http://www.blah.com/yadda1/yadda2/
rel1?param2=baz#bar2

5)
base: http://www.blah.com/yadda1/yadda2/
yadda3?param1=foo#bar
relative: ..

final absolute: http://www.blah.com/yadda1/

Now you should be able to confidently turn any relative
URL into an absolute one, as well as know when to use the
different forms of relative URL and what the implications will
be. For me this has come in handy time and time again in my
web development endeavours.

There you go that’s really all there is to know about URLs, it’s
all relatively simple (forgive the pun :)) so no excuse for being
unsure about some of this stuff next time. Talking about next
time, one of the most common things you need to do when it
comes to URLs is recognise if a piece of text is in fact a URL, so
next time I will show you how to do this using regular expres-
sions (as well as show you how to pull URLs out of text). It
should be pretty easy to construct a decent regex now that we’ve
got the structure and special characters down. Stay tuned. n

Alan Skorkin is a developer and aspiring software craftsman from Mel-
bourne, Australia. He is often found causing controversy on his blog
skorks.com, while sharing his thoughts about hacking, the software devel-
opment profession and the people who work in it.Reprinted with permission of the original author. First appeared in http://hn.my/urls/.

http://hn.my/urls/

42 PROGRAMMING

Almost exactly a
year ago, Google
made one of the
most remarkable

press releases in the Web 2.0 era. of
course, by “press release”, I actually
mean keynote at their own conference,
and by “remarkable” I mean potentially-
transformative and groundbreaking. I am
referring of course to the announcement
of Google Wave, a real-time collaboration
tool which has been in open beta for the
last several months.

For those of you who don’t know,
Google Wave is a collaboration tool
based on real-time, simultaneous editing
of documents via a mechanism known
as “operational transformation”. Entities
which appear as messages in the Wave
client are actually “waves”. Within each
“wave” is a set of “wavelets”, each of
which contains a set of documents. Indi-
vidual documents can represent things
like messages, conversation structure
(which reply goes where, etc), spell
check metadata and so on. Documents
are composed of well-formed XML with
an implicit root node. Additionally, they
carry special metadata known as “annota-
tions” which are (potentially-overlap-
ping) key/value ranges which span across
specific regions of the document. In the
Wave message schema, annotations are
used to represent things like bold/italic/
underline/strikethrough formatting, links,

caret position, the conversation title
and a host of other things. An example
document following the Wave message
schema might look something like this:

<body>
 <line/>Test message
 <line/>
 <line/>Lorem ipsum dolor sit amet.
</body>

(assuming the following annotations):
•	 style/font-weight -> bold
•	 style/font-style -> italic
•	 link/manual -> http://www.google.com

You will notice that the annotations
for style/font-style and link/manual
actually overlap. This is perfectly accept-
able in Wave’s document schema. The
resulting rendering would be something
like this:

Test message

Lorem ipsum dolor sit amet.

The point of all this explaining is to
give you at least a passing familiarity
with the Wave document schema so that
I can safely use its terminology in the
article to come. See, Wave itself is not
nearly so interesting as the idea upon
which it is based. As mentioned, every
document in Wave is actually just raw

XML with some ancillary annotations.
As far as the Wave server is concerned,
you can stuff whatever data you want
in there, just so long as it’s well-formed.
It just so happens that Google chose to
implement a communications tool on
top of this data backend, but they could
have just as easily implemented some-
thing more esoteric, like a database or a
windowing manager.

The key to Wave is the mechanism
by which we interact with these docu-
ments: operational transformation. Wave
actually doesn’t allow you to get access
to a document as raw XML or anything
even approaching it. Instead, it demands
that all of your access to the document
be performed in terms of operations. This
has two consequences: first, it allows for
some really incredible collaborative tools
like the Wave client; second, it makes
it really tricky to implement any sort of
Wave-compatible service. Given the fact
that I’ve been working on Novell Pulse
(which is exactly this sort of service),
and in light of the fact that Google’s
documentation on the subject is sparing
at best, I thought I would take some
time to clarify this critical piece of the
puzzle. Hopefully, the information I’m
about to present will make it easier for
others attempting to interoperate with
Wave, Pulse and the (hopefully) many
oT-based systems yet to come.

Understanding and Applying
Operational Transformation

Algorithm Behind Google Wave and Google Docs

By DANIEL SPIEWAk

 43

operations
Intuitively enough, the fundamental
building block of operational transforms
are operations themselves. An operation
is exactly what it sounds like: an action
which is to be performed on a document.
This action could be inserting or deleting
characters, opening (and closing!) an
XML element, fiddling with annotations,
etc. A single operation may actually
perform many of these actions. Thus,
an operation is actually made up of a
sequence of operation components, each
of which performs a particular action
with respect to the cursor (not to be
confused with the caret, which is specific
to the client editor and not at all interest-
ing at the level of oT).

There are a number of possible
component types. For example:

•	 insertCharacters — Inserts the speci-
fied string at the current index

•	 deleteCharacters — Deletes the speci-
fied string from the current index

•	 openElement — Creates a new XML
open-tag at the current index

•	 deleteopenElement — Deletes the
specified XML open-tag from the
current index

•	 closeElement — Closes the first
currently-open tag at the current
index

•	 deleteCloseElement — Deletes the
XML close-tag at the current index

•	 annotationBoundary — Defines the
changes to any annotations (starting or
ending) at the current index

•	 retain — Advances the index a speci-
fied number of items

Wave’s oT implementation actually
has even more component types, but
these are the important ones. You’ll
notice that every component has some-
thing to do with the cursor index. This
concept is central to Wave’s oT imple-
mentation. operations are effectively a
stream of components, each of which
defines an action to be performed which
effects the content, the cursor or both.

For example, we can encode the example
document from earlier as follows:

1. openElement(’body’)
2. openElement(’line’)
3. closeElement()
4. annotationBoundary(startKeys:

[’style/font-weight’], startVal-
ues: [’bold’])

5. insertCharacters(’Test message’)
6. annotationBoundary(endKeys:

[’style/font-weight’])
7. openElement(’line’)
8. closeElement()
9. annotationBoundary(startKeys:

[’style/font-style’], startValues:
[’italic’])

10. openElement(’line’)
11. closeElement()
12. insertCharacters(’Lorem ’)
13. annotationBoundary(startKeys:

[’link/manual’], startValues:
[’http://www.google.com’])

14. insertCharacters(’ipsum’)
15. annotationBoundary(endKeys:

[’style/font-style’])
16. insertCharacters(’ dolor’)
17. annotationBoundary(endKeys:

[’link/manual’])
18. insertCharacters(’ sit amet.’)
19. closeElement()

obviously, this isn’t the most stream-
lined way of referring to a document’s
content for a human, but a stream of
discrete components like this is perfect
for automated processing. The real utility
of this encoding though doesn’t become
apparent until we look at operations
which only encode a partial document;
effectively performing a particular muta-
tion. For example, let’s follow the advice
of Strunk and White and capitalize the
letter ‘m’ in our title of ‘Test message’.
What we want to do (precisely-speaking)
is delete the ‘m’ and insert the string ‘M’
at its previous location. We can do that
with the following operation:

1. retain(8)
2. deleteCharacters(’m’)
3. insertCharacters(’M’)
4. retain(38)

Instead of adding content to the docu-
ment at ever step, most of this operation
actually leaves the underlying document
untouched. In practice, retain() tends to
be the most commonly used component
by a wide margin. The trick is that every
operation must span the full width of
the document. When evaluating this
operation, the cursor will start at index
0 and walk forward through the existing
document and the incoming operation
one item at a time. Each XML tag (open
or close) counts as a single item. Charac-
ters are also single items. Thus, the entire
document contains 47 items.

our operation above cursors harm-
lessly over the first eight items (the
<body> tag, the <line/> tag and the string
’Test ’). once it reaches the ’m’ in ’mes-
sage’, we stop the cursor and perform a
mutation. Specifically, we’re using the
deleteCharacters() component to remove
the ’m’. This component doesn’t move
the cursor, so we’re still sitting at index
8. We then use the insertCharacters()
component to add the character ’M’ at
precisely our currently location. This
time, some new characters have been
inserted, so the cursor advances to the
end of the newly-inserted string (mean-
ing that we are now at index 9). This is
intuitive because we don’t want to have
to retain() over the text we just inserted.
We do however want to retain() over the
remainder of the document, seeing as
we don’t need to do anything else. The
final rendered document looks like the
following:

Test Message

Lorem ipsum dolor sit amet.

44 PROGRAMMING

Composition
one of Google’s contributions to the
(very old) theory behind operational
transformation is the idea of operation
composition. Because Wave operations
are these nice, full-span sequences of
discrete components, it’s fairly easy to
take two operations which span the
same length and merge them together
into a single operation. The results of
this action are really quite intuitive. For
example, if we were to compose our
document operation (the first example
above) with our ’m’-changing operation
(the second example), the resulting
operation would be basically the same
as the original document operation,
except that instead of inserting the
text ’Test message’, we would insert
’Test Message’. In composing the two
operations together, all of the retains
have disappeared and any contradicting
components (e.g. a delete and an insert)
have been directly merged.

Composition is extremely important
to Wave’s oT as we will see once we
start looking at client/server asymmetry.
The important thing to notice now is
the fact that composed operations must
be fundamentally compatible. Primarily,
this means that the two operations must
span the same number of indexes. It
also means that we cannot compose an
operation which consists of only a text
insert with an operation which attempts
to delete an XML element. obviously,
that’s not going to work. Wave’s Composer
utility takes care of validating both the
left and the right operation to ensure
that they are compatible as part of the
composition process.

Please also note that composition is
not commutative; ordering is significant.
This is also quite intuitive. If you type
the character a and then type the
character b, the result is quite different
than if you type the character b and then
type the character a.

transformation
Here’s where we get to some of the
really interesting stuff and the motiva-
tion behind all of this convoluted
representational baggage. operational
Transformation, at its core, is an optimistic
concurrency control mechanism. It
allows two editors to modify the same
section of a document at the same time
without conflict. or rather, it provides
a mechanism for sanely resolving those
conflicts so that neither user intervention
nor locking become necessary.

This is actually a harder problem
than it sounds. Imagine that we have the
following document (represented as an
operation):

1. insertCharacters(’go’)

Now imagine that we have two editors
with their cursors positioned at the end
of the document. They simultaneously
insert a t and a character (respectively).
Thus, we will have two operations sent
to the server. The first will retain 2 items
and insert a t, the second will retain 2
items and insert a. Naturally, the server
needs to enforce atomicity of edits at
some point (to avoid race conditions
during I/o), so one of these operations
will be applied first. However, as soon as
either one of these operations is applied,
the retain for the other will become
invalid. Depending on the ordering, the
text of the resulting document will either
be ’goat’ or ’gota’.

In and of itself, this isn’t really a
problem. After all, any asynchronous
server needs to make decisions about
ordering at some point. However, issues
start to crop up as soon as we consider
relaying operations from one client to
the other. Client A has already applied
its operation, so its document text will
be ’got’. Meanwhile, client B has already
applied its operation, and so its docu-
ment text is ’goa’. Each client needs the
operation from the other in order to have
any chance of converging to the same
document state.

Unfortunately, if we naïvely send A’s
operation to B and B’s operation to A,
the results will not converge:
•	 ’got’ + (retain(2); insertCharacters(’a’)

= ’goat’
•	 ’goa’ + (retain(2); insertCharacters(’t’)

= ’gota’
Even discounting the fact that we have

a document size mismatch (our opera-
tions each span 2 indexes, while their
target documents have width 3), this is
obviously not the desired behavior. Even
though our server may have a sane con-
cept of consistent ordering, our clients
obviously need some extra hand-holding.
Enter oT.

What we have here is a simple one-
step diamond problem. In the theoretical
study of oT, we generally visualize
this situation using diagrams like the
following:

The way you should read diagrams like
this is as a graphical representation of
operation application on two documents
at the same time. Client operations move
the document to the left. Server opera-
tions move the document to the right.
Both client and server operations move
the document downward. Thus, diagrams
like these let us visualize the application
of operations in a literal “state space”.
The dark blue line shows the client’s
path through state space, while the gray
line shows the server’s. The vertices of
these paths (not explicitly rendered)
are points in state space, representing
a particular state of the document.
When both the client and the server line
pass through the same point, it means
that the content of their respective
documents were in sync, at least at that
particular point in time.

 45

So, in the diagram above, operation a
could be client A’s operation (retain(2);
insertCharacters(’t’)) and operation b
could be client B’s operation. This is of
course assuming that the server chose B’s
operation as the “winner” of the race con-
dition. As we showed earlier, we cannot
simply naïvely apply operation a on the
server and b on the client, otherwise we
could derive differing document states
(’goat’ vs ’gota’). What we need to do
is automatically adjust operation a with
respect to b and operation b with respect
to a.

We can do this using an operational
transform. Google’s oT is based on the
following mathematical identity:

In plain English, this means that the
transform function takes two operations,
one server and one client, and produces
a pair of operations. These operations
can be applied to their counterpart’s end
state to produce exactly the same state
when complete. Graphically, we can
represent this by the following:

Thus, on the client-side, we receive
operation b from the server, pair it with
a to produce (a’, b’), and then compose
b’ with a to produce our final document
state. We perform an analogous process
on the server-side. The mathematical
definition of the transform function
guarantees that this process will produce
the exact same document state on both
server and client.

Coming back to our concrete example,
we can finally solve the problem of ’goat’
vs ’gota’. We start out with the situation
where client A has applied operation a,
arriving at a document text of ’got’. It
now receives operation b from the server,
instructing it to retain over 2 items and
insert character ’a’. However, before
it applies this operation (which would
obviously result in the wrong document
state), it uses operational transformation
to derive operation b’. Google’s oT
implementation will resolve the conflict
between ’t’ and ’a’ in favor of the server.
Thus, b’ will consist of the following
components:

1. retain(2)
2. insertCharacters(’a’)
3. retain(1)

You will notice that we no longer have
a document size mismatch, since that last
retain() ensures that the cursor reaches the
end of our length-3 document state (’got’).

Meanwhile, the server has received our
operation a and it performs an analogous
series of steps to derive operation a’.
once again, Google’s oT must resolve
the conflict between ’t’ and ’a’ in the
same way as it resolved the conflict for
client A. We’re trying to apply opera-
tion a (which inserts the ’t’ character at
position 2) to the server document state,
which is currently ’goa’. When we’re
done, we must have the exact same docu-
ment content as client A following the
application of b’. Specifically, the server
document state must be ’goat’. Thus, the
oT process will produce the operation a’
consisting of the following components:

retain(3)
insertCharacters(’t’)

Client A applies operation b’ to its
document state, the server applies opera-
tion a’ to its document state, and they
both arrive at a document consisting of
the text ’goat’. Magic!

It is very important that you really
understand this process. oT is all about
the transform function and how it
behaves in this exact situation. As it turns
out, this is all that oT does for us in and
of itself. operational transformation is
really just a concurrency primitive. It
doesn’t solve every problem with col-
laborative editing of a shared document
(as we will see in a moment), but it does
solve this problem very well.

one way to think of this is to keep in
mind the “diamond” shape shown in the
above diagram. oT solves a very simple
problem: given the top two sides of the
diamond, it can derive the bottom two
sides. In practice, often times we only
want one side of the box (e.g. client A
only needs operation b’, it doesn’t need
a’). However, oT always gives us both
pieces of the puzzle. It “completes” the
diamond, so to speak.

Compound ot
So far, everything I have presented has
come pretty directly from the white-
papers on waveprotocol.org. However,
contrary to popular belief, this is not
enough information to actually go out
and implement your own collaborative
editor or Wave-compatible service.

The problem is that oT doesn’t really
do all that much in and of itself. As men-
tioned above, oT solves for two sides
of the diamond in state space. It only
solves for two sides of a simple, one-step
diamond like the one shown above. Let
me say it a third time: the case shown
above is the only case which oT handles.
As it turns out, there are other cases
which arise in a client/server collabora-
tive editor like Google Wave or Novell
Pulse. In fact, most cases in practice are
much more complex than the one-step
diamond.

46 PROGRAMMING

For example, consider the situation
where the client performs two operations
(say, by typing two characters, one after
the other) while at the same time the
server performs one operation (originat-
ing from another client). We can diagram
this situation in the following way:

So we have two operations in the
client history, a and b, and only one
operation in the server history, c. The
client is going to send operations a and
b to the server, presumably one after
the other. The first operation (a) is no
problem at all. Here we have the simple
one-step diamond problem from above,
and as well know, oT has no trouble
at all in resolving this issue. The server
transforms a and c to derive operation
a’, which it applies to its current state.
The resulting situation looks like the
following:

ok, so far so good. The server has
successfully transformed operation a
against c and applied the resulting a’ to
its local state. However, the moment we
move on to operation b, disaster strikes.
The problem is that the server receives
operation b, but it has nothing against
which to transform it!

Remember, oT only solves for the
bottom two sides of the diamond given
the top two sides. In the case of the first
operation (a), the server had both top
sides (a and c) and thus oT was able to
derive the all-important a’. However, in
this case, we only have one of the sides
of the diamond (b); we don’t have the
server’s half of the equation because
the server never performed such an
operation!

In general, the problem we have here
is caused by the client and server diverg-
ing by more than one step. Whenever
we get into this state, the oT becomes
more complicated because we effectively
need to transform incoming operations
(e.g. b) against operations which never
happened! In this case, the phantom
operation that we need for the purposes
of oT would take us from the tail end of
a to the tail end of a’. Think of it like a
“bridge” between client state space and
server state space. We need this bridge,
this second half of the diamond, if we
are to apply oT to solve the problem of
transforming b into server state space.

operation Parentage
In order to do this, we need to add some
metadata to our operations. Not only
do our operations need to contain their
components (retain, etc), they also must
maintain some notion of parentage. We
need to be able to determine exactly
what state an operation requires for
successful application. We will then use
this information to detect the case where
an incoming operation is parented on a
state which is not in our history (e.g. b on
receipt by the server).

For the record, Google Wave uses a
monotonically-increasing scalar version
number to label document states and
thus, operation parents. Novell Pulse
does the exact same thing for compat-
ibility reasons, and I recommend that
anyone attempting to build a Wave-
compatible service follow the same
model. However, I personally think that
compound oT is a lot easier to under-
stand if document states are labeled by a
hash of their contents.

This scheme has some very nice
advantages. Given an operation (and
its associated parent hash), we can
determine instantly whether or not we
have the appropriate document state to
apply said operation. Hashes also have
the very convenient property of converg-
ing exactly when the document states
converge. Thus, in our one-step diamond
case from earlier, operations a and b
would be parented off of the same hash.
operation b’ would be parented off of
the hash of the document resulting from
applying a to the initial document state
(and similarly for a’). Finally, the point
in state space where the client and server
converge once again (after applying their
respective operations) will have a single
hash, as the document states will be syn-
chronized. Thus, any further operations
applied on either side will be parented
off of a correctly-shared hash.

Just a quick terminology note: when
I say “parent hash”, I’m referring to the
hash of the document state prior to
applying a particular operation. When I
say “parent operation” (which I probably
will from time to time), I’m referring to
the hash of the document state which
results from applying the “parent opera-
tion” to its parent document state. Thus,
operation b in the diagram above is par-
ented off of operation a which is parented
off of the same hash as operation c.

Compound ot
Now that our operations have parent
information, our server is capable of
detecting that operation b is not par-
ented off of any state in its history. What
we need to do is derive an operation
which will take us from the parent of
b to some point in server state-space.
Graphically, this operation would look
something like the following (rendered
in dark green):

 47

Fortunately for us, this operation is
fairly easy to derive. In fact, we already
derived and subsequently threw it away!
Remember, oT solves for two sides of the
diamond. Thus, when we transformed
a against c, the resulting operation pair
consisted of a’ (which we applied to our
local state) and another operation which
we discarded. That operation is precisely
the operation shown in green above.
Thus, all we have to do is re-derive this
operation and use it as the second top
side of the one-step diamond. At this
point, we have all of the information we
need to apply oT and derive b’, which
we can apply to our local state:

At this point, we’re almost done. The
only problem we have left to resolve is
the application of operation c on the
client. Fortunately, this is a fairly easy
thing to do; after all, c is parented off of
a state which the client has in its history,
so it should be able to directly apply oT.

The one tricky point here is the fact
that the client must transform c against
not one but two operations (a and b).
Fortunately, this is fairly easy to do.
We could apply oT twice, deriving an
intermediary operation in the first step
(which happens to be exactly equivalent
to the green intermediary operation
we derived on the server) and then
transforming that operation against b.
However, this is fairly inefficient. oT is
fast, but it’s still O(n log n). The better
approach is to first compose a with b and
then transform c against the composi-
tion of the two operations. Thanks to

Google’s careful definition of operation
composition, this is guaranteed to
produce the same operation as we would
have received had we applied oT in two
separate steps.

The final state diagram looks like the
following:

Client/Server Asymmetry
Technically, what we have here is enough
to implement a fully-functional client/
server collaborative editing system.
In fact, this is very close to what was
presented in the 1995 paper on the
Jupiter collaboration system. However,
while this approach is quite functional, it
isn’t going to work in practice.

The reason for this is in that confus-
ing middle part where the server had to
derive an intermediary operation (the
green one) in order to handle operation
b from the client. In order to do this, the
server needed to hold on to operation a
in order to use it a second time in deriv-
ing the intermediary operation. Either
that, or the server would have needed
to speculatively retain the intermediary
operation when it was derived for the
first time during the transformation of a
to a’. Now, this may sound like a trivial
point, but consider that the server must
maintain this sort of information essen-
tially indefinitely for every client which it
handles. You begin to see how this could
become a serious scalability problem!

In order to solve this problem, Wave
(and Pulse) imposes a very important
constraint on the operations incoming to

the server: any operation received by the
server must be parented on some point
in the server’s history. Thus, the server
would have rejected operation b in our
example above since it did not branch
from any point in server state space. The
parent of b was a, but the server didn’t
have a, it only had a’ (which is clearly a
different point in state space).

of course, simply rejecting any diver-
gence which doesn’t fit into the narrow,
one-step diamond pattern is a bit harsh.
Remember that practically, almost all
situations arising in collaborative editing
will be multi-step divergences like our
above example. Thus, if we naïvely
rejected anything which didn’t fit into
the one-step mold, we would render our
collaborative editor all-but useless.

The solution is to move all of the
heavy lifting onto the client. We don’t
want the server to have to track every
single client as it moves through state
space since there could be thousands (or
even millions) of clients. But if you think
about it, there’s really no problem with
the client tracking the server as it moves
through state space, since there’s never
going to be any more than one (logical)
server. Thus, we can offload most of the
compound oT work onto the client side.

Before it sends any operations to the
server, the client will be responsible for
ensuring those operations are parented
off of some point in the server’s history.
obviously, the server may have applied
some operations that the client doesn’t
know about yet, but that’s ok. As long
as any operations sent by the client are
parented off of some point in the server’s
history, the server will be able to trans-
form that incoming operation against
the composition of anything which
has happened since that point without
tracking any history other than its own.
Thus, the server never does anything
more complicated than the simple one-
step diamond divergence (modulo some
operation composition). In other words,
the server can always directly apply oT
to incoming operations, deriving the
requisite operation extremely efficiently.

48 PROGRAMMING

Unfortunately, not all is sunshine and
roses. Under this new regime, the client
needs to work twice as hard, translating its
operations into server state space and (cor-
respondingly) server operations back into
its state space. We haven’t seen an example
of this “reverse” translation (server to
client) yet, but we will in a moment.

In order to maintain this guarantee
that the client will never send an opera-
tion to the server which is not parented
on a version in server state space, we
need to impose a restriction on the
client: we can never send more than one
operation at a time to the server. This
means that as soon as the client sends an
operation (e.g. a in the example above),
it must wait on sending b until the
server acknowledges a. This is necessary
because the client needs to somehow
translate b into server state space, but
it can’t just “undo” the fact that b is
parented on a. Thus, wherever b eventu-
ally ends up in server state space, it has
to be a descendant of a’, which is the
server-transformed version of a. Literally,
we don’t know where to translate b into
until we know exactly where a fits in the
server’s history.

To help shed some light into this
rather confusing scheme, let’s look at an
example:

In this situation, the client has
performed two operations, a and b. The
client immediately sends operation a to
the server and buffers operation b for
later transmission (the lighter blue line
indicates the buffer boundary). Note
that this buffering in no way hinders the
application of local operations. When the
user presses a key, we want the editor to
reflect that change immediately, regard-
less of the buffer state. Meanwhile, the
server has applied two other operations,
c and d, which presumably come from
other clients. The server still hasn’t
received our operation a.

Note that we were able to send a
immediately because we are preserving
every bit of data the server sends us. We
still don’t know about c and d, but we do
know that the last time we heard from
the server, it was at the same point in
state space as we were (the parent of a
and c). Thus, since a is already parented
on a point in server state space, we can
just send it off.

Now let’s fast-forward just a little bit.
The server receives operation a. It looks
into its history and retrieves whatever
operations have been applied since the
parent of a. In this case, those operations
are c and d. The server then composes c
and d together and transforms a against
the result, producing a’.

After applying a’, the server broad-
casts the operation to all clients, including
the one which originated the operation.
This is a very important design feature:
whenever the server applies a trans-
formed operation, it sends that operation
off to all of its clients without delay. As
long as we can guarantee strong ordering
in the communication channels between
the client and the server (and often we
can), the clients will be able to count on
the fact that they will receive operations
from the server in exactly the order in
which the server applied them. Thus,
they will be able to maintain a locally-
inferred copy of the server’s history.

This also means that our client is going
to receive a’ from the server just like
any other operation. In order to avoid
treating our own transformed operations
as if they were new server operations, we
need some way of identifying our own
operations and treating them specially. To

do this, we add another bit of metadata
to the operation: a locally-synthesized
unique ID. This unique ID will be
attached to the operation when we send
it to the server and preserved by the
server through the application of oT.
Thus, operation a’ will have the same ID
as operation a, but a very different ID
from operations c and d.

With this extra bit of metadata in
place, clients are able to distinguish their
own operations from others sent by the
server. Non-self-initiated operations (like
c and d) must be translated into client
state space and applied to the local
document. Self-initiated operations (like
a’) are actually server acknowledgements
of our currently-pending operation. once
we receive this acknowledgement, we
can flush the client buffer and send the
pending operations up to the server.

Moving forward with our example,
let’s say that the client receives opera-
tion c from the server. Since c is already
parented on a version in our local
history, we can apply simple oT to
transform it against the composition of a
and b and apply the resulting operation
to our local document:

 49

of course, as we always need to keep
in mind, the client is a live editor which
presumably has a real person typing
madly away, changing the document
state. There’s nothing to prevent the
client from creating another operation,
parented off of c’ which pushes it even
further out of sync with the server:

This is really getting to be a bit of
a mess! We’ve only sent one of our
operations to the server, we’re trying to
buffer the rest, but the server is trickling
in more operations to confuse things and
we still haven’t received the acknowl-
edgement for our very first operation! As
it turns out, this is the most complicated
case which can ever arise in a Wave-style
collaborative editor. If we can nail this
one, we’re good to go.

The first thing we need to do is figure
out what to do with d. We’re going to
receive that operation before we receive
a’, and so we really need to figure out
how to apply it to our local document.
once again, the problem is that the
incoming operation (d) is not parented
off of any point in our state space, so oT
can’t help us directly. Just as with b in
our fundamental compound oT example
from earlier, we need to infer a “bridge”
between server state space and client
state space. We can then use this bridge to
transform d and slide it all the way down
into position at the end of our history.

To do this, we need to identify con-
ceptually what operation(s) would take
us from the parent of d to the the most
recent point in our history (after apply-
ing e). Specifically, we need to infer the
green dashed line in the diagram below.

once we have this operation (whatever
it is), we can compose it with e and get
a single operation against which we can
transform d.

The first thing to recognize is that the
inferred bridge (the green dashed line)
is going to be composed exclusively of
client operations. This is logical as we are
attempting to translate a server opera-
tion, so there’s no need to transform
it against something which the server
already has. The second thing to realize
is that this bridge is traversing a line
parallel to the composition of a and b,
just “shifted down” exactly one step. To
be precise, the bridge is what we would
get if we composed a and b and then
transformed the result against c.

Now, we could try to detect this case
specifically and write some code which
would fish out a and b, compose them
together, transform the result against c,
compose the result of that with e and
finally transform d against the final prod-
uct, but as you can imagine, it would be a
mess. More than that, it would be dread-
fully inefficient. No, what we want to do
is proactively maintain a bridge which
will always take us from the absolute
latest point in server state space (that
we know of) to the absolute latest point
in client state space. Thus, whenever we
receive a new operation from the server,
we can directly transform it against this
bridge without any extra effort.

Building the Bridge
We can maintain this bridge by compos-
ing together all operations which have
been synthesized locally since the point
where we diverged from the server. Thus,
at first, the bridge consists only of a. Soon
afterward, the client applies its next
operation, b, which we compose into the
bridge. of course, we inevitably receive
an operation from the server, in this case,
c. At this point, we use our bridge to
transform c immediately to the correct
point in client state space, resulting in
c’. Remember that oT derives both
bottom sides of the diamond. Thus, we
not only receive c’, but we also receive a
new bridge which has been transformed
against c. This new bridge is precisely the
green dashed line in our diagram above.

Meanwhile, the client has performed
another operation, e. Just as before, we
immediately compose this operation
onto the bridge. Thanks to our bit of
trickery when transforming c into c’, we
can rest assured that this composition
will be successful. In other words, we
know that the result of applying the
bridge to the document resulting from
c will be precisely the document state
before applying e, thus we can cleanly
compose e with the bridge.

Finally, we receive d from the server.
Just as with c, we can immediately
transform d against the bridge, deriving
both d’ (which we apply to our local
document) as well as the new bridge,
which we hold onto for future server
translations.

50 PROGRAMMING

With d’ now in hand, the next opera-
tion we will receive from the server will
be a’, the transformed version of our
a operation from earlier. As soon as we
receive this operation, we need to com-
pose together any operations which have
been held in the buffer and send them
off to the server. However, before we
send this buffer, we need to make sure
that it is parented off of some point in
server state space. And as you can see by
the diagram above, we’re going to have
troubles both in composing b and e (since
e does not descend directly from b) and
in guaranteeing server parentage (since b
is parented off of a point in client state
space not shared with the server).

To solve this problem, we need to
play the same trick with our buffer as we
previously played with the translation
bridge: any time the client or the server
does anything, we adjust the buffer
accordingly. With the bridge, our invari-
ant was that the bridge would always
be parented off of a point in server state
space and would be the one operation
needed to transform incoming server
operations. With the buffer, the invariant
must be that the buffer is always par-
ented off of a point in server state space
and will be the one operation required
to bring the server into perfect sync with
the client (given the operations we have
received from the server thus far).

The one wrinkle in this plan is the fact
that the buffer cannot contain the opera-
tion which we have already sent to the
server (in this case, a). Thus, the buffer
isn’t really going to be parented off of
server state space until we receive a’, at
which point we should have adjusted the
buffer so that it is parented precisely on
a’, which we now know to be in server
state space.

Building the buffer is a fairly straight-
forward matter. once the client sends a
to the server, it goes into a state where
any further local operations will be
composed into the buffer (which is
initially empty). After a, the next client
operation which is performed is b, which
becomes the first operation composed
into the buffer. The next operation is

c, which comes from the server. At this
point, we must somehow transform the
buffer with respect to the incoming
server operation. However, obviously the
server operation (c) is not parented off of
the same point as our buffer (currently
b). Thus, we must first transform c against
a to derive an intermediary operation, c”,
which is parented off of the parent of the
buffer (b):

once we have this inferred operation,
c”, we can use it to transform the buffer
(b) “down” one step. When we derive c”,
we also derive a transformed version of a,
which is a”. In essence, we are anticipat-
ing the operation which the server will
derive when it transforms a against its
local history. The idea is that when we
finally do receive the real a’, it should be
exactly equivalent to our inferred a”.

At this point, the client performs
another operation, e, which we
immediately compose into the buffer
(remember, we also composed it into
the bridge, so we’ve got several things
going on here). This composition works
because we already transformed the
buffer (b) against the intervening server
operation (c). So e is parented off of c’,
which is the same state as we get were
we to apply a” and then the buffer to the
server state resulting from c. This should
sound familiar. By a strange coincidence,
a” composed with the buffer is precisely
equivalent to the bridge. In practice, we
use this fact to only maintain one set of
data, but the process is a little easier to
explain when we keep them separate.

Checkpoint time! The client has
performed operation a, which it sent
to the server. It then performed opera-
tion b, received operation c and finally
performed operation e. We have an
operation, a” which will be equivalent to
a’ if the server has no other intervening
operations. We also have a buffer which
is the composition of a transformed b and
e. This buffer, composed with a”, serves
as a bridge from the very latest point in
server state space (that we know of) to
the very latest point in client state space.

Now is when we receive the next
operation from the server, d. Just as when
we received c, we start by transforming it
against a” (our “in flight” operation). The
resulting transformation of a” becomes
our new in flight operation, while the
resulting transformation of d is in turn
used to transform our buffer down
another step. At this point, we have a
new a” which is parented off of d and
a newly-transformed buffer which is
parented off of a”.

Finally, we receive a’ from the server.
We could do a bit of verification now to
ensure that a” really is equivalent to a’,
but it’s not necessary. What we do need to
do is take our buffer and send it up to the
server. Remember, the buffer is parented
off of a”, which happens to be equivalent
to a’. Thus, when we send the buffer, we
know that it is parented off of a point in
server state space. The server will eventu-
ally acknowledge the receipt of our buffer
operation, and we will (finally) converge
to a shared document state:

 51

The good news is that, as I mentioned
before, this was the most complicated
case that a collaborative editor client ever
needs to handle. It should be clear that
no matter how many additional server
operations we receive, or how many more
client operations are performed, we can
simply handle them within this general
framework of buffering and bridging. And,
as when we sent the a operation, sending
the buffer puts the client back into buffer
mode with any new client operations
being composed into this buffer. In prac-
tice, an actively-editing client will spend
most of its time in this state: very much
out of sync with the server, but maintain-
ing the inferred operations required to get
things back together again.

Conclusion
The oT scheme presented in this article
is precisely what we use on Novell
Pulse. And while I’ve never seen Wave’s
client code, numerous little hints in the
waveprotocol.org whitepapers as well
as discussions with the Wave API team
cause me to strongly suspect that this is
how Google does it as well. What’s more,
Google Docs recently revamped their
word processing application with a new
editor based on operational transforma-
tion. While there hasn’t been any word
from Google on how exactly they handle
“compound oT” cases within Docs, it
looks like they followed the same route
as Wave and Pulse (the tell-tale sign is
a perceptible “chunking” of incoming
remote operations during connection lag).

None of the information presented
in this article on “compound oT” is
available within Google’s documentation
on waveprotocol.org (unfortunately).
Anyone attempting to implement a
collaborative editor based on Wave’s oT
would have to rediscover all of these
steps on their own. My hope is that this
article rectifies that situation. To the
best of my knowledge, the information
presented here should be everything you
need to build your own client/server
collaborative editor based on operational
transformation. So, no more excuses for
second-rate collaboration! n

resources
•	 To obtain Google’s oT library, you must take a Mercurial clone of the wave-

protocol repository:

$ hg clone https://wave-protocol.googlecode.com/hg/ wave-protocol

•	 once you have the source, you should be able to build everything you need by
simply running the Ant build script. The main oT classes are
org.waveprotocol.wave.model.document.operation.algorithm.Composer and
org.waveprotocol.wave.model.document.operation.algorithm.Transformer.
Their use is exactly as described in this article. Please note that Transformer does
not handle compound oT, you will have to implement that yourself by using
Composer and Transformer. operations are represented by the
org.waveprotocol.wave.model.document.operation.DocOp interface, and can be
converted into the more useful org.waveprotocol.wave.model.document.operation.
BufferedDocOp implementation by using the
org.waveprotocol.wave.model.document.operation.impl.DocOpUtil.buffer method.

All of these classes can be found in the fedone-api-0.2.jar file.

•	 Google’s own Whitepaper on oT: http://www.waveprotocol.org/whitepapers/
operational-transform

•	 The original paper on the Jupiter system (the primary theoretical basis for Google’s
oT): http://doi.acm.org/10.1145/215585.215706

•	 Wikipedia’s article on operational transformation (surprisingly informative): http://
en.wikipedia.org/wiki/operational_transformation

Daniel Spiewak is a software developer based out of Wisconsin, USA. Over the years, he has worked
with Java, Scala, Ruby, C/C++, ML, Clojure and several experimental languages. He currently spends
most of his free time researching parser theory and methodologies, particularly areas where the field
intersects with functional language design, domain-specific languages and type theory.

Daniel regularly writes articles on his weblog, Code Commit (www.codecommit.com), including his
popular introductory series, Scala for Java Refugees.

Reprinted with permission of the original author. First appeared in http://hn.my/ot/.

http://www.waveprotocol.org/whitepapers/
http://doi.acm.org/10.1145/215585.215706
http://en.wikipedia.org/wiki/Operational_transformation
http://en.wikipedia.org/wiki/Operational_transformation
http://www.codecommit.com
http://hn.my/ot/

52 PROGRAMMING

Photo: João Trindade, http://www.flickr.com/photos/joao_trindade/4363154158/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

http://www.flickr.com/photos/joao_trindade/4363154158/
http://creativecommons.org/licenses/by/2.0/deed.en

 53

Math Library Functions
That Seem Unnecessary

This post will give several
examples of functions include
in the standard C math library

that seem unnecessary at first glance.

Function log1p(x) = log(1 + x)
The function log1p computes log(1 + x).
How hard could this be to implement?

log(1 + x);

Done.
But wait. What if x is very small? If x

is 10-16, for example, then on a typical
system 1 + x = 1 because machine preci-
sion does not contain enough significant
bits to distinguish 1 + x from 1. (For
details, see Anatomy of a floating point
number.) That means that the code
log(1 + x) would first compute 1 +
x, obtain 1, then compute log(1), and
return 0. But log(1 + 10-16) ≈ 10-16. This
means the absolute error is about 10-16
and the relative error is 100%. For values
of x larger than 10-16 but still fairly small,
the code log(1 + x) may not be com-
pletely inaccurate, but the relative error
may still be unacceptably large.

Fortunately, this is an easy problem
to fix. For small x, log(1 + x) is approxi-
mately x. So for very small arguments,
just return x. For larger arguments,
compute log(1 + x) directly.

Why does this matter? The absolute
error is small, even if the code returns
a zero for a non-zero answer. Isn’t that
ok? Well, it might be. It depends on
what you do next. If you add the result

to a large number, then the relative error
in the answer doesn’t matter. But if you
multiply the result by a large number,
your large relative error becomes a large
absolute error as well.

Function expm1(x) = exp(x) – 1
Another function that may seem unnec-
essary is expm1. This function computes
ex – 1. Why not just write this?

exp(x) - 1.0;

That’s fine for moderately large x. For
very small values of x, exp(x) is close to
1, maybe so close to 1 that it actually
equals 1 to machine precision. In that
case, the code exp(x) - 1 will return
0 and result in 100% relative error. As
before, for slightly larger values of x the
naïve code will not be entirely inaccurate,
but it may be less accurate than needed.
The solution is to compute exp(x) - 1
directly without first computing exp(x).
The Taylor series for exp(x) is 1 + x +
x2/2 … So for very small x, we could just
return x for exp(x) – 1. or for slightly
larger x, we could return x + x2/2.

Functions erf(x) and erfc(x)
The C math library contains a pair of
functions erf and erfc. The “c” stands
for “complement” because erfc(x) =
1 – erf(x). The function erf(x) is known
as the error function and is not trivial
to implement. But why have a separate
routine for erfc? Isn’t it trivial to imple-
ment once you have code for erf? For

some values of x, yes, this is true. But if
x is large, erf(x) is near 1, and the code
1 - erf(x) may return 0 when the result
should be small but positive. As in the
examples above, the naïve implementa-
tion results in a complete loss of preci-
sion for some values and a partial loss of
precision for other values.

Functions Γ(x) and log Γ(x)
The standard C math library has two
functions related to the gamma func-
tion: tgamma that returns Γ(x) and lgamma
that return log Γ(x). Why have both?
Why can’t the latter just use the log of
the former? The gamma function grows
extremely quickly. For moderately large
arguments, its value exceeds the capacity
of a computer number. Sometimes you
need these astronomically large numbers
as intermediate results. Maybe you need
a moderate-sized number that is the ratio
of two very large numbers. In such cases,
you need to subtract lgamma values rather
than take the ratio of tgamma values.

Conclusion
The standard C math library distills a lot
of experience. Some of the functions may
seem unnecessary, and so they are for
some arguments. But for other arguments
these functions are indispensable. n

John D. Cook is an applied mathematician. He
lives in Houston, Texas where he works for M. D.
Anderson Cancer Center. His interests include
numerical analysis and Bayesian statistics.

By JoHN D. Cook

Reprinted with permission of the original author. First appeared in http://hn.my/math/.

http://hn.my/math/

54 TECH JOBS

TECH JOBS

ruby/rails engineer
Backupify (http://backupify.com)

Cambridge Mass (exceptional
candidates may work remotely)
We’re looking for kick ass,
agile friendly, Hacker News
reading, Rails developers who
are passionate about coding,
not afraid of the command
line, and love working with
emerging technologies.
Backupify is venture-funded
and you’ll enjoy working on
a loaded MacBook Pro with a
solid team. This is a full-time
position.
To Apply: Send links of past
projects to jobs@backupify.com.

Software engineer
extraHop networks
(http://www.extrahop.com)

Seattle
About You: You’re a good
programmer. You’re skilled
or interested in some or all
of the following: networking,
systems programming, C
programming, Python pro-
gramming, UI/UX design, and
problem solving. You enjoy a
startup environment, which
means getting things done,
not being specialized, and not
attending many meetings.
To Apply: Please send us an
email at jobs@extrahop.com.

PHP Developer
Altruja GmbH (http://www.altruja.de)

Munich, Germany
We are looking for a PHP
Developer, who should have
experience developing Web-
Applications (LAMP, MvC,
Symfony). knowledge of
(X)HTML/CSS/JS would be
good, too. We’re a Start-Up with
funding and offer a nice work
environment and a great team.
To Apply: jobs@altruja.de.

Systems Administrator
Berklee College of Music
(http://www.berkleemusic.com)

Back Bay, Boston, MA
Berklee College of Music’s
online extension school is
looking for a sysadmin to join
their operations team to sup-
port our server infrastructure.
Position requires knowledge
of Linux, Amazon AWS, stor-
age systems and deployment
of high availability websites.
off-hours support required.
To Apply: Send resume
and cover letter to
work@berkleemusic.com.

Security researcher
Harris Corp – Crucial Security
Programs (http://www.harris.com/csp)

Various/US
Security Researcher: User
& kernel-mode C/C++ x86
assembly, reverse engineering,
debugging, & os internals;
automated executable analy-
sis, virtualization, emulation
engines; pen testing; research;
low-level SW protection
methods & executable
dissection algorithms; writing
for highly technical audience;
security components & debug
tools; malware, rootkits, pro-
tection schemes, & virtualiza-
tion theory; Clearable.
To Apply:
kirsten.renner@harris.com.

Android Developer
Bump technologies, Inc.
(http://bu.mp)

Mountain View, CA
Design and build the next
generation of Bump's Android
app and API. Requirements:
Expert in Java (Python and
C/C++/obj-C are a plus),
experience developing native
Android apps or other mobile

apps is great but not required,
an eye for great design and
user experiences, and ability
to communicate within a
close-knit team.
To Apply: Email jobs@bu.mp.

Software engineer
XIA llC (http://www.xia.com)

Bay Area
We make processing electron-
ics for x-ray and gamma-ray
detectors and our software
controls precision instru-
ments. Things we like: C,
C#, F#, Ruby, Lisps, Emacs,
hg, flexible work hours and
Hacker News. Don’t get
too hung up on the specific
languages: we are looking for
skilled developers and are
always open to using new
languages in our projects.
To Apply: Resume and cover
letter to jobs@xia.com.

C++ or Java Developer
Capital Markets Placement
(http://www.CMP.jobs)

new york, Chicago and
Washington, DC
Several investment banks,
one hedge fund, one pub-
lishing and one interactive
client company. Hiring very
actively C++ or Java develop-
ers. C++ positions paying
$100-$250k base, depending
on background and in lieu
with prior compensation
numbers, for example trading
systems will be compensated
to the max. For Java $90-
140k, with Spring/Hibernate
and Javascript.
To Apply: Either apply
directly through website or
contact boris@cmp.jobs with a
resume or questions.

Senior Systems
Architect
MySpace (http://www.myspace.com)

Beverly Hills
The Systems group is looking
for a hacker architect. You
have autonomy to do awe-
some things. Your C#/C/
C++ is masterful, but you
use Ruby/Powershell/Python
where it makes sense. Same
goes for assembly. You are
equally comfortable in front
of a whiteboard or windbg/
gdb. Flexible hours, good pay
and free food. Will relocate.
To Apply: 6362656c6c406d797
3706163652d696e632e636f6d

Awesome Java
Developer
Dubit limited
(http://dubitplatform.com)

leeds, yorkshire, United kingdom
We’re looking for a multi-pur-
pose, penknife of a developer,
who can handle maintaining
our server side technology and
integrate it with our Flex front
end. You’ll need to be experi-
enced in Java, with a comput-
ing related degree, and you’ll
need to know what wait/notify
are for too. Any experience
with socket programming or
servlets is a plus.
To Apply: Send your Cv and
covering letter to
thomas.williams@dubitlimited.com.

http://backupify.com
mailto:jobs%40backupify.com?subject=
http://www.extrahop.com
mailto:jobs%40extrahop.com?subject=
http://www.altruja.de
mailto:jobs%40altruja.de?subject=
http://www.berkleemusic.com
mailto:work%40berkleemusic.com?subject=
http://www.harris.com/csp
mailto:kirsten.renner%40harris.com?subject=
http://bu.mp
mailto:jobs%40bu.mp?subject=
http://www.xia.com
mailto:jobs%40xia.com?subject=
http://www.CMP.jobs
mailto:boris%40cmp.jobs?subject=
http://www.myspace.com
http://dubitplatform.com
mailto:thomas.williams%40dubitlimited.com?subject=

linux Systems
Administrator
Simply Hired
(http://www.simplyhired.com)

Mountain View, CA
Simply Hired is seeking a
great Linux Sys Admin to
help take our production
environment to the next
level of stability, scalability,
automation, and transparency.
Experience in high scale web
site operations; Linux/Unix /
open-source, Perl or Python;
x86 servers, switches, routers;
LAMP/Java/open-source
stacks.
To Apply:
http://hn.my/simplyhired

UI and Software
engineers
Meetup (http://www.meetup.com)

new york, ny (Soho)
Meetup is fast-growing,
venture capital-backed, just-
turned-profitable + a great
place for top talent to do
their best work. We’re hiring
exceptional engineers (QA,
UI, Software & Systems) with
web experience to work on a
product that’s already helped
millions of people find + build
local community worldwide.
To Apply:
http://www.meetup.com/jobs

Sr. Java Software
engineer
Clearspring technologies
(http://www.clearspring.com)

Mclean, VA
We’re looking for an
extremely talented engineer
to help us tackle some of
the largest-scale data pro-
cessing challenges around.
Clearspring’s tools are seen
by over 1 billion people
across the web every month.
From that data, you’ll be
unraveling the mysteries of
web-wide social behavior and
delivering powerful insights
to publishers.
To Apply: jobs@clearspring.com.

Freelance Cake Baker
Flickevents
(http://www.flickevents.com)

Internet or Singapore
FlickEvents is a startup in
Singapore that focuses on
tools that make life easier
for event organizers, and to
make this tradtionally boring
industry a little bit more
bearable. We are looking for
a freelance developer who
does CakePHP 1.2 and above,
and who understands design
patterns, SimpleTest or TDD
practices, and Git.
To Apply: job@flickevents.com.

Freelance Front end
Web Developer
Butchershop Creative
(http://butchershopcreative.com)

San Francisco, CA
Butchershop, a San Francisco
marketing and creative agency
is looking for an imaginative,
innovative, visual, organized,
self-motivated individual
to help with the following:
Design, Color, Typography,
Composition, Illustration, UI/
UX, HTML, CSS, JavaScript.
Bonus if you have used
Python or PHP.
To Apply: Email
info@butchershopcreative.com.

Senior Developer
youDevise, ltd.
(https://dev.youdevise.com)

london, england
60-person agile financial
software company in London
committed to learning and
quality (dojos, TDD, continu-
ous integration, exploratory
testing). Under 10 revenue-
affecting production bugs last
year. Release every 2 weeks.
Mainly Java, also Groovy,
Scala; no prior knowledge of
any language needed.
To Apply: Send Cv to
jobs@youdevise.com.

Senior Software
engineer
Democratic national Commit-
tee/organizing for America
(http://www.barackobama.com)

Washington, DC
The Democratic National
Committee is seeking a
talented software engineer
to empower communities
across the country. The Senior
Software Engineer will build
and maintain a variety of
open, scalable web services
that will be critical pieces of
party infrastructure.
To Apply: Email
techresume@dnc.org.

Senior Software
engineer
F5 networks (http://www.f5.com)

Seattle
Interested in taking your
software engineering career to
the next level? Ever wonder
what 100 Gb/s of TCP traffic
looks like? In GDB? We are
looking for top engineers with
system-level C, networking,
protocol and kernel exper-
tise. Join our team of super
smart engineers working in
a fun and fast-paced highly
technical environment where
your ideas become part of the
solution!
To Apply: http://hn.my/f5

to post a job:

http://hn.my/jobs/ $59

http://www.simplyhired.com
http://hn.my/simplyhired
http://www.meetup.com
http://www.meetup.com/jobs
http://www.clearspring.com
mailto:jobs%40clearspring.com?subject=
http://www.flickevents.com
mailto:job%40flickevents.com?subject=
http://butchershopcreative.com
mailto:info%40butchershopcreative.com?subject=
https://dev.youdevise.com
mailto:jobs@youdevise.com
http://www.barackobama.com
mailto:job%40flickevents.com?subject=
http://www.f5.com
http://hn.my/f5
http://hn.my/jobs/

tell us what you think
Let us know what you liked, and what we need to work on.
Please share your thoughts so we can improve the coming issues. hackermonthly.com/feedback/

Hacker Monthly is an independent project by Netizens Media and not affiliated with Y Combinator in any way.

http://hackermonthly.com/feedback/

	Curator’s Note
	Contents
	FEATURES
	Lessons Learned From 13 Failed Software Products
	How To Become A Millionaire In Three Years

	SPECIAL
	Why I Quit A Six Figure Job
	What Kind Of Girl Do You Think I Am?
	Say Hello to My Little Friend

	STARTUPS
	How I Monetized My Passion
	How I Almost Ignored Our Single Best Source For Customer Feedback
	What Are The Biggest Legal Mistakes That Startups Make?

	PROGRAMMING
	Advanced Programming Languages
	Emacs Isn’t For Everyone
	What Every Developer Should Know About URLs
	Understanding and Applying Operational Transformation
	Math Library Functions That Seem Unnecessary

	TECH JOBS

