
Monadic Abstract Interpreters

Ilya Sergey

IMDEA Software Institute, Spain

ilya.sergey@imdea.org

Dominique Devriese

iMinds – DistriNet, KU Leuven, Belgium

dominique.devriese@cs.kuleuven.be

Matthew Might

University of Utah, USA

might@cs.utah.edu

Jan Midtgaard

Aarhus University, Denmark

jmi@cs.au.dk

David Darais

Harvard University, USA

darais@seas.harvard.edu

Dave Clarke Frank Piessens

iMinds – DistriNet, KU Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract

Recent developments in the systematic construction of abstract
interpreters hinted at the possibility of a broad unification of
concepts in static analysis. We deliver that unification by show-
ing context-sensitivity, polyvariance, flow-sensitivity, reachability-
pruning, heap-cloning and cardinality-bounding to be independent
of any particular semantics. Monads become the unifying agent be-
tween these concepts and between semantics. For instance, by plug-
ging the same “context-insensitivity monad” into a monadically-
parameterized semantics for Java or for the lambda calculus, it
yields the expected context-insensitive analysis.

To achieve this unification, we develop a systematic method for
transforming a concrete semantics into a monadically-parameterized
abstract machine. Changing the monad changes the behavior of
the machine. By changing the monad, we recover a spectrum of
machines—from the original concrete semantics to a monovariant,
flow- and context-insensitive static analysis with a singly-threaded
heap and weak updates.

The monadic parameterization also suggests an abstraction over
the ubiquitous monotone fixed-point computation found in static
analysis. This abstraction makes it straightforward to instrument
an analysis with high-level strategies for improving precision and
performance, such as abstract garbage collection and widening.

While the paper itself runs the development for continuation-
passing style, our generic implementation replays it for direct-style
lambda-calculus and Featherweight Java to support generality.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis, Operational semantics

General Terms Languages, Theory

Keywords abstract machines, abstract interpretation, monads, op-
erational semantics, collecting semantics, abstract garbage collec-
tion, interpreters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

1. Introduction

Recent work on systematizing the construction of abstract inter-
preters [15, 23, 24] hints at the possibility of broad theoretical uni-
fication within static analysis. Van Horn and Might [23] sketch
a method for abstracting abstract machines into static analyzers
by bounding the store of the abstract machine: once the store is
bounded, the abstraction and then the analysis follows.

But, bounding the store is an act of design—of human interven-
tion. How a designer bounds the store immediately determines clas-
sical properties of the analysis such as its context-sensitivity and its
polyvariance. While not directly expressed in terms of a bound on
the store, other classical properties are also related to the abstrac-
tion and handling of the store, including heap-cloning, reachability-
pruning and cardinality-bounding. But, other properties, such as
flow-sensitivity, path-sensitvity and some kinds of widening, have
little to do with the store, and more to with the (re-)interpretation
of the abstract semantics during analysis.

Fortunately, there is a construct that encompasses all of these
concerns: the monad. Monads were originally adapted to program-
ming languages to provide a durable abstraction for mutation in
a purely functional language. As such, expressing a semantics
monadically allows the monad to fully veil the details of interact-
ing with a store. Yet monads have always provided more than just
a means for hiding effects in a purely functional manner: they also
allow a near-complete reinterpretation of computations expressed
monadically, e.g., the instant and powerful non-determinism of the
list monad. This semantic reflection in precisely the right dimen-
sions allows monads to encapsulate a variety of concepts in static
analysis.

The payoff of this realization is immediate: we can monadically
refactor semantics for languages as diverse as the lambda calculus
and Java, yet define notions like context-sensitivity for both at the
same time, with the same monad.

Our presentation details every step of the monadic refactoring
for continuation-passing style lambda calculus, and then develops
the monadic parameters that induce static analyzers. The imple-
mentation of the approach in the accompanying code repository
replays the same monadic refactoring for a direct-style lambda cal-
culus and for Featherweight Java. The monads remain the same.

We have chosen Haskell in lieu of formal mathematics for the
presentation for two reasons: (1) Haskell is directly executable, and
(2) Haskell has concise, convenient and readable syntax for ex-
pressing monads—the central actor in our work. Our fundamental
results are no more restricted to Haskell than monads are restricted
to Haskell.

1.1 Overview

Van Horn and Might’s systematic abstraction relies on breaking
down recursive structure in the concrete state-space and threading
that structure through a store. This refactoring of the state-space
imposes a corresponding store-passing-style transformation on the
semantics.

Were we writing an interpreter in Haskell rather than a for-
mal semantics, we would recognize store-passing style as an anti-
pattern: in Haskell, monads are the right generalization for captur-
ing artifacts like a store in a purely functional manner. When we
apply a monadic transformation in lieu of a store-passing transfor-
mation to a concrete semantics, the resulting monad erupts as the
catalyst for unifying what appeared as ad hoc choices in the design
of classical static analyses. Even the nondeterminism that arises
during abstraction of an operational semantics can be captured, ex-
plained and throttled entirely monadically.

By delegating interaction with the store into a monad, the
monad determines not only the polyvariance and context-sensitivity
of the analysis, but also the degree to which the analysis prunes the
abstract heap based on reachability (abstract garbage collection)
and bounds the cardinality of abstract addresses for shape analysis.
In fact, it suggests a refactoring of the traditional fixed-point iter-
ation such that path-sensitivity and flow-sensitivity also fall out as
natural parameters.

Our monadic abstraction of the semantics orthogonalizes the
classic dimensions of static analysis, independent of the specific
semantics in use.

We illustrate a systematic method for transforming a concrete
semantics into a monadically-parameterized machine, comprising
both concrete and abstract interpretation, such that the monad de-
termines the classical properties of an analysis. As in recent work
on abstracting abstract machines [23], our semantic transformation
implicitly utilizes the techniques of Danvy et al. [1, 2, 7] in order to
calculate an abstract1 machine equivalent to the concrete semantics.
It diverges with this line of work by applying a monadic-normal-
form transformation [6] (instead of a store-passing-style transfor-
mation) to the rules for the machine.

1.2 Contributions

• The central theoretical contribution of the paper is identifying
and employing monads as a mechanism to abstract over the
fundamental characteristics of the analysis.

• The central practical contribution is an executable proof-of-
concept implementation of the described decomposition for a
series of calculi.2

• We decouple the interpretation of the semantics from a mono-
tonic fixed-point computation, which makes it possible to define
analysis widening strategies independently of the semantics and
of the analysis’ other parameters.

• We illustrate degrees of freedom when constructing the analysis
using our framework and show that components implementing
non-deterministic transitions, polyvariance and abstract count-
ing are semantics-independent and can be reused for different
calculi (e.g., Java and the lambda calculus) and analysis fami-
lies.

1 Abstract in the sense that it models the salient intensional behavior of a
program.
2 The implementation is available for the lambda-calculus (both in the form
of CPS [15] and CESK-machine [23]) and Featherweight Java [19]:

http://github.com/ilyasergey/monadic-cfa

v ∈ Var is a set of identifiers

lam ∈ Lam ::= (λ (v1 . . . vn) call)

f,æ ∈ AExp = Var + Lam

call ∈ Call ::= (f æ1 . . .æn)+ Exit

ς ∈ Σ = Call× Env ρ ∈ Env = Var ⇀ D

d ∈ D = Clo clo ∈ Clo = Lam× Env

Figure 1: A grammar for CPS and a concrete state-space.

2. Setting the Scene: Analyzing

Continuation-Passing Style

We start our discovery of the monadic refactoring process with
a minimalist higher-order language: continuation-passing style λ-
calculus (CPS). We will apply the systematic abstraction process
as described by Van Horn and Might [23] in full to CPS. After-
ward, we’ll modify the process by transforming the semantics into
monadic normal form after the store-passing transformation. Thus,
all interaction with the store will pass through a monad. Because
interaction with the store is central to describing facets of mod-
ern flow analysis, such as context-sensitivity and heap-cloning, we
will be able to describe these facets independently of a particular
semantics.

In CPS (Figure 1), the lambda calculus is partitioned into two
worlds: call sites and atomic expressions. Atomic expressions are
lambda terms and variable references. Call sites encode the appli-
cation of a function to arguments. A classical abstract machine for
CPS [9] needs only two components in its state-space Σ—see Fig-
ure 1—a control component (Call) and an environment (Env). The
domain D contains denotable values. CPS is so simple that there is
only one kind of denotable value—closures.

The injector I : Call→ Σ maps a program into this state-space:

I(call) = (call , []),

In CPS, there is only one rule to describe the transition relation,
(⇒) ⊆ Σ×Σ. We don’t write index ranges explicitly for series of
meta-expressions, assuming i = 1..n is obvious form the context.

([[(f æ1 . . .æn)]], ρ)⇒ (call , ρ′′), where

([[(λ (v1 . . . vn) call)]], ρ′) = A(f, ρ)

di = A(æi, ρ) ρ′′ = ρ′[vi 7→ di],

where the evaluator A : AExp × Env ⇀ Clo evaluates an atomic
expression:

A(v, ρ) = ρ(v) A(lam, ρ) = (lam, ρ).

2.1 Attempting structural abstraction

A structural abstraction carries abstraction component-wise across
the state-space and then lifts naturally over internal domains. How-
ever, a structural abstraction of the state-space for CPS yields:

Σ̂ = Call× Ênv Ênv = Var ⇀ D̂

D̂ = P(Ĉlo) Ĉlo = Lam× Ênv .

A structural abstraction preserves mutual recursion between clo-
sures and environments, and with it, the unboundedness of the ab-
stract state-space. Since our goal with this abstraction was a finite
abstract state-space (hence a trivially computable abstract seman-
tics), structural abstraction alone is insufficient.

2.2 Cutting recursion with a store

To arrive at a finite state-space, the systematic method detailed in
“Abstracting Abstract Machines” [23] calls for transforming the
abstract machine into store-passing style, which cuts the recursive
knot between environments and closures by introducing addresses.
With the introduction of a store, σ ∈ Store = Addr ⇀ D, the
store-passing transform produces the following state-space:

ς ∈ Σ = Call× Env × Store

ρ ∈ Env = Var ⇀ Addr

d ∈ D = Clo

clo ∈ Clo = Lam× Env

a ∈ Addr is an infinite set of addresses.

The modification of the transition relation is straightforward:

ς︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ, σ)⇒ (call , ρ′′, σ′), where

([[(λ (v1 . . . vn) call)]], ρ′) = A(f, ρ, σ)

di = A(æi, ρ, σ) ai = alloc(vi, ς)

ρ′′ = ρ′[vi 7→ ai] σ′ = σ[ai 7→ di].

The evaluator A : AExp × Env × Store ⇀ D is modified to
take the store as an additional argument:

A(v, ρ, σ) = σ(ρ(v)) A(lam, ρ, σ) = (lam, ρ).

And, the (presently opaque) address-allocator alloc : Var ×
Σ→ Addr yields a fresh address for each variable.

2.3 A second attempt at abstraction

With the recursion sliced from the state-space by the store-passing
transformation, a structural abstraction succeeds in producing a
finite abstract state-space:

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr → P(D̂)

d̂ ∈ D̂ = Ĉlo

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr is a finite set of abstract addresses,

and it induces a straightforward abstract transition relation:

ς̂︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ̂, σ̂) ; (call , ρ̂′′, σ̂′), if

([[(λ (v1 . . . vn) call)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

d̂i ∈ Â(æi, ρ̂, σ̂) âi = âlloc(vi, ς̂)

ρ̂′′ = ρ̂′[vi 7→ âi] σ̂′ = σ̂ ⊔ [âi 7→ {d̂i}].

Branching to every possible abstract closure introduces a subtle
nondeterminism.

Naturally, the abstract argument evaluator wraps closures as
singletons, but looks up variables as in the concrete version:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v)) Â(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

The join on the abstract store allows each address in the finite
set of abstract addresses to soundly represent multiple concrete
addresses:

σ̂ ⊔ σ̂′ = λâ.σ̂(â) ∪ σ̂′(â).

And, it should now be clear that the abstract allocator âlloc :

Var× Σ̂→ Âddr determines the polyvariance of the analysis (i.e.,
distinguishing between bindings of the same variable in different

evaluation contexts [22, 19]) because âlloc determines how many
abstract variants are associated with each variable. For instance,
allocating each time a new address corresponds to associating just
one value with a variable at each moment of the program execution.

2.3.1 Example: Monovariant analysis (0CFA)

For example, a classical monovariant analysis (0CFA) comes from
defining the set of abstract addresses to be the set of variables

(Âddr 0CFA = Var), and then using variables as their own abstract
addresses:

âlloc0CFA(v, ς̂) = v.

2.4 Introducing context with time-stamps

Van Horn and Might [23] realize that the abstract state-space as it
stands lacks sufficient information to instantiate classical strategies
for polyvariance (like k-CFA). To fix this, they introduce time-
stamps (to the concrete and abstract semantics) as a new component
of the state.

Time-stamps are used to remember execution context, and are
directly responsible for the context-sensitivity of the analysis:

ς̂ ∈ Σ̂ = Call × Ênv × Ŝtore × T̂ime

t̂ ∈ T̂ime is a finite set of abstract times.

Each transition augments the time through an opaque function,

t̂ick : Ĉlo× Σ̂→ T̂ime and by giving the allocator âlloc : Var×

T̂ime → Âddr access to this context instead of the whole state:
ς̂︷ ︸︸ ︷

([[(f æ1 . . .æn)]], ρ̂, σ̂, t̂) ; (call , ρ̂′′, σ̂′, t̂′), if

([[(λ (v1 . . . vn) call)]], ρ̂′)︸ ︷︷ ︸
ĉlo

∈ Â(f, ρ̂, σ̂)

d̂i ∈ Â(æi, ρ̂, σ̂) t̂′ = t̂ick(ĉlo, ς̂)

âi = âlloc(vi, t̂
′) ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ ⊔ [âi 7→ {d̂i}].

2.4.1 Example: k-CFA-style context-sensitivity

The introduction of this component makes it possible to model k-
CFA [22] by defining times to be sequences of up to k call sites and
addresses to be pairs of variables and call sites:

T̂imek-CFA = Call
6k

Âddrk-CFA = Var × T̂imek-CFA,

and using corresponding definitions

t̂ickk-CFA(ĉlo, (call , . . . , t̂)) = ⌊call : t̂⌋k

âllock-CFA(v, (. . . , t̂
′)) = (v, t̂′)

where ⌊·⌋k limits its argument to at most length k.

3. Abstracting through a Monad

In flow analysis, interaction with the store determines essential
properties of the analysis. Thus, by abstracting away interaction
with the store through a monad, we introduce an abstraction layer
for these essential properties.

In pure functional programming, the introduction of store-
passing style to mimic side effects is an anti-pattern. The estab-
lished remedy for this anti-pattern is the use of monadic form in

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String

data Lambda = [Var]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v

type Env = Var ⇀ Addr

type Store = Addr ⇀ P Val

data Val = Clo (Lambda,Env)
deriving (Eq ,Ord)

type Addr = (Var ,Time)
type Time = [CExp]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ]
next ς@(Call f aes, ρ, σ, t) = [(call , ρ′′, σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ, σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs]
ds = [arg (æ, ρ, σ) | æ← aes]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as]
σ′ = σ ⊔ [a =⇒ d | a ← as | d ← ds]]

next ς = [ς]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′, σ′, t ′) | ...] into its monadic form:

mnext :: Σ→ [Σ]
mnext ς@(Call f aes, ρ, σ, t) = do

proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ, σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs]
ds = [arg (æ, ρ, σ) | æ← aes]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as]
σ′ = σ ⊔ [a =⇒ d | a ← as | d ← ds]

return (call , ρ′′, σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ]
mnext ς@(Call f aes, ρ, σ, t) = do

proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ, σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val]
arg :: (Env ,Store)→ AExp → [Val]
tick :: Val → State → [Time]
alloc :: (Time,Val ,State)→ Var → [Addr]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a] → m [b] from a monadic
toolset.

mnext :: Σ→ [Σ]
mnext ς@(Call f aes, ρ, σ, t) = do

proc@(Clo (vs ⇒ call , ρ′))← fun (ρ, σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ, σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where

fun :: Env → AExp → m Val

arg :: Env → AExp → m Val

(7→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr

tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do

proc@(Clo (vs ⇒ call , ρ′))← fun ρ f

t ′ ← tick proc ps

as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as]
sequence [a 7→ d | a ← as | d ← ds]
return (call , ρ′′, t ′)

mnext ς = return ς

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where

fun :: Env → AExp → m Val

arg :: Env → AExp → m Val

(7→) :: Addr → Val → m ()
alloc :: Var → m Addr

tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call , ρ′))← fun ρ f

tick proc ps

as ← mapM alloc vs

· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce ℓ-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a

data Val a = Clo (Lambda,Env a)
deriving (Eq ,Ord)

type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
(7→) :: a → Val a → m ()
alloc :: Var → m a

tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f

tick proc ps

as ← mapM alloc vs

ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as]
sequence [a 7→ d | a ← as | d ← ds]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr 7→ v = writeIOAddr addr v

alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s

case s ′ of x@(Exit ,)→ return x

y → go y

5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;⊑,⊥,⊤,⊔,⊓〉 is a partial order 〈C;⊑〉
such that there exists a least upper bound (or join)⊔S and a greatest
lower bound (or meet) ⊓S of all subsets S ⊆ C. In particular
⊔C = ⊤ and ⊓C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,⊑〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x ⊑ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp⊑ f = ⊓{x | f(x) ⊑ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ f3(⊥) ⊑ . . . since

lfp⊑ f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,⊑〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒

c ⊑ γ(a). We typeset Galois connections as: 〈C,⊑〉 −−→←−−α
γ

〈A,≤〉.

Given a Galois connection 〈C,⊑〉 −−→←−−α
γ

〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (;) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X) = Σ0 ∪
{
s′ | s ∈ X ∧ s ; s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point

for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed

point as lfp F̂ .
In the remainder of the section we will systematically abstract

over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where

⊥ :: a
⊤ :: a
(⊑) :: a → a → Bool

(⊔) :: a → a → a

(⊓) :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpreter from Figure 2, which we presented at
the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(;) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where

applyStep :: (a → m a)→ fp → fp

inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a

kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ ⊑ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ⊔ applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].

gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface

(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a 7→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id

tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a

modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where

runStep ((ς, t), s) =
Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((⊔) ◦ f) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (⊔).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract

Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .

6.1 Controlling polyvariance

So far, we have used Haskell’s Integers as abstract addresses in
the collecting semantics. To allow experimentation with different
addresses, we introduce the following class that provides a uniform
view on addresses which may (optionally) incorporate context:

class (Ord a,Eq a)⇒ Addressable a c | c → a where

τ0 :: c
valloc :: Var → c → a

advance :: Val a → PΣ a → c → c

The type class Addressable has two type parameters: a for ac-
tual addresses and c for the type of the context. Contexts unam-
biguously define the nature of addresses. The type class contains
three functions. τ0 generates an initial context, used to instantiate
the HasInitial class from Section 5.3.3. The function valloc, given
a variable name and a context, allocates a new address. Finally, the
function advance has the opportunity to internalize components of
the partial state within the monad, based on the function called, the
current state processed, and a given context.

A meaningful instance of the Addressable type class uses a
combination of time-stamps, represented by lists of calls of length
bounded by some k, and addresses that simply pair the time-stamps
with variable names. This defines an analysis’ polyvariance:

data KTime = KCalls [CExp] deriving (Eq ,Ord)

data KAddr = KBind Var KTime deriving (Eq ,Ord)

Here is the instance of Addressable for this pair, relying on the
auxiliary class KCFA for generic controlling of polyvariance:

class KCFA a where

getK :: a → Int

instance Addressable KAddr KTime where

τ0 = KCalls []
valloc v t = KBind v t

advance proc (call , ρ) t@(KCalls calls)
= KCalls $ (getK t) (call : calls)

The CPSInterface instance for StorePassing requires a small
change in order to accomodate polyvariance:

instance (Addressable a t)⇒
CPSInterface (StorePassing (Store a) t) a
where

alloc v = gets (valloc v)
tick proc ps = modify $ λt → advance proc ps t

· · · -- the rest is unchanged

Accroding to the A Posteriori soundness theorem of Might
and Manolios [17], any allocation policy for a non-deterministic
abstract interpreter (which our analysis is a particular case of)
leads to a sound abstraction of a concrete store-based collecting
semantics that uses uniques addresses for each allocation (e.g.,
integers, as in the example in Section 5.3.2). Thus, abstracting over
addresses yields a family of sound abstract interpreters and requires
no change in the semantics interface (Figure 2).

6.2 Abstracting over the store component

The store component is essential for efficient implementation of the
analysis but can also itself be a source of valuable measurements
(e.g., computing the flows-to information), so our next step is to
make an analysis store-generic. We do so by defining a StoreLike
class enabling creation of initial store, binding, update, and lookup
as well as providing a mechanism to clean the store up:

class (Eq a,Lattice s,Lattice d)⇒
StoreLike a s d | s → a, s → d where

σ0 :: s
bind :: s → a → d → s

replace :: s → a → d → s

fetch :: s → a → d

filterStore :: s → (a → Bool)→ s

The StoreLike class binds together three components: ad-
dresses (a), the store implementation itself (s) and the store co-
domain (d). To save space, we refer the reader to our public imple-
mentation for implementations of StoreLike instances for Store a .

Again, we need small changes in the CPSInterface instance
for StorePassing in order to abstract over stores:

instance (Addressable a t ,StoreLike a s (P (Val a)))⇒
CPSInterface (StorePassing s t) a
where

fun ρ (Ref v) = lift $ getsNDSet $ flip fetch (ρ ! v)
arg ρ (Ref v) = lift $ getsNDSet $ flip fetch (ρ ! v)
a 7→ d = lift $modify $ λσ → bind σ a (singleton d)
· · · -- the rest is unchanged

6.3 Controlling abstract counting

Abstract counting is a technique to track how many times an ab-
stract resource has been allocated [18]. It provides a simple but
powerful way of bounding cardinalities over abstractions. Specifi-
cally, it bounds them in a way that it enables must-alias analysis in
imperative languages or environment analysis in higher-order lan-
guages. Counting enables additional shape analyses or predicate
abstractions to be layered on top of an existing analysis [16]. This,
in turn, enables an analysis’ client to perform environmental analy-
sis to perform advanced optimization, such as super β-inlining [14].

To introduce an abstract counter for CPS, we need to make a
small addition to the state-space:

ς̂ ∈ Σ̂ = Call × Ênv × Ŝtore × Ĉount × T̂ime

µ̂ ∈ Ĉount = Âddr → N̂

n̂ ∈ N̂ = {0, 1,∞} .

The abstract transition relation changes correspondingly to take
possible changes of µ̂ into account:

ς̂︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ̂, σ̂, µ̂, t̂) ; (call , ρ̂′′, σ̂′, µ̂′, t̂′), where

([[(λ (v1 . . . vn) call)]], ρ̂′)︸ ︷︷ ︸
ĉlo

∈ Â(f, ρ̂, σ̂)

d̂i ∈ Â(æi, ρ̂, σ̂)

t̂′ = t̂ick(ĉlo, ς̂)

âi = âlloc(vi, t̂
′)

ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ ⊔ [âi 7→ {d̂i}]
µ̂′ = µ̂ ⊕̇ [âi 7→ 1]

The operator ⊕̇ is the point-wise lifted natural abstraction of ad-

dition over N̂. In fact, the structure of the set N̂ can vary depending
on the requirements for the analysis’ results. The only requirement

is that N̂ should be a lattice. For instance, in a degenerate case, one

can turn abstract counting off by setting N̂ = {∞}.
Since abstract counts are modified in tandem with the abstract

store, counting and dependent enhancements like strong update can
be hidden entirely within and tuned from the monad. We need no
refactoring of the state-space or the semantics needed to introduce
abstract counting, thanks to the introduction of the class StoreLike
in Section 6.2. All we need to do is supply a different instance of

store, namely, a “counting” one. First, we define a datatype for N̂,
make it a lattice and define abstract addition:

data AbsNat = AZero | AOne | AMany

deriving (Ord ,Eq ,Show)

(⊕) :: AbsNat → AbsNat → AbsNat

AZero ⊕ n = n

n ⊕ AZero = n

n ⊕m = AMany

instance Lattice AbsNat where · · ·

Second, we define a type class for abstract counter, a counting store
and make the latter an instance of the former:

class StoreLike a s d ⇒ ACounter a s d where

count :: s → a → AbsNat

type CountingStore a d = a ⇀ (d ,AbsNat)

instance (Ord a,Lattice d)⇒
ACounter a (CountingStore a d) d where

count σ a = snd $ σ ! a

Because the counter is parameterized over addresses, it too is in-
dependent of specific semantics, and in fact can be used with any
other semantics.

For a full implementation of StoreLike a (CountingStore a
d) d , we invite the reader to puzzle through it or reference our pub-
lic implementation. Once the instance is provided, a CountingStore
can be directly plugged into the StorePassing , so the abstract
counting does not require any changes in the analysis logic, implic-

itly adding the component Ĉount to Σ̂.

6.4 Controlling abstract garbage collection

Abstract garbage collection [18] is a store-sensitive analysis tech-
nique that prunes unreachable structure (exactly as ordinary garbage
collection does). The net effect is an often dramatic increase in pre-
cision as well as a corresponding drop in analysis time. The tech-
nique is defined in terms of touchability of a value by a binding,
the adjacency of bindings and reachability of bindings from some
entity. In essence, abstract garbage collection stands for finding the
set of reachable bindings for a particular state and restricting the
domain of the store σ to solely these bindings.

The abstract bindings T̂ (æ, ρ̂), touched by some abstract clo-
sure pair (æ, ρ̂) are defined as follows:

T̂ (æ, ρ̂) = {ρ̂(v) : v ∈ free(æ)}

T̂ {(æ1, ρ̂1), . . . , (æn, ρ̂n)} = T̂ (æ1, ρ̂1) ∪ . . . ∪ T̂ (æn, ρ̂n)

We extend the notion of touching to call sites and abstract states:

T̂ ((f æ1 . . .æn), ρ̂) = T̂ (f, ρ̂) ∪ T̂ (æ1, ρ̂) ∪ . . . T̂ (æn, ρ̂)

T̂ (call, ρ̂, σ̂, t̂) = T̂ (call, ρ̂)

and define the abstract adjacency relation for bindings:

â ;̂σ̂ â′ ⇐⇒ â′ ∈ T̂ (σ̂(â))

Next, the abstract reachable-bindings function

R̂ : Σ̂ → P
(
Âddr

)

for a given abstract state ς̂ computes the set of reachable bindings
as all bindings we can reach from ς̂ with chains of ;̂σ̂ links:

R̂(ς̂) =
{
â′ : â ∈ T̂ (ς̂) and â ;̂

∗
σ̂
ς̂
â′
}
.

We define the abstract Garbage Collection function, Γ̂ : Σ̂ →
Σ̂ that removes unreachable bindings from the domain of σ̂:

Γ̂(call, ρ̂, σ̂, t̂) = (call, ρ̂, σ̂|R̂(ς̂), t̂),

where the vertical bar ‘|’ operator denotes map restriction, i.e., f |X
is the function f defined at most over elements in the set X .

Finally, using the function Γ̂, we can define the alternate, GC
abstract transition rule, ;

Γ̂
, so the abstract transition becomes:

Γ̂(ς̂) ; ς̂ ′

ς̂ ;
Γ̂
ς̂ ′

(STEP-GC)

From the implementor’s point of view, an abstract garbage col-
lector modifies the internal part of the state, i.e., an abstract store,
by removing unreachable addresses. Therefore, it is natural to de-
fine abstract garbage collection abstractly as an operation in the
analysis monad:

class Monad m ⇒ GarbageCollector m a where

gc :: a → m ()
gc = return () -- default implementation

The function gc takes a partial state as a parameter and returns a
monad operation. We also supply a default implementation of the
function gc as a no-op.

The structure of the class StoreLike makes it easy to implement
a garbage collector thanks to the function filterStore (Section 6.2).
Weaving the GC into the semantics requires only little change in
the fixed point computation for StorePassing :

applyStep step =
joinWith (λ((ς, t), s)→
... runStateT (do {ς ′ ← step ς; gc ς ′; return ς ′}) t ...)

6.5 Controlling store-cloning

By default, the abstracted abstract machine approach to static anal-
ysis yields a heap-(/store-)cloning analysis: every state contains a
store. Ordinarily, store-cloning should be reserved for situations in
which the extra precision benefit the target applications.

However, for an analysis implemented this way it can take time
exponential in the size of the input program when computing the
reachable states of the abstracted machine [19]. The standard tech-
nique to reduce the complexity is to employ widening in the form of
Shivers’ single-threaded store [22]. To use a single-threaded store,
we have to reconsider the abstract evaluation function itself. Instead
of seeing it as a function that returns the set of reachable states, it
is a function that returns a pair, consisting of a set of partial states
and a single globally approximating store.

Although this change requires a significant reworking in the def-
inition of the semantics, it is quite easy to implement in our frame-
work, since the store is not a component of the program states,
but rather an element supplied by an analysis monad. One can also
notice that the new semantics can be captured by establishing the
following Galois connection:

〈P(Σ̂t × Ŝtore),⊆〉 −−→←−−α
γ

〈P(Σ̂t)× Ŝtore,⊆〉, (3)

where Σ̂t = Call × Ênv × T̂ime . Bounding the space of
addresses (Section 6.1) implies finiteness of both lattices involved
in the Galois connection (3), which means that both α and γ are
computable. It is straightforward to express them in Haskell:

alpha :: (Lattice s,Ord a,Ord g)⇒
P ((PΣ a, g), s)→ (P (PΣ a, g), s)

alpha = joinWith (λ((p, g), σ)→ (singleton (p, g), σ))

gamma :: (Ord a,Ord g ,Ord s)⇒
(P (PΣ a, g), s)→ P ((PΣ a, g), s)

gamma (states, σ) = Set .map (λ(p, g)→ ((p, g), σ)) states

In words, alpha combines together all per-state store compo-
nents (given the stores form a lattice, hence Lattice s). Conversely,
gamma spreads the store σ among all provided states.

Lattice (§ 5.2)

Meta-level

Language definition level
CPSInterface (§ 3.4)

StoreLike (§ 6.2)

ACounter (§ 6.3)

Monad

Addressable (§ 6.1)

Collecting (§ 5.2)

mnext (§ 3.4)

GarbageCollector (§ 6.4)
runAnalysis (§ 5.2)

Figure 3: Overview of the framework concepts

The easiest way to construct a single-store analysis is to redefine
the instance of Collecting , taking Fc = applyStep′ step:6

instance (Ord g ,Ord a,Ord s,Lattice s,HasInitial g)⇒
Collecting (StorePassing s g)

(PΣ a)
(P (PΣ a, g), s) where

inject a = (singleton (a, initial),⊥)
applyStep step = alpha ◦ (applyStep′ step) ◦ gamma

7. Pulling It All Together

A high-level overview of the described framework is given in Fig-
ure 3. The concepts in the upper half are defined on the meta-level,
i.e., can be implemented in a way so they might be reused by dif-
ferent languages and analyses. The lower half describes language-
dependent concepts, which rely, in particular, on the fixed syntax,
semantics and the structure of values. Solid arrows denote type de-
pendencies between instances of the components, and dashed ar-
rows are for the optional logical dependencies, which are, however,
not strictly enforced by types. Curiously, the diagram confirms our
point that store logic and abstract counting strategy are orthogonal
to the analysis implementation (Sections 6.2 and 6.3).

As opposite to the abstract concepts, it is much harder to pro-
vide a straightforward hierarchy of actual concept implementations
with strict “level” distinctions. For instance, one can encode the
store and monad logic directly into the semantic interface defini-
tion, moving it, therefore to the bottom part of the diagram. Alter-
natively, one can implement the store and the monad independently
from the encoding of the semantic interface, just as we did in Sec-
tion 3, getting as close as possible to the conceptual decomposition.
This approach pays off when composing the resulting analysis, as
we demonstrate in the following section.

8. Further Examples: k-CFA Family

In this section, we expand our original examples from Section 3 to
a family of k-CFA-based abstract interpreters, following the recipe
described in Sections 5 and 6. We omit a few tedious implemen-
tation details for the sake of brevity; the full development and test
programs can be found in the accompanying code repository:

http://github.com/ilyasergey/monadic-cfa

6 We use applyStep′ to refer to the definition of applyStep for a domain
with per-state store. It is slightly different from the actual implementation
in Haskell, as one is required to wrap the “per-state store”-version of
StorePassing into a separate datatype in order to make it possible for
a type checker to distinguish between two versions of applyStep. We
elaborate more on this in Section 8.

8.1 A simple abstract interpreter for k-CFA

First, we fix the k-degree of the analysis by instantiating the class
KCFA from Section 6.1 for k = 1:

instance KCFA KTime where

getK = const 1

Second, we define the analysis function analyseKCFA by em-
ploying the runAnalysis function from Section 5.2:

analyseKCFA :: CExp →
P ((PΣ KAddr ,KTime),Store KAddr)

analyseKCFA = runAnalysis

The refined type of analyseKCFA is of particular interest.
After flattening the tuples, one can see that it reflects the abstract
domain of the analysis: abstract states coupled with timestamps and
abstract stores.

8.2 An abstract interpreter with a shared store

As a next step, we apply the widening strategy via a shared store, as
described in Section 6.5. We directly use the definitions of alpha
and gamma and redefine the instance of Collecting by providing
a new implementation of the applyStep function (Section 5.2). In
order to overcome Haskell’s conventions for type resolution in the
case of the function applyStep, we might need to define a wrapper
record type for the analysis result.

newtype Wrap a g s =
Wrap {unWrap :: P ((PΣ a, g), s)} deriving Lattice

The definition of applyStep for store-sharing widening looks as
follows:

applyStep step =
alpha ◦ unWrap ◦ applyStep step ◦Wrap ◦ gamma

Note, the implementation is not recursive, but the inner call to
applyStep operates with a different domain. The definition of the
analysis function has the same implementation, thanks to the type
class-based polymorphism [25], however, its return type is concep-
tually different, as it accounts for a set of states, coupled with a
single store:

analyseShared :: CExp →
(P (PΣ KAddr ,KTime),Store KAddr)

analyseShared = runAnalysis

8.3 An abstract interpreter with a counting store

As the analysis is parametrized with the store explicitly, its instru-
mentation with a counting machinery is trivial: we just replace the
second component of the result of the single-store-passing analysis
with a specialized counting store (Section 6.3).

type KCFACountingStore =
CountingStore KAddr (P (Val KAddr))

analyseWithCount :: CExp →
(P (PΣ KAddr ,KTime),KCFACountingStore)

analyseWithCount = runAnalysis

9. Related Work and Conclusion

We have illustrated a systematic method for transforming a con-
crete semantics into a monadically-parameterized machine, such
that the monad determines the classical properties of an abstract
analysis. Our work is situated firmly in the abstract interpretation
tradition established by Cousot and Cousot [4, 5].

Following a series of complex power-domain constructions, Hu-
dak and Young [10] devised simpler set-based collecting interpre-
tations for both first-order and higher-order functional languages.
They furthermore outline how to modify their approach to express
relational properties. This requires generalizing their collecting in-
terpretation to sets of value-environment pairs, remniscent of our
sets-of-states starting point. Like Hudak and Young, our framework
can thereby describe relational properties.

The way we factor the concrete semantics is very much in the
spirit of Nielson’s two-level meta-language [20]. Nielson proposes
an abstract interpretation framework based on the idea of decom-
posing a denotational language definition into two parts: a core
semantics, containing semantic rules and their types, but leaving
some function symbols and domain names uninterpreted, and an
interpretation that fills out the missing definition of function sym-
bol and domain names. thereby allowing alternate non-standard in-
terpretations in addition to the “standard” semantics defining the
meaning of programs.

Such a decomposition is formulated in terms of a two-level met-
alanguage, where some types are considered to be ‘dynamically’-
interpreted,7 and ‘dynamic’ functions symbols are represented
by combinators, closed over variables of dynamically-interpreted
types. This makes it possible to define the “meaning” of dynamic
types and combinators in different ways to express a lazy stan-
dard semantics, detection of signs, strictness, and liveness on top
of the same semantics interface. Also, Nielson further illustrates
that both forward and backward analyses, independent-attribute
and relational methods can be formulated in terms of the same core
semantics given different interpretations. In contrast, our work
focuses on abstractions of the operational small-step collecting se-
mantics, since it delivers data for most of the interesting analyses
in the setting of a higher-order language. In a sense, the functions
from the class CPSInterface , such as fun , arg and others, play
an analogous role to Nielson’s dynamic function symbols, and type
parameters such as a , s or g are the dynamic types.

Our framework gains from giving function symbols monadic
types: unlike Nielson’s framework, where all information about
properties of interest is captured by the treatment of values of spe-
cific types, our implementation also allows us to track temporal
properties of execution and tweak interpretation properties depend-
ing on the context of execution. Moreover, the sharing of stores as
a widening strategy, is trivial to implement in our decomposition.
The well-formedness of an interpretation in our framework is en-
sured by the type system of the host language (Haskell, in our case).

The core semantics we present using monads is of a more de-
notational flavour, as it is expressed by the CPSInterface type
class. Recent work by Filinski, however, demonstrates that a com-
plementary, operational representation, is possible using reflection
and reification [8]. This correspondence could be used to translate
the monad-based definitions of the semantics functions into spe-
cialized operational rules, which were usually hand-crafted [23].

Our publicly available implementation indicates the robustness
of the approach, allowing re-use of multiple semantic aspects be-
tween different analyses and semantic formalisms.

Acknowledgements We wish to thank Olivier Danvy for discus-
sions on Nielson’s work as well as for his hospitality during Sergey
and Might’s visit to Aarhus University in December 2011, where
the idea of the work was discussed for the first time. We are grateful
to the PLDI 2013 reviewers for their excellent feedback. The work
of Ilya Sergey has been partially supported by EU Marie Curie CO-
FUND Action 291803 “Amarout-II Europe”. This research is par-
tially funded by the Research Foundation - Flanders (FWO), and by

7 I.e., those, which can be given a specific interpretation as a domain or a
lattice.

the Research Fund KU Leuven. Dominique Devriese holds a Ph.D.
fellowship of the Research Foundation - Flanders (FWO). Different
parts of Might’s effort on this work were partially supported by the
DARPA programs APAC and CRASH.

References

[1] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with
computational effects. Theor. Comput. Sci., 342(1):149–172, 2005.

[2] M. Biernacka and O. Danvy. A syntactic correspondence between
context-sensitive calculi and abstract machines. Theor. Comput. Sci.,
375(1-3):76–108, 2007.

[3] M. M. T. Chakravarty, G. Keller, S. L. P. Jones, and S. Marlow.
Associated types with class. In POPL, 2005.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, 1977.

[5] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In POPL, 1979.

[6] O. Danvy. A new one-pass transformation into monadic normal form.
In CC, volume 2622 of LNCS, 2003.

[7] O. Danvy. Defunctionalized interpreters for programming languages.
In ICFP, 2008.

[8] A. Filinski. Monads in action. In POPL, 2010.

[9] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In PLDI, 1993.

[10] P. Hudak and J. Young. Collecting interpretations of expressions.
ACM Trans. Prog. Lang. Syst., 13(2):269–290, 1991.

[11] M. P. Jones. Type Classes with Functional Dependencies. In ESOP,
volume 1782 of LNCS, 2000.

[12] A. Lakhotia, D. R. Boccardo, A. Singh, and A. Manacero, Jr. Context-
sensitive analysis of obfuscated x86 executables. In PEPM, 2010.

[13] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In POPL, 1995.

[14] M. Might. Environment analysis of higher-order languages. PhD
thesis, Georgia Institute of Technology, 2007.

[15] M. Might. Abstract interpreters for free. In SAS, volume 6337 of
LNCS, 2010.

[16] M. Might. Shape analysis in the absence of pointers and structure. In
VMCAI, volume 5944 of LNCS, 2010.

[17] M. Might and P. Manolios. A posteriori soundness for non-
deterministic abstract interpretations. In VMCAI, volume 5403 of
LNCS, 2009.

[18] M. Might and O. Shivers. Improving flow analyses via ΓCFA: abstract
garbage collection and counting. In ICFP, 2006.

[19] M. Might, Y. Smaragdakis, and D. Van Horn. Resolving and
exploiting the k-CFA paradox: illuminating functional vs. object-
oriented program analysis. In PLDI, 2010.

[20] F. Nielson. Two-level semantics and abstract interpretation. Theor.

Comput. Sci., 69(2):117–242, 1989.

[21] T. Schrijvers and B. C. Oliveira. Monads, zippers and views:
virtualizing the monad stack. In ICFP, 2011.

[22] O. G. Shivers. Control-flow analysis of higher-order languages or

taming lambda. PhD thesis, Carnegie Mellon University, 1991.

[23] D. Van Horn and M. Might. Abstracting abstract machines. In ICFP,
2010.

[24] D. Van Horn and M. Might. Abstracting abstract machines: a
systematic approach to higher-order program analysis. Commun.

ACM, 54(9):101–109, 2011.

[25] P. Wadler and S. Blott. How to make ad-hoc polymorphism less
ad-hoc. In POPL, 1989.

