Research Statement

Matthew Might

Fall 2007

Modern computing stands at a triple inflection point. With the cost of
information insecurity spiraling, the shift to multi-core architectures now
widespread, and the need for reliable software systems firmly entrenched,
progress in programming languages is not a matter of convenience. It is an
imperative.

Acting as polestar for my research, this imperative guides my search for
solutions in the form of static analyses, linguistic constructs and program
optimizations. These three pursuits reify my research philosophy—a philos-
ophy which pushes responsibility deeper into the compiler and further away
from the programmer.

Security Much of the blame for the mushrooming information security
crisis is attributable to defects at the language-design level, e.g., buffer over-
flows and injection attacks. Many of these defects could have been prevented
outright (or at least ameliorated) when the programming language in use
was designed. Viewing security as the combined responsibility of the com-
piler and the language lends itself to a two-pronged approach in my research:
designing expressive, efficient, secure linguistic constructs for new languages;
and building security-minded static analyses for languages with entrenched
code bases.

Parallelism The trend toward multi-core architectures and away from
pushing up clock rates means that the continuance of Moore’s law now
depends on the average programmers’ ability to fully harness this newfound
parallelism; this is a feat which, with present tools, seems unlikely to happen.
Once more, my research takes a two-front approach: developing linguistic

Matthew Might Research Statement

constructs and paradigms that support the natural construction of either
implicitly or explicitly parallel programs; and building static analyses that
capture the requisite properties for automatic parallelization, e.g., aliasing
and dependencies.

Verification Software systems have become intertwined in every facet of
modern society, and yet, when it comes to soundly predicting the behav-
ior of software, we are toiling in the dark ages. While some progress has
been made, the vast majority of software enters into use with no rigorous
guarantee that it will meet a formal specification. (In fact, most software
lacks even a formal specification to begin with.) My research in verification
consists of transferring results from my work in higher-order flow analysis
into the domain of model checking, where they can be used to verify safety
and liveness properties.

Static analysis

Static analysis forms the backbone of my research into security, parallelism
and verification. That a single analysis often has applications in all three
areas is what makes it possible to tackle them simultaneously: I am not
trying to climb three mountains; I climb only one.

In static analysis, the important metrics for the frameworks I develop are:

e Speed. The average time that it takes an analysis to run.
e Precision. The degree to which an analysis excludes false positives.

e Power. The kinds of questions an analysis can answer soundly.!

ACFA [10, 11], T'CFA [9, 12, 7] and LFA [5] mark my published explorations
in the space measured by these axes. My recent work extends the reach of
these frameworks to cover more language features (e.g., pointer arithmetic),
and develops techniques to move each of these further outward on the afore-
mentioned metrics.

IFor example, asking the question, “Could a String object flow to the variable x?”
requires a less powerful analysis than asking the question “Are all values which flow to the
variable i in bounds for the array a?” In this same sense, must-alias analyses are more
powerful than may-alias analyses.

Matthew Might Research Statement

ACFA: Extracting environment structure from the stack

ACFA, my first foray into static analysis, reasons about environment struc-
ture in higher-order programs [10, 11]. It was a direct response to fundamen-
tal limitations suffered by k-CFA, a framework that has been instrumental
in the field of higher-order and object-oriented flow analysis for nearly two
decades. Chief among these limitations is k-CFA’s inability to make sound
judgments about the equivalence of environments (and, less generally, ob-
jects and aliases) that arise during program execution. Shivers’ seminal
work on k-CFA [15] termed this the environment problem.

As a research community, we have been stumbling over uses for an environ-
ment solution—from Super-(inlining and rematerialization [4] to precise
must-alias analysis and coroutine fusion [16]—for almost as long as k-CFA
has been known. ACFA drew many of these optimizations and analyses into
reach for the first time.

ACFA determines equivalence between environments by enriching proce-
dure strings into frame strings and then statically bounding their shape.
Whereas procedure strings capture procedure call and return events, frame
strings are tuned to pick up push and pop actions on the program stack.
This shift in perspective brings two immediate benefits: (1) stack motion has
a consistent interpretation in places where call and return lose their meaning
or fail to nest; and (2) algebraically, frame strings form a group where pro-
cedure strings formed a monoid. This shift to a group places ACFA atop
a firm theoretical foundation, enabling a sound formalization of the deep
connection between stack and environment behavior.

Next steps for ACFA The original ACFA was only an opening salvo
on frame strings and environment analysis. Since ACFA’s creation, I have
extended its precision and power by generalizing the concept behind ab-
stract garbage collection and abstract counting (covered in the next section
under I'CFA) beyond heaps and environment structure to abstract frames
themselves; ultimately, this allows more of the group-theoretic structure of
frame strings to be recovered and exploited during analysis [13]. At present,
my work in ACFA focuses on transforming it into a CFL-reachability prob-
lem, which will allow both an on-demand formulation (critical for large code
bases and modularity) and a reduction in analysis run-time. Meanwhile, I
have found that ACFA’s results can drive both a Harrison-style dependency
analysis [2] for automatic parallelization and a generalized escape analysis

Matthew Might Research Statement

that works in the presence of full, first-class continuations. Eric Knauel at
the University of Tiibingen has integrated the enhanced ACFA into Scheme
48, and his early results with respect to the generalized escape analysis have
been highly encouraging—I expect to report more on ACFA shortly [13].

I'CFA: Exploiting reachability and cardinality in analysis

My next analysis, 'CFA, strikes at the core problem with abstract interpre-
tation: the loss in precision that comes from mapping the infinite state-space
through which a computation evolves onto a smaller (often finite) abstract
state-space.? This compaction has two effects: (1) it bounds the room
through which the abstract interpretation may run, ensuring its termina-
tion; but (2) it also creates false positives by using a single abstract element
to represent multiple concrete elements. ['CFA, as a higher-order flow anal-
ysis, makes more efficient use of this abstract space by applying the abstract
analog of a long-proven technique—garbage collection—to the environment
structure of the analysis.

Experimentation reveals that abstract garbage collection leads to order-of-
magnitude improvements in precision. But, surprisingly, more than preci-
sion improves: analysis run times also fall by an order of magnitude. In
subsequent investigation, I found that the tightened precision (fewer false
positives) leads to fewer spurious forks into impossible state-space during ab-
stract interpretation (Figure 1, Figure 2). By avoiding these false branches,
the running time of the analysis drops. For these benefits, 'CFA has also
since evolved into a system for software model checking [7].

Beyond boosting speed and precision, abstract garbage collection made a
second solution to the environment problem, abstract counting, feasible.
The crux of the environment problem is determining when the concrete
counterparts of two abstract values are equal. Each abstract value represents
a set of concrete values. Abstract counting upper-bounds the cardinality of
these sets during the analysis. (The upper bounds used in 'CFA are zero,
one, and more than one counterpart.)

Abstract counting drives a simple principle to determine the equality of con-
crete elements (such as environments, objects and aliases) from the equality

2For example, imagine mapping the state-space of a Turing machine onto the states of
an NFA. The resulting NFA is a conservative over-approximation of the original Turing
machine, that is, an abstract interpretation.

Matthew Might Research Statement

Figure 1: State graph for a doubly nested loop generated without abstract
garbage collection.

Figure 2: State graph for a doubly nested loop generated with abstract
garbage collection.

of their abstractions: If two sets A and B are equal, and each set is a sin-
gleton, then any element in the set A is equal to any element of the other
set B and vice versa.

Even without abstract garbage collection, abstract counting is still a sound
enrichment of a flow analysis. However, without abstract garbage collection,
the approximate cardinalities quickly spiral toward the useless “more than
one.” With abstract garbage collection in play, these cardinalities period-
ically reset to zero as resources are collected, and this often leads to the

magic count of “one counterpart.”

Next steps for 'CFA Given its benefits for precision, I'CFA has already
been integrated into compilers by Cameron Zwarich at the University of
Waterloo and, once again, by Eric Knauel at the University of Tiibingen.
Farly empirical results from these efforts have been impressive both in terms
of precision and in the size of the code bases analyzed (up to the largest
available benchmark of 20,000 lines), but they have also revealed even more
opportunities to improve speed.

In recent work with Pete Manolios at Northeastern University, I have gen-

Matthew Might Research Statement

eralized the philosophy behind abstract garbage collection into a philosophy
that calls for management of abstract resources in accordance with optimiz-
ing speed and precision. Under the Cousots’ thirty-year-old formulation of
abstract interpretation [1], context-sensitive approaches felt like the natural
barrier beyond which no analysis could remain sound. So, in order to pursue
“precision-sensitive” abstract resource allocation, we first had to prove that
doing so was sound. Capping our efforts to prove soundness, I discovered
a completeness theorem for polyvariant strategies [8] that, against prevail-
ing intuition, guarantees that all strategies (including non-deterministic and
probabilistic ones) can be proven sound. Armed with this completeness
theorem, we are now actively exploring precision-sensitive abstract inter-
pretations, and already, I have found that a large class of existing context-
sensitive analyses (chiefly, the CFA family) can be made faster at no cost to
precision.

Logic-Flow Analysis: The best of both worlds

My next static analysis framework, logic-flow analysis (LFA) [5], began with
the question, “What would enable a flow-analytic abstract interpretation
to rule out the presence of buffer-overflow vulnerabilities in higher-order
programs where the proof of safety is neither trivial nor lexically apparent?”

A flow analysis adequately handles the task of sorting out prerequisites such
as aliasing for arrays and (due to my prior work) environment structure.
But, a flow analysis is too coarse-grained to determine whether anything
but a trivial array access is in bounds.

LFA recovers the requisite information by performing a propositional ab-
stract interpretation concurrently. In this interpretation, each machine state
abstracts to a set of propositions in first-order logic. This proposition-based
interpretation is fine-grained enough to capture the relevant relationships
between indices and bounds. But, by itself, it is too imprecise to reason
about the requisite control- and data-flow properties.

Algorithmically, LFA is actually the reduced product of these two abstract
interpretations. The end result is an analysis that is simultaneously more
powerful and more precise than what either interpretation achieves indi-
vidually. Critically, it is precise enough to rule out the presence of buffer
overflows, even in situations as complicated as vertex arrays.?

31 spend extra attention on buffer overflow, because according to the U.S. C.E.R.T.

Matthew Might Research Statement

The propositional abstract interpretation can actually capture and verify
a variety of properties beyond buffer-indexing constraints, from lock-usage
invariants all the way to user-proscribed pre- and post-conditions, making
it fertile ground for further investigation.

Next steps for LFA LFA was not conceived in a vacuum; it was created
with security in mind, and as a result, I have worked to bring it to bear on
industrial languages such as C, C++ and Java. Much of this has occurred
in the context of a startup company that I co-founded, Diagis,* which is
creating a static analyzer to perform software security audits. At present, we
have a working prototype implemented for the LLVM compiler framework,
a GCC-front-ended compiler system sponsored by Apple. This prototype
will also be instrumental in delivering empirical validation for my ongoing
research.

The academic-to-industrial adaptation process proved itself a rich source of
further research problems. Naturally, we had to find a way to handle aliasing
soundly in the presence of pointer arithmetic, structures and unsound type
casts. To solve this problem, I drew upon the Peano-theoretic model of
arithmetic to create a Peano-theoretic model of pointer arithmetic: our
analyzer maintains two additional abstract heaps that dynamically construct
address-adjacency information [14].

As with the artificial soundness constraints that resulted in the complete-
ness theorem for polyvariance, we found ourselves needlessly ham-strung by
the conventional correctness framework: conventional correctness forced ab-
stract garbage collection to needlessly hemorrhage propositions each time it
collected. To side-step this barrier, I created the notion of soundness mod-
ulo congruence [6]. Under this correctness regimen, the concrete semantics
are made into an infinitary, branching non-deterministic semantics, where
each state branches to every state with a congruent heap. Correctness then
requires that at least one branch of this infinitary concrete semantics be
simulated.

When it comes to gritty, real-world problems, clean, elegant solutions like
Peano pointer arithmetic, soundness modulo congruence and the polyvari-

vulnerability database, it is the most common vulnerability, and it accounts for more than
a third of the most severe vulnerabilities by itself.

4With myself as principal investigator, Diagis has received a $50,000 grant from the
Georgia Research Alliance and a $100,000 SBIR grant from the National Science Founda-
tion. Diagis currently has five employees.

Matthew Might Research Statement

ance completeness theorem serve as examples of what I look for.

Parallelism

To date, I have begun two concerted efforts in tackling parallelism: (1)
a static analysis for recovering interprocedural dependency information in
higher-order languages, and (2) a coroutine-based approach to multi-core
utilization.

Dependency analysis from continuation marks

Since my work on ACFA, I have been conscious of the need to abstract the
program stack in a precise and efficient fashion. This precise modeling of the
stack can, as a side benefit, capture the interprocedural dependencies that
must be known in order to perform coarse-grained automatic parallelization.
It is roughly true that whatever procedures have frames live on the stack
when a side-effectable resource is read or written have a dependency on
that resource. (It is roughly false in that this naive view does not account
for tail-call optimization.) I recently adapted my analytic framework to
produce dependency information from its continuation-based modeling of
the stack [3]. By using continuation marks, this framework can also still
exploit proper tail-call optimization, which ends up improving speed and
precision in abstract interpretations. An implementation of this technique
is underway, and I expect to report that the same order-of-magnitude boost
to precision that abstract garbage collection brought to other analyses will
be replicated for interprocedural dependency analysis.

Coroutine fusion

With regard to linguistic constructs for parallelism, my research efforts to
date have centered on the coroutine. A coroutine-based program is as-
sembled as a (potentially non-linear) pipeline of communicating processes.
UNIX users make use of this paradigm every day when issuing commands
such as find . | grep foo | wc -1.

While coroutines are not new, programmers have shied away from them in
industrial contexts to avoid the penalty of a per-coroutine program stack and

Matthew Might Research Statement

Compute Compute

N

ﬁ Input Output ﬁ Input Output ﬁ
“~_ “~_

Figure 3: Before coroutine fusion.

Compute/Compute

ﬁ Input Output ﬁ
~— /

Figure 4: After coroutine fusion.

an inter-coroutine communication overhead. However, for certain software
systems, e.g., graphics pipelines and network protocol stacks, coroutines
represent a compelling design abstraction over the tedious and error-prone
hand-merging of layer upon layer.

Coroutine fusion [16] is a program optimization that melts two communi-
cating processes (Figure 3) into a single process (Figure 4), thereby elim-
inating both the stack and communication overhead. By reasoning about
and optimizing data-flow, coroutine fusion can turn a clean but inefficient
“many-copy” architecture into a zero-copy system for free.

The beauty of the coroutine fusion optimization lies not in its complexity,
but rather in its uncompromising simple-mindedness: turning everything
into A. Coroutine fusion builds inter-process communication channels out of
continuations, and then uses continuation-passing-style conversion to turn
continuations into A terms. The resulting program uses a single construct to
encode every control transfer mechanism—from procedure call and return
to exception throw and coroutine switch—call to A.

Once in this form, the program is subjected to battery of optimizations for

Matthew Might Research Statement

the A calculus, most of which have been known since the 1930s. Once these
classical optimizations drive the program to a fixed point, only ACFA or
I'CFA can enable the crucial, environment-sensitive Super-$ class of opti-
mizations, whose effect is to melt the processes together.

With access to coroutine fusion, parallelization for programs written in this
paradigm becomes a four-step process: (1) Profile the program. (2) Tile
the coroutine network with coverings equal to the number of processors. (3)
Fuse each covering into a single coroutine. (4) And, run each fused coroutine
on its own processor, with communication buffers between processes.

What else is next?

At present, the challenges and opportunities stacked up in my research
pipeline should keep me occupied for years to come. Below, you’ll find a
sampling of these opportunities. Taken together with my previous work,
they paint a picture of where my long-term research arc is taking me next.

OCFA LFA is powerful, but it is also expensive. Fortunately, my recent
work indicates that it is far stronger than what one needs for ruling out buffer
overflows for common situations. Consequently, my efforts are geared toward
distilling from LFA only the essential properties required for this task. So
far, this distillation hints at a fusion of 'CFA with a generalization of Wand
and Steckler’s invariance sets [17]. What I view as an ancestor to ©CFA
now appears in my ongoing work on soundness modulo congruence [6]. Once
completed, ©CFA will create another point in the speed-precision-power
landscape: more powerful than I'CFA, faster than LFA, and just right for
removing buffer overflows.

Unifying abstract interpretation and constraint-solving for CFA
Mitch Wand at Northeastern University and I share an interest in unify-
ing constraint-solving and the abstract interpretation approaches to higher-
order control-flow analysis. Each approach possesses advantages—speed and
simplicity for constraint-solving, and power and flexibility for abstract in-
terpretation. A means of inter-converting these approaches should light
the way for exchanging these advantages as well. With Mitch starting from
constraint-solving and approaching abstract interpretation, and myself start-

10

Matthew Might Research Statement

ing from abstract interpretation and working toward constraint-solving, we
hope to meet in the middle.

Quantum computation and the)\ calculus While I expect most of
my work to be centered in programming languages, I do reserve a small
portion of my time for investigations into neighboring fields. Sparked by the
constraints imposed in quantum computation, my interests there involve the
development of a typed quantum A calculus, and the exploitation of contin-
uations to provide a clean, efficient framework for reversible computing.

For the typed A calculus, my work is looking for a twist on the traditional
type-safety guarantee. Instead of “No well-typed program has an error,” the
type-safety theorem for this language adds another constraint: “No well-
typed program attempts to do the physically impossible.” Van Tonder’s
recent work [18] pointed at the importance of using linearity for quantum
resources. My investigations suggest that only a combination of linear type
systems and dependent type systems can make such a guarantee while re-
maining universal for quantum computation.

The formalization of frame strings as a group in ACFA hinted at another
route to explore: exploiting the continuations flowing through CPS not only
as the arbiters of control, but also as the arbiters of reversibility. The effect of
applying a continuation, in frame string terms, is to add the group-theoretic
inverse of the frame string spanning from some point in the past to the
present; the evolution of a quantum computation looks like the successive
application of unitary transformations, so continuation application could
be modeled as applying the sequence of inverse transformations described
by the frame string. Because of the frequent opportunities for reversing
computation, this could lead to the development of a qubit-efficient quantum
compiler.

The opportunities outlined above are just a slice of the challenges ahead.
The broad applicability of static analysis makes me optimistic that my work
going forward will be done in concert with colleagues, as we explore and
uncover the space that lies between our fields.

11

Matthew Might Research Statement

References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
238-252, Los Angeles, California, 1977. ACM Press, New York, NY, USA.

[2] L. Harrison. “The Interprocedural Analysis and Automatic Paralleliza-
tion of Scheme Programs.” Lisp and Symbolic Computation: An Interna-
tional Journal, Vol. 2, No. 3/4, pp. 179-396, 1989.

[3] Matthew Might. “Automatic parallelization from dependency
analysis of continuation marks.” Unpublished. Available from
http://matt.might.net/papers/unpublished/.

[4] Matthew Might. “Environment Analysis of Higher-Order Languages.”
Ph.D. dissertation, Georgia Institute of Technology, August 2007.

[5] Matthew Might. “Logic-flow analysis of higher-order programs.” Pro-
ceedings of the 34th Annual ACM Symposium on the Principles of Pro-
gramming Languages (POPL 2007). Long paper category. Nice, France.
January, 2007. pages 185-198.

[6] Matthew Might. “Abstract ignorance is bliss.” Unpublished. Available
from http://matt.might.net/papers/unpublished/.

[7] Matthew Might, Benjamin Chambers and Olin Shivers. “Model Checking
via 'CFA.” Proceedings of the 8th International Conference on Verifica-
tion, Model Checking and Abstract Interpretation (VMCAI 2007). Nice,
France. January, 2006.

[8] Matthew Might and Panagiotis Manolios. “The polyvari-
ance completeness theorem: Enabling precision-sensitive ab-
stract interpretation.” Submitted to PLDI 2008. Available from
http://matt.might.net/papers/unpublished/.

[9] Matthew Might and Olin Shivers. “Improving flow analyses via I'CFA:
Abstract garbage collection and counting.” Proceedings of the 11th ACM
International Conference on Functional Programming (ICFP 2006). Port-
land, Oregon. September, 2006. pages 13-25.

12

Matthew Might Research Statement

[10] Matthew Might and Olin Shivers. “Environment analysis via ACFA.”
Proceedings of the 33rd Annual ACM Symposium on the Principles of Pro-

gramming Languages (POPL 2006). Charleston, South Carolina. January,
2006. pages 127-140.

[11] Matthew Might and Olin Shivers. “Analyzing environment structure of
higher-order languages using frame strings.” Journal of Theoretical Com-
puter Science. 2007. To appear.

[12] Matthew Might and Olin Shivers. “Exploiting reachability and cardi-
nality in higher-order flow analysis.” Journal of Functional Programming.
2007. To appear.

[13] Matthew Might, Olin Shivers and Eric Knauel. “Generalizing escape
analysis in the presence of continuations.” Unpublished. Available from
http://matt.might.net/papers/unpublished/.

[14] Matthew Might, Olin Shivers, Benjamin Chambers and T.
Stephen Strickland. “Abstract interpretation of imperative pro-
grams via garbage-collectable arithmetic.” Unpublished. Available from
http://matt.might.net/papers/unpublished/.

[15] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. Ph.D.
dissertation, Carnegie Mellon University, May 1991. Technical Report
CMU-CS-91-145, School of Computer Science.

[16] Olin Shivers and Matthew Might. “Continuations and transducer com-
position.” Proceedings of the 27th Conference on Programming Language
Design and Implementation (PLDI 2006). Ottawa, Canada. pages 295—
307. June, 2006.

[17] Mitchell Wand and Paul Steckler. “Selective and Lightweight Closure
Conversion.” Proceedings of the 33rd Annual ACM Symposium on the
Principles of Programming Languages (POPL 1994). Portland, Oregon.
January, 1994. pages 435-445.

[18] André van Tonder. “A Lambda Calculus for Quantum Computation.”
SIAM Journal on Computing. 33 (5) pages 1109-1135.

13

