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Abstract
We describe, implement and benchmark EigenCFA, an algorithm
for accelerating higher-order control-flow analysis (specifically,
0CFA) with a GPU. Ultimately, our program transformations, re-
ductions and optimizations achieve a factor of 72 speedup over an
optimized CPU implementation.

We began our investigation with the view that GPUs accelerate
high-arithmetic, data-parallel computations with a poor tolerance
for branching. Taking that perspective to its limit, we reduced Shiv-
ers’s abstract-interpretive 0CFA to an algorithm synthesized from
linear-algebra operations. Central to this reduction were “abstract”
Church encodings, and encodings of the syntax tree and abstract
domains as vectors and matrices.

A straightforward (dense-matrix) implementation of EigenCFA
performed slower than a fast CPU implementation. Ultimately,
sparse-matrix data structures and operations turned out to be the
critical accelerants. Because control-flow graphs are sparse in prac-
tice (up to 96% empty), our control-flow matrices are also sparse,
giving the sparse matrix operations an overwhelming space and
speed advantage.

We also achieved speedups by carefully permitting data races.
The monotonicity of 0CFA makes it sound to perform analysis
operations in parallel, possibly using stale or even partially-updated
data.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors and Optimization

General Terms Languages

Keywords abstract interpretation, EigenCFA, program analysis,
flow analysis, lambda calculus, GPU, CPS, matrix

1. Introduction
GPUs excel at obtaining speedups for algorithms over continu-
ous domains with low-control, high-arithmetic kernels. Flow anal-
yses [22, 24, 25], on the other hand, tend to be fixed-point algo-
rithms over discrete domains with high-control, low-arithmetic ker-
nels, such as abstract interpretations [7, 8]. At first glance, GPUs
seem ill-suited to accelerating flow analyses. Yet, with a shift in al-
gorithmic perspective and the right data structures, GPUs make the
bedrock flow analysis for higher-order programs—0CFA—nearly
two orders of magnitude faster.
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1.1 Motivation

After nearly a quarter century, higher-order control-flow analy-
sis [11, 25] remains an important analysis for highly-optimizing,
whole-program compilers of functional languages. Yet, the anal-
ysis also remains stubbornly expensive. Even one of its sim-
plest formulations, 0CFA, is still “nearly” cubic in complexity:
O(n3/ log n) [6, 19].

With CPU clock cycles no longer growing, this complexity
places ade factoupper bound on the size of programs that can
be analyzed in a reasonable amount of time. To analyze large
programs, higher-order control-flow analysis must exploit the
ever-increasing parallelism available on modern systems. Toward
that end, we develop a GPU-accelerated algorithm for 0CFA—
EigenCFA—that achieves a factor of 72 speedup over existing CPU
techniques.

1.2 High-level methodology

To develop EigenCFA, we imagined the GPU as a platform for
accelerating non-branching, data-parallel algorithms composed
entirely of linear-algebra operations. So, we reduced Shivers’
abstract-interpretive 0CFA to a data-parallel, non-branching algo-
rithm composed entirely of matrix operations: matrix multiplica-
tion, matrix addition and matrix transposition. There are five key
insights to this reduction:

1. Canonicalization to binary continuation-passing style.

To achieve good data-parallelism on a GPU, we need control-
flow uniformity among the GPU threads,i.e., to avoid branch-
ing operations. In flow analysis, the key step to parallelize is the
propagation of flow information at each call site. To eliminate
branching from this propagation routine, we transform our pro-
grams into a canonical form: binary continuation-passing style
(binary CPS). In binary CPS, every call site provides two argu-
ments, and every function accepts two arguments. By eliminat-
ing the need to discriminate on the “instruction type” (there is
only one: function call) and on the number of arguments, binary
CPS eliminates branching from the propagation sub-routine.

2. Abstract Church encodings.

One could use Church encodings to reduce every program con-
struct (e.g., if, letrec, set!) to binary continuation-passing
style. But, these desugarings obscure control-flow. For instance,
desugaringset! requires a global store-passing transform, and
the Y combinator fogs up recursion. An abstract Church en-
coding exploits the approximation in 0CFA so that the encoded
program has the same abstract control-flow as the original pro-
gram, if no longer the same concrete behavior. For example:

(set! x 10)

is equivalent (as far as 0CFA is concerned) to:

(let ((x 10)) #void)



3. Matrix-vector encoding of the syntax tree.

We use binary continuation-passing style to provide uniformity
to program syntax, but we still need a GPU-friendly way to
encode the syntax tree of a program. We encode the syntax tree
of a program as a collection of selector functions, which are
themselves represented as matrices. Individual program terms
are then encoded as vectors. (We’ll write〈〈t〉〉 to mean the
vector that encodes termt.) For instance, every call site has
three components: the procedure expression, its first argument
expression and its second argument expression. So, there are
three selector matrices that operate on call sites:Fun, Arg1

andArg2. For example, for a call site(f e1 e2):

〈〈(f e1 e2)〉〉 × Fun = 〈〈f〉〉

〈〈(f e1 e2)〉〉 ×Arg1 = 〈〈e1〉〉

〈〈(f e1 e2)〉〉 ×Arg2 = 〈〈e2〉〉.

4. Matrix encoding of the abstract store.

In 0CFA, the abstract store (also known as the abstract heap)
maps variable names to sets of values. It is the primary data
structure used during the execution of 0CFA, so it must be en-
coded in a GPU-friendly way. Fortunately, it is straightforward
to represent this data structure as a matrix. One axis of the store
matrix represents variables; the other axis represents lambda
terms. If the entry for variablei, lambdaj is non-zero, this indi-
cates that (a closure over) lambdaj may get bound to variable
i. Thus, if the matrixσ is an abstract store in matrix form, and
v is a variable, then the vector〈〈v〉〉 × σ describes the possible
values of the variablev.

5. Linear-algebraic encoding of the transfer function.

Once the syntax tree of the program is described in terms of
selection matrices, the next step is to describe the action of
the small-step transition relation for 0CFA in terms of linear-
algebraic operations. Examination of the small-step transition
relation (Section 2.4) finds only three operations beyond syn-
tactic selection: function lookup, join over functions and func-
tional extension. We reduce function lookup to matrix-vector
multiplication, join to matrix addition and functional extension
to a combination of matrix addition, matrix multiplication and
matrix transposition.

1.3 Key insights for acceleration: Sparseness and races

For the implementation, there are two insights that lead to accel-
eration: a sparse-matrix representation of the abstract store, and a
tolerance of benign (monotonic) races that allows the analysis of
call sites in parallel.

1. Exploiting sparseness.

In practice, most control-flow graphs are sparse. In our matrix
encoding of the store, the sparseness of this matrix is linked to
the sparseness of the control-flow graph. Thus, sparse-matrix
algorithms have a performance advantage over dense-matrix
algorithms for all but the most pathological programs: programs
which tend toward completeness in their control-flow graphs—
programs in which any point may jump to any other point.

2. Exploiting monotonicity to permit benign race conditions.

When analyzing call sites in parallel, they may both attempt to
read from and/or write to the same location in the abstract store.
Fortunately, the monotonic growth of the abstract store during
an abstract transition guarantees us that these races are benign:
if properly engineered, once an entry is set to a non-zero value
in the abstract store, no other thread will set it back to zero.
Monotonicity also guarantees soundness when a thread works
with a stale or partially updated store.

1.4 Contributions

• Ourprimarycontribution is the formulation of GPU-accelerated
flow analysis. To the best of our knowledge, EigenCFA is the
first such formulation.

• Our secondary claims are the reductions that made this formu-
lation possible: the encoding of the syntax tree as selection ma-
trices, abstract Church encodings and the reduction to linear
algebra of the abstract semantics for 0CFA.

1.5 Outline

Theory and implementation cleave this work in halves:

• Theory.

Section 2 is a brief review of the small-step formulation of
Shivers’ 0CFA for continuation-passing style. Section 3 de-
fines EigenCFA, a linear-algebraic formulation of 0CFA. Sec-
tion 4 describes abstract Church encodings—program transfor-
mations that are meaning-preserving only for theabstract se-
manticsof our analysis, which more precisely and efficiently
handle language constructs such as mutation, recursion, termi-
nation, basic values and conditionals.

• Implementation.

Section 5 describes how we map the algorithm for EigenCFA
down to a (CUDA-enabled) GPU. In fact, this section describes
three different approaches for performing the mapping: two of
these end up slower than or only as fast as the CPU version, but
the final implementation, which uses sparse matrices, achieves
the desired speedup. Section 6 gives the results of our empirical
evaluation. We tested two (GPU) implementations of EigenCFA
against two (CPU) implementations of 0CFA, and found a fac-
tor of 72 speedup.

2. Background: Binary CPS and 0CFA
We are going to accelerate Shivers’s original 0CFA for continuation-
passing style (CPS). To enable high performance on the GPU,
we are going to specialize it for a canonicalized form: binary
continuation-passing style. In this section, we’ll define binary CPS
and briefly review 0CFA. Readers familiar with 0CFA may wish to
skip this section. Our definition of 0CFA is taken from Might and
Shivers’s recent small-step reformulations. (We refer readers to
[20] for details such as abstraction maps and proofs of soundness.)

Binary CPS is a canonicalized variant of the continuation-
passing styleλ-calculus in which every procedure accepts ex-
actly two arguments. We use binary, as opposed to unary, CPS
because the CPS transform on lambda terms introduces an addi-
tional argument—the continuation argument—and CPS cannot use
Currying to handle multiple arguments, since it violates the “no
procedure may return” principle. We are using binary, instead of
variadic, CPS because we want to eliminate branching from the
small-step transition relation we’re about to define; branches inter-
fere with data-parallel single-instruction, multiple-thread (SIMT)
operations in the GPU.

The uniformity in binary CPS also has the benefit of making
our forthcoming matrix encodings of syntax trees predictably struc-
tured. This predictable structure is amenable to the arithmetic opti-
mizations and compressions presented in section 5.

2.1 Binary CPS

The grammar for binary CPS contains calls and expressions, and
expressions are either lambda terms or variables:



call ∈ Call ::= (f e1 e2)

f, e ∈ Exp = Var + Lam

v ∈ Var is a set of identifiers

lam ∈ Lam ::= (λ (v1 v2) call).

2.2 Concrete semantics

The simplest small-step concrete semantics for binary CPS uses
just three domains in its state-space,Σ:

ς ∈ Σ = Call× Env

ρ ∈ Env = Var ⇀ Clo

clo ∈ Clo = Lam× Env ,

and one transition rule,(⇒) ⊆ Σ× Σ:

([[(f e1 e2)]], ρ) ⇒ (call , ρ′′), where

([[(λ (v1 v2) call)]], ρ′) = E(f, ρ)

clo1 = E(e1, ρ)

clo2 = E(e2, ρ)

ρ′′ = ρ′[v1 7→ clo1, v2 7→ clo2],

where the functionE : Exp× Env ⇀ Clo evaluates expressions:

E(v, ρ) = ρ(v)

E(lam, ρ) = (lam, ρ).

2.3 Abstract state-space for 0CFA

Might and Shivers reformulated 0CFA as an abstract interpretation
of the concrete semantics just given [20]. The core of the abstrac-
tion is the elimination of environments from the semantics, and the
use of an abstract store to represent all environments. So, abstract
states (̂Σ) pair the current call site with the abstract store, and clo-
sures lose their environments:

ς̂ ∈ Σ̂ = Call× Ŝtore

σ̂ ∈ Ŝtore = Var → L̂ams

L̂ ∈ L̂ams = P (Lam).

We assume the natural partial orders on these sets: lambda sets
are ordered by inclusion, abstract stores are ordered point-wise by
inclusion, and abstract states use a product ordering. For instance,
(σ̂1 ⊔ σ̂2)(v) = σ̂1(v) ∪ σ̂2(v).

2.4 0CFA Abstract Semantics

The transition relation for the abstract semantics,( ) ⊆ Σ̂ × Σ̂,
mirrors that of the concrete semantics:

([[(f e1 e2)]], σ̂) (call , σ̂′), where

[[(λ (v1 v2) call)]] ∈ Ê(f, σ̂)

L̂1 = Ê(e1, σ̂)

L̂2 = Ê(e2, σ̂)

σ̂′ = σ̂ ⊔ [v1 7→ L̂1, v2 7→ L̂2],

as does the argument evaluator,Ê : Var × Ŝtore → P (Lam):

Ê(v, σ̂) = σ̂(v)

Ê(lam, σ̂) = {lam} .

A notable change in the abstract semantics is the nondeterminism
that results from branching to the set of possible lambda terms for
the procedure argument (note the appearance of∈).

2.5 Computing 0CFA

To compute classical, flow-insensitive 0CFA with the small-step
transition relation, we need a family of functions that computes the
output store with respect to each call sitecall , f̂call : Ŝtore →

Ŝtore:

f̂call(σ̂) =
⊔{

σ̂′ : (call , σ̂) ( , σ̂′)
}

.

Then, we can construct the “pass” function,F̂ : Ŝtore → Ŝtore,
which performs one full pass of the analysis by considering the ef-
fect on the store of every call site in the program,call1, . . . , calln:

F̂ (σ̂) = (f̂call1 ◦ · · · ◦ f̂calln)(σ̂).

Because the function̂F is continuous and monotonic, and the
height of the abstract store lattice is finite, the result of 0CFA is
least fixed point of the function̂F :

lfp(F̂ ) = F̂n(⊥
Ŝtore

) for some finiten,

where the bottom store maps everything to the empty set:

⊥
Ŝtore

= λv.∅.

Complexity If the functionF̂ adds one entry to the abstract store
per application, there can be at most|Var| × |Lam| applications
before it saturates the abstract store and must terminate. Since the
cost of each application is proportional to|Call|, the complexity of
this 0CFA is cubic, as expected.

3. EigenCFA: A linear encoding of 0CFA
In this section, we discuss our linear-algebra encoding of both
binary CPS and 0CFA. In brief, individual program terms will be
represented as vectors. The structure of the syntax tree will be
compiled into static selection matrices that operate on these term
vectors. Finally, the pass function (F̂ ) from 0CFA will be encoded
as a function operating on stores represented as matrices.

Running example. Throughout the remainder of this paper,
all of the examples will be with respect to this program (the
call-sitesc1, c2, ... are explicitly labelled for future reference):

((λ1 (v1 v′1) (v1 v1 v′1)c1)

(λ2 (v2 v′2) (v′2 v2 v′2)c2)

(λ3 (v3 v′3) (v3 v3 v3)c3))c4

and the same abstract store,σ̂:

σ̂(v1) = {λ2}

σ̂(v2) = {λ2}

σ̂(v3) = {λ2}

σ̂(v′1) = {λ3}

σ̂(v′2) = {λ3}

σ̂(v′3) = {λ3} .

We do this to improve presentation and to emphasize the dif-
ferences between each data representation strategy in Sec-
tion 5.

3.1 Encoding terms as vectors

We encode each program term (a lambda term, a variable or a call
site) as a vector over the set{0, 1}. Every term in the program will



have a unique vector representation.1 For convenience, we write the
vector encoding of termt as〈〈t〉〉.

We’ll have vectors of two lengths: expression vectors (of length
|Exp|) and call vectors (of length|Call|). Formally:

~e ∈
−−→
Exp = {0, 1}|Exp|

~call ∈
−−→
Call = {0, 1}|Call|

~v ∈
−→
Var ⊂

−−→
Exp

~lam ∈
−−→
Lam ⊂

−−→
Exp.

We can assign each expression a number from1 to |Exp|, so that
the expression vector with 1 at sloti is the expression vector for
expressioni. We can do likewise for call sites.

More specifically, variables are represented as vectors of size
|Exp| (notably not of size|Var|). λ-terms are also represented as
vectors of size|Exp| (also notably not of size|Lam|). The first
|Var| entries of an expression vector represent variables, and the
last|Lam| entries represent lambda terms.

Running example.Here is the expression vector representing
lambda termλ2:

[
v
′

3 v
′

2 v
′

1 v3 v2 v1 λ3 λ2 λ1

0 0 0 0 0 0 0 1 0
]

And, here is the expression vector representing variablev2:

[
v
′

3 v
′

2 v
′

1 v3 v2 v1 λ3 λ2 λ1

0 0 0 0 1 0 0 0 0
]

It’s worth asking why we don’t split expressions into two vector
types—one for variables, and one for lambda terms. We took this
approach because it allows us to eliminate branching from argu-
ment evaluation later on. As it is formulated in the abstract seman-
tics, the argument evaluator̂E must look up its expression argument
if it is a variable and return its argument if it is a lambda term. We’ll
be able to construct a single linear operator that has the effect of the
argument evaluator̂E—no branching necessary.

3.2 Encoding the syntax tree as matrices

To encode the syntax tree, we’ll use selectors encoded as static ma-
trices to destructure syntax terms. That is, given a term vector〈〈t〉〉,
to figure out the syntactic children of termt, we’ll have a matrix
for each type of child (e.g. first formal parameter, second argu-
ment) that maps〈〈t〉〉 to that child. For instance, the matrixCall
maps lambda terms to their call site, so that〈〈(λ (v1 v2) call)〉〉×
Call = 〈〈call〉〉.

There are six static syntax matrices:

Fun :
−−→
Call →

−−→
Exp (function applied in a call site)

Arg1 :
−−→
Call →

−−→
Exp (the first argument in a call site)

Arg2 :
−−→
Call →

−−→
Exp (the second argument in a call site)

Call :
−−→
Lam →

−−→
Call (the call site of aλ-term)

Var1 :
−−→
Lam →

−−→
Exp (the first formal of aλ-term)

Var2 :
−−→
Lam →

−−→
Exp (the second formal of aλ-term)

These matrices are constructed once per program and remain
constant through the duration of the analysis.

1 We could formulate the analysis more generally in terms of any orthogonal
basis vectors for terms, but there doesn’t seem to be any performance
advantage to doing so.

Running example. TheFun matrix determines the function
being applied at a call site for our running example:






v
′

3 v
′

2 v
′

1 v3 v2 v1 λ3 λ2 λ1

c1 0 0 0 0 0 1 0 0 0
c2 0 1 0 0 0 0 0 0 0
c3 0 0 0 1 0 0 0 0 0
c4 0 0 0 0 0 0 0 0 1






Running example. In order to look up the function being
applied at call site labelledc2, we multiply the vector repre-
sentingc2 with theFun matrix. The result is the vector repre-
senting the variablev′2:

[
c1 c2 c3 c4

0 1 0 0
]

×






v
′

3 v
′

2 v
′

1 v3 v2 v1 λ3 λ2 λ1

0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1






=
[

v
′

3 v
′

2 v
′

1 v3 v2 v1 λ3 λ2 λ1

0 1 0 0 0 0 0 0 0
]

3.3 Encoding flow sets as vectors

0CFA manipulates flow sets; flow sets are sets of lambda terms
(L̂ams). We also need to represent these as linear-algebraic values.
A natural encoding of flow sets is to use bit vectors of length|Lam|:

~L ∈
−−→
Lam

⋆ = {0, 1}|Lam| .

In some sense, we appear to be breaking with the uniform repre-
sentation of expressions by creating a special encoding of lambda
terms. However, it is more accurate to think of the set

−−→
Lam⋆ as rep-

resenting sets of abstract closures than sets of lambda terms. More-
over, we can (and do) efficiently interconvert values between the
set

−−→
Lam and the set

−−→
Lam⋆ simply by adding or ignoring 0-padding

on the front of the vector.
For a set of lambda terms,̂L, we write their vector encoding as

〈〈L̂〉〉, and we expect the following property to hold:

〈〈{lam1, . . . , lamn}〉〉 = 〈〈lam1〉〉+ · · ·+ 〈〈lamn〉〉,

where the operator+ is element-wise Boolean-OR.

3.4 Encoding abstract stores as matrices

Now that we have a representation for syntactic domains and for
flow sets, we need a matrix representation for the abstract store.
Fortunately, the store is a map from variables to flow sets, and a
linear operator (encoded as a matrix) is a natural way of represent-
ing such a map.

We do have a design choice here, and the right answer is not
immediately obvious. Wecould use a|Var|-by-|Lam| matrix to
represent stores; but we’ll be able to eliminate a branch during
argument evaluation if we make all stores into slightly larger|Exp|-
by-|Lam| matrices. So, formally:

σ ∈ Store =
−−→
Exp →

−−→
Lam

⋆,



We write the matrix-encoding of an abstract storeσ̂ as 〈〈σ̂〉〉.
And, we define the encoding by relating abstract and matrix stores:

〈〈lam〉〉 × σ = 〈〈lam〉〉

〈〈v〉〉 × 〈〈σ̂〉〉 = 〈〈σ̂(v)〉〉,

where the operator× is actually Boolean matrix multiplication.
According to these rules, the lower portion of all stores (the part

that corresponds the lambda portion of expression vectors) must be
the identity matrix.

Running example. The matrix representation of the store is:















λ3 λ2 λ1

v
′

3 1 0 0
v
′

2 1 0 0
...

...
...

...
v1 0 1 0

λ3 1 0 0
λ2 0 1 0
λ1 0 0 1















Under this encoding of stores, the evaluation of an expression
takes a single matrix multiplication:

Theorem 3.1. 〈〈Ê(e, σ̂)〉〉 = 〈〈e〉〉 × 〈〈σ̂〉〉.

Proof. By case-wise analysis and the rules for the encoding.

Running example. Here’s the look-up of variablev′2:

[
v
′

3 v
′

2 ··· v1 λ3 ···

0 1 · · · 0 0 · · ·
]
×















λ3 λ2 λ1

v
′

3 1 0 0
v
′

2 1 0 0
...

...
...

...
v1 0 0 1

λ3 1 0 0
λ2 0 1 0
λ1 0 0 1















=
[

λ3 λ2 λ1

1 0 0
]

3.4.1 Updates on the store

During the abstract transition, we make updates to stores of the
form:

σ̂′ = σ̂ ⊔ [v1 7→ L̂1, v2 7→ L̂2].
We need matrix operations that correspond to this update operation.

First, we have to construct a store representing a single map-
ping: [v 7→ L̂]. Fortunately, matrix transposition and matrix multi-
plication make this straightforward:

Lemma 3.1. 〈〈[v 7→ L̂]〉〉 = 〈〈v〉〉⊤ × 〈〈L̂〉〉+ 〈〈⊥Store〉〉.

It’s also the case that Boolean-OR acts as join on stores:

Lemma 3.2. 〈〈σ̂1 ⊔ σ̂2〉〉 = 〈〈σ̂1〉〉+ 〈〈σ̂2〉〉.

And, these two lemmas give us store update:

Theorem 3.2(Store Update Theorem).

〈〈σ̂ ⊔ [v1 7→ L̂1, v2 7→ L̂2]〉〉

= 〈〈σ̂〉〉+ 〈〈v1〉〉
⊤ × 〈〈L̂1〉〉+ 〈〈v2〉〉

⊤ × 〈〈L̂2〉〉.

Proof. By the prior two lemmas.

3.4.2 Running example: Store update

This example shows all the moving parts for store update.

Running example. To update withλ2 flowing to variablev′2,
we multiply the vectors representingλ2 andv′2 and add the
result,σfrag, to the current store:















v
′

3 0
v
′

2 1
...

...
v1 0

λ3 0
λ2 0
λ1 0















×
[

λ3 λ2 λ1

0 1 0
]
=















λ3 λ2 λ1

v
′

3 0 0 0
v
′

2 0 1 0
...

...
...

...
v1 0 0 0

λ3 0 0 0
λ2 0 0 0
λ1 0 0 0















σfrag















v
′

3 0 0 0
v
′

2 0 1 0
...

...
...

...
v1 0 0 0

λ3 0 0 0
λ2 0 0 0
λ1 0 0 0















+

σcurr















1 0 0
1 0 0
...

...
...

0 1 0

1 0 0
0 1 0
0 0 1















=

σnew















1 0 0
1 1 0
...

...
...

0 1 0

1 0 0
0 1 0
0 0 1















3.5 Linear encoding of the transfer function

Earlier, we constructed a family of transfer functions,f̂call , which
produced the effect of the transition relation on the store for a
given call site. We can construct an equivalent linearized function,
fcall : Store → Store,

fcall(σ) = σ
′

~L = 〈〈call〉〉 × Fun× σ

~L1 = 〈〈call〉〉 ×Arg1 × σ

~L2 = 〈〈call〉〉 ×Arg2 × σ

~v1 = ~L×Var1

~v2 = ~L×Var2

σ
′ = σ +

(

~v⊤1 × ~L1

)

+
(

~v⊤2 × ~L2

)

.

3.6 Soundness

We can prove that the linearized transfer function is equivalent to
the traditional one, under our matrix-vector encoding:

Theorem 3.3(Soundness). 〈〈f̂call(σ̂)〉〉 = fcall〈〈σ̂〉〉.

Proof. The proof proceeds bidirectionally. First, show that every
entry in 〈〈f̂call(σ̂)〉〉 must be infcall〈〈σ̂〉〉, and thenvice versa. In



both directions, it’s easiest to split into cases: the one in which the
entry exists in̂σ, and the one in which it is fresh.

3.7 EigenCFA: The Algorithm

Algorithm 1 gives the high-level algorithm for EigenCFA. The
algorithm assumes that the storeσ is empty at the start.

while σ changesdo
foreachcall do

// Lookup function and arguments in call
~L := (〈〈call〉〉 × Fun)× σ

~L1 := (〈〈call〉〉 × Arg1)× σ

~L2 := (〈〈call〉〉 × Arg2)× σ

// Formal arguments of function, ~L

~v1 := (~L× Var1)× σ

~v2 := (~L× Var2)× σ

// Update store

σ := σ + ~v⊤1 × ~L1
︸ ︷︷ ︸

Bind L1 to v

+ ~v⊤2 × ~L2
︸ ︷︷ ︸

BindL2 to v′

end
end

Algorithm 1: EigenCFA

4. Abstract Church encodings
It’s possible to transform any program into binary CPS using mech-
anisms like Church encodings and the Y combinator. Some en-
codings, like transforming the term(let ((v e)) body) into
the term((λ (v) body) e) are benign. But, because some en-
codings transform data-flow into control-flow, they obscure the
control-flow of the original program. Even Church-encoded inte-
gers raise thorny control-flow issues. Yet, handling forms likeset!
or letrec as special cases in the transfer function is not practi-
cal: this would force conditional tests and branching, disrupting the
data-parallelism that we have carefully engineered and protected.

To avoid branching but preserve precision, we turn to “abstract
Church encodings.” Anabstract Church encodingis a program
transformation that is meaning-preserving for anabstractseman-
tics, but not for the concrete semantics.

Caution The abstract Church encodings in this section work for
the abstract semantics of 0CFA and the simple linear model of
EigenCFA. Some of the forthcoming GPU optimizations require
alphatization of the program, a constraint that these encodings
violate. Where violations occur, we will note how to adapt.

4.1 Abstracting termination as non-termination

We actuallyneedabstract Church encodings to handle program ter-
mination: notice that our CPS language has nohalt form. So to
encodehalt, we’ll use non-termination; that is, we use the non-
terminating program Omega as the abstract encoding for termina-
tion. In other words, we apply the following rewrite rule after con-
version to a binary CPS that contains ahalt primitive:

halt =⇒

(λ (a b) ((λ (f g) (f f f))

(λ (f g) (f f f))

(λ (f g) (f f f))))

This works because once an abstract interpreter hits Omega, that
branch won’t contribute any more changes to the abstract store, so
the abstract interpretation can reach a fixed point.

4.2 Abstracting mutation as binding

To Church encode a construct likeset!, we’d have to (1) perform
cell boxing on all mutable variables, and then (2) eliminate all cells
with a store-passing-style transformation. These kinds of global
transforms alter the control-flow and data-flow behavior of the
program. Yet, 0CFA has a single abstract store that representsall
program environments. As a result,let andset! haveexactly the
same effect on the abstract store; so we can apply a rewriting rule:

(set! v e) =⇒ (let ((v e)) #void)

From the abstract store’s perspective, these terms are equivalent.

4.3 Encoding recursion as mutation

Now that we can handle mutation, we can avoid using the Y com-
binator (or a grisly polvariadic, mutually recursive variant thereof)
to handle recursion.Letrec normally desugars into “lets and
set!s.” But, sincelet has the same effect asset!, we can ac-
tually turnletrec into let with an abstract rewrite rule:

(letrec ((v1 lam1) . . . (vn lamn)) e)

=⇒ (let ((v1 lam1) . . . (vn lamn)) e)

0CFA does not distinguish their effects on the abstract store.

4.4 Abstracting basic values as non-termination

Most CFAs encode all numbers as a single abstract value. In fact,
most even convertall basic values into a single abstract value.
We can do the same, using thehalt function from before as the
single abstract value. (Any attempt to apply a basic value shouldn’t
allow the program to continue normal execution.) All primitive
operations that operate on basic values ignore their arguments and
return this basic value.

4.5 Abstractly encoding conditionals

Most CFAs do not attempt to evaluate conditionals; their behavior
is to always branch in both directions at anif. We could Church
encode Booleans and conditionals, but this introduces a level of in-
direction, as conditionals appear to interprocedurally flow through
their Church-encoded condition. Or, we could exploit the fact that
flow sets merge in 0CFA to simulate the non-determinism of the
conditional with the non-determinism of procedure call. So, after
we CPS transformif forms, we can abstractly encode them with a
let-based rewrite:

(if e call1 call2)

=⇒ (let ((next (λ () call1)))

(let ((next (λ () call2)))

(next)))

It’s safe to drop the conditional expressione, because after the CPS
transform, this expression is atomic, and it makes no changes to the
store. By the time the analysis reaches the call site(next), both
continuations will have been bound tonext in the abstract store.

5. Our GPU implementation narrative
In this section, we discuss the details of mapping our high-level
algorithm for EigenCFA down to the nuts and bolts of a GPU
implementation. It took effort to discover which optimizations and
data structures were the right ones, so we will discuss both the right
turns and the wrong ones on the road to EigenCFA. We present
three iterations of our implementation: (1) naı̈ve, (2) dense and (3)
sparse.

We wrote a pre-processor in Racket which transformed the input
program and generated the static syntax matrices. These matrices
were passed to a C program which copied them into the GPU



memory and launched the CUDA (GPU) kernels that performed
the analysis. (For a brief summary of CUDA and the high-level
architecture of the GPU we targeted, see the appendix.) All three
of our implementations picked up at this point.

5.1 Attempt 1: Näıve implementation with CUBLAS

Our first implementation of EigenCFA used NVidia’s CUBLAS li-
brary for linear algebra to perform the matrix operations. This im-
plementation was an almost verbatim transliteration of Algorithm
1, and it turned out to beslowerthan our CPU implementation. We
identified several problems:

• Dense matrix computations.

Although most of the matrices in our analysis were sparse,
the CUBLAS library is written for accelerating dense-matrix
operations. Since the matrices are all quadratic in the size of the
program, they consumed all of the parallel processing facilities
of the GPU, even for small programs.

• Memory requirements.

The matrices and vectors in EigenCFA only contain boolean
values. Use of 4-byte floats as required by the CUBLAS li-
braries for each element was wasteful. As we describe in Sec-
tion 5.2, using one bit per entry yielded large constant-factor
speedups and substantial memory savings.

• Redundant operations.

The static syntax matrix lookups (each a large multiplication)
were repeated in each iteration. Eventually, we were able to
compress these matrices and simplify their application.

5.2 Attempt 2: Bit-packed matrix implementation

To overcome some of the limitations of the naı̈ve approach, we
optimized the matrix and vector representations.

5.2.1 Bit-packing

Since the vectors and matrices contain Boolean entries, one obvious
way to reduce the sizes of the matrices was to use bit-vectors for
terms and values, and bit-matrices for the abstract store and the
syntactic matrices. Once encoded as bit-packed data structures,
we also gain word-level parallelism by shifting from Boolean to
bitwise-logical operations.

Running example. Here is the same store lookup from ear-
lier, with bit-packed matrices:

[
0 128

]
⊗

[
1 0 0

196 58 1

]

=
[
1 0 0

]

Each column of the store has been compressed. To make this
example small but interesting, we assume that the size of
each word is eight bits. The⊗ operator is bitwise matrix-
multiplication that works on our bit-packing scheme: the mul-
tiplication and addition in conventional matrix multiplication
algorithm become bitwise-AND and bitwise-OR.

In our implementation, the word size is 32 bits—the word size
on the GPU on which we ran the analysis. This means that all
vectors are padded to bring their size to the nearest multiple of 32.
This bit-packing reduced the size of the matrices by almost a factor
of 32. (The word-alignment padding is why the reduction in size
isn’t alwaysexactlya factor of 32.)

Running example. Here is bit-packed store update:

[
0

128

]

×
[
0 1 0

]
=

[
0 0 0
0 128 0

]

⊕

[
1 0 0

196 58 1

]

=

[
1 0 0

196 186 1

]

(The⊕ operator performs a bitwise-OR.)

5.2.2 Compressing static syntax matrices

Each static syntax matrix is quadratic in the size of the program.
Transferring them to and manipulating them on the GPU imposes
significant time and memory costs. Fortunately, we can exploit the
uniformity of binary CPS to compress them and optimize their
application at the same time.

By choosing the numbering scheme for variables and lambda
terms carefully, we compressed the operatorsVar1 andVar2 into
small, explicit formulae. Specifically, if the lambda termλn is the
nth lambda term, then in an expression vector,(n + |Lam|) is
the expression number of its first formal, and(n + 2|Lam|) is the
expression number of it second formal.

Now, each expression vector has three distinct segments: the
Lam segment for the lambda terms; theVar1 segment for formals
in the first position; and theVar2 segment for formal in the second
position. With this scheme, we can determine〈〈vk〉〉 and〈〈v′k〉〉 from
the representation ofλk without any matrix multiplication.

Running example. If vk andv′k are, respectively, the first
and second formal arguments forλk, these are the vectors
representingλ2, v2 andv′2:

〈〈λ2〉〉 =
[

λ2 λ2 λ1

0 1 0
]

〈〈v2〉〉 =
[

v
′

3 v
′

2 v
′

1 v3 v2 v1 λ3 λ2 λ1

0 0 0 0 1 0 0 0 0
]

〈〈v′2〉〉 =
[

0 1 0 0 0 0 0 0 0
]

TheCall matrix disappears after making the observation that
there is exactly one call site for everyλ-term. That is, thesame
vector (suitably truncated) can represent both theλ-term and its
corresponding call site. (When we shift to a sparse-matrix imple-
mentation, we will be able to compress the remaining static syntax
matrices.)

Caution: Abstract Church encodings The compression strategy
we have chosen implicitly alphatizes the program, so that each vari-
able has a unique lambda term that binds it. Some of the abstract
Church encodings carefully exploit the behavior of 0CFA on non-
alphatized code. There are two ways to resolve this problem: (1)
more sophisticated abstract Church encodings or (2) a look-up ta-
ble in the GPU implementation:

1. The encoding approach adds a procedure for every variablev:

write-v = (λ (v q) (q))

All mutation of the variablev must pass through this procedure.



2. The lookup-table approach creates a2|Lam|-entry table in
which entryn contains the expression number of the first for-
mal and the entryn+ |Lam| contains the expression number of
the second formal for thenth lambda term.

5.2.3 Store update optimization

Under the encoding described in the previous section, the store is
also logically divided into the same three equal-sized segments: the
Lam region, theVar1 region and theVar2 region. As a result, we
determined that store update, which adds~v⊤ × ~L, can only modify
a (known) third of the store: the region in which the variables in
the vector~v live. (Recall that, in the abstract semantics, updates
for first-argument formals are carried out separately from updates
for second-argument formals.) Exploiting this knowledge cuts the
number of operations on update by two-thirds.

5.2.4 GPU-only optimizations

A few optimizations in our second implementation apply only to
the GPU:

• Reducing the number of kernel calls.

The CPU initiates parallel operations on the GPU through ker-
nel invocations. Each kernel call has non-trivial overhead, so
kernels should be combined whenever synchronization between
them is unnecessary. We performed the calculations for~L, ~L1

and ~L2 (see Algorithm 1) within the same kernel. Combined
with the static matrix compression and the store update opti-
mization, the total number of kernel calls per iteration dropped
from 14 to 3.

• Constant memory.

Since we were iterating over all call sites in the program, there
was strong locality in the syntax matrix lookup, and this data
was read-only on the GPU. Therefore, it was a good candidate
to use the GPU’s constant memory, which unlike the global
memory, is cached for low latency memory accesses. Although
the constant memory on the GPU was not large enough to store
the entire static matrix, we could leverage this locality and store
only that part of the matrix which we knew would be used at
any point of time. This increased speed by 40% compared to
the scheme without constant memory.

• Aligning thirds of the vectors to word boundaries.

In order to efficiently implement static syntax matrix compres-
sion (Section 5.2.2), we aligned each segment of the expression
vectors—Lam, Var1 andVar2—along word boundaries.

Running example. The figure below shows 0-padded
vectors where|Lam| = 3 and the word size is4.

〈〈λ2〉〉
︷ ︸︸ ︷

[
λd λ3 λ2 λ1

0 0 1 0
]

〈〈v2〉〉
︷ ︸︸ ︷

[
··· v

′ ··· | vd v3 v2 v1 | ··· λ ···

· · · 0 · · · | 0 0 1 0 | · · · 0 · · ·
]

〈〈v′

2〉〉
︷ ︸︸ ︷

[
v
′

d
v
′

3 v
′

2 v
′

1 | ··· v ··· | ··· λ ···

0 0 1 0 | · · · 0 · · · | · · · 0 · · ·
]

We also padded the store to take into account this change in the
size of the vectors.

Running example. The corresponding 0-padded store is
below. When creating the store, we need to add blank rows
corresponding to the pads:
























λd λ3 λ2 λ1

v
′

d
0 0 0 0

...
...

...
...

...
v
′

1 0 1 0 0

vd 0 0 0 0
...

...
...

...
...

v1 0 0 1 0

λd 1 0 0 0
λ3 0 1 0 0
λ2 0 0 1 0
λ1 0 0 0 1
























• Shared memory.

In our implementation of matrix multiplication, each thread cal-
culates the value of exactly one cell in the result. We arranged
the threads so that all threads within a block write to adjacent
cells within the same row of the result. This means that all of the
threads will read from exactly the same part of the vectors be-
ing multiplied. This yields significant data reuse. So, we copied
the relevant segments of the vectors into shared memory and
observed a 25% reduction in the running-time.

5.2.5 Limitations of this approach

To our surprise, these optimizations only barely beat the perfor-
mance of our CPU implementation of 0CFA. Through debugging,
we narrowed the cause of the poor performance down to a few prin-
cipal factors:

• Unnecessary operations.

The first phase of the store update operation generates a new
store which contains new bindings; the second phase then adds
this new store to the old store. Not only does this waste memory
on a second store, the update only impacts a small number
of locations, yet we pay a cost proportional to the size of the
store—twice.

• Failure to exploit “superposition.”

EigenCFA can do things 0CFA can’t: EigenCFA can represent
multiple terms,e.g., call sites, in the same vector, simply by
setting additional bits. This gives EigenCFA control over a dif-
ferent kind of parallelism—the ability to act on “superimposed”
terms. Yet, our implementation ignores this ability.

• Unutilized parallelism.

Since the analysis is flow-insensitive, all of the call sites could
be evaluated in parallel and their effects then merged. However,
since we were using dense-matrix operations, performing large
matrix multiplications for each call site consumed the storage
capacity of the GPU. To process each call site required a return
to the CPU to retrieve the partial solution from the GPU, and
copy the input data for the next call site, sequentializing the
computation.



5.3 Success: Sparse matrix implementation

Before constructing our third implementation, we observed that the
abstract store tended to be sparse. In fact, 96% of all entries in the
final store matrix contained zeros. And, on average, each variable
was bound to about two lambda terms. Using a dense matrix to
encode the store is inefficient. So, we switched to using a sparse
matrix representation of the store, and this optimization turned out
to be the critical accelerant for EigenCFA.

5.3.1 A sparse representation

The sparse matrix representation we use is essentially ELL form, in
which the sparse matrix has a fixed maximum number of columns.
Each row has a header indicating how many cells in that row are ac-
tive, and an auxiliary array indicates the column for each nonzero
element.[5] ELL is best suited to sparse matrices that have roughly
comparable numbers of non-zero elements, and lends itself to com-
putationally efficient access to the sparse matrix. This scheme is not
as memory-efficient as the more commonly used CSR (Compressed
Sparse Row) representation [3], but it has a smaller memory foot-
print than the dense representation and it retains, for our purposes,
the performance advantages.

We allocate our initial store matrix by allocating a fixed number
of columns to each row in the store. Initially, we assume no flow
set will hold more than 4% of all lambda terms in the program.
If, during the course of the analysis, this number proves to be
insufficient, we save the store, terminate the analysis and restart
with a twice as many columns.

The header cell of each row is the index of the first free slot
available in that row. Each entry in a flow set row is the assigned
number of the lambda term in the flow set,e.g., if row i containsn,
thenλn may flow to variablevi.

Running example. We sketch the sparse store representation
for our running example below:















v
′

3 2 | 3
v
′

2 3 | 3 2
...

...
...

...
...

...
v1 2 | 2

λ3 2 | 3
λ2 2 | 2
λ1 2 | 1















In order to addλ2 to the flow set forv1, we append the number
corresponding toλ2 to the row vector representingv1, now a linear-
time operation. (It’s a linear-time operation because we check for
membership before appending.)

5.3.2 Optimizing the static matrices

In addition to sparsifying the store, we also compressed the remain-
ing static syntax matrices. Since every variable andλ-term has an
assigned row in the store, when evaluating the function and argu-
ment expressions of a given call site, all EigenCFA needs is the
corresponding row number in the store. With this insight, we re-
duced theFun, Arg1 andArg2 matrices to look-up vectors of
size|Call|. This eliminates the need to perform a true matrix multi-
plication in the argument-lookup phase of Algorithm 1.

Running example. TheFun matrix becomes the vector:

[
c1 c2 c3 c4

5 1 3 8
]

5.3.3 Parallelizing call-site evaluation

Since the store-update operation was simplified, we freed up
enough GPU resources to parallelize each iteration across call sites.

5.3.4 Tolerating race conditions

Since global synchronization on a GPU is expensive, it’s important
to engineer store update to behave correctly in the presence of races
once call sites are analyzed in parallel. It will likely be the case
that one GPU thread sees a store has been only partially updated
by another GPU thread. Fortunately, abstract transfer functions in
0CFA are monotonic, which means that flow sets only get larger.
More importantly, it means that 0CFA is information-preserving
during each iteration: working with stale data does not affect the
soundness.

We ensure that the store grows monotonically by writing to it
only when a GPU thread has new information to add. And, for
overall efficiency, we tolerate some rare inefficiencies: a row may
have more than one copy of the same lambda term if they race
on trying to add the same lambda at the same time. This prevents
threads with stale data from overwriting any changes to the store,
without the cost of global synchronization.

For instance, let’s say that two call sitesc1 and c2 are being
evaluated in parallel andc2 reads from a row beforec1 updates
it. If the evaluation ofc1 does not yield any new store bindings,
nothing will be written to the store and the updates ofc2 will be
preserved. In the next iteration, these updates will be visible during
the evaluation ofc1 and the final result will still be correct.

Robustness against races from monotonicity We can argue more
formally that 0CFA is robust in the presence of stale or partially
completed stores and out-of-order analysis for call sites. Suppose
that the current abstract storeσ̂ is reset at some point to an arbitrar-
ily chosen weaker store,̂σ′, so thatσ̂′ ⊑ σ̂. This represents acting
on stale or partially completed data. We can show that the analysis
will still reach the most precise result:

Theorem 5.1. If σ̂′ ⊑ lfp(F̂ ) thenF̂∞(σ̂′) = lfp(F̂ ).

Proof. By definition, σ̂′ = lfp(F̂ ) ⊓ σ̂′. Applying F̂∞ to both
sides yieldsF̂∞(σ̂′) = lfp(F̂ ) ⊓ F̂∞(σ̂′). By Kleene’s fixed-
point theorem,F̂∞(σ̂′) must also be a fixed point. Tarski-Knaster
guarantees this fixed point will be equal to or greater than the least
fixed point. Thus,lfp(F̂ ) ⊓ F̂∞(σ̂′) = lfp(F̂ ).

We can also analyze calls in any order—also on partially com-
pleted or stale data. We show this by proving that applying the
transfer function for any call site to a point below the least fixed
point remains consistent with the least fixed point:

Theorem 5.2. If σ̂′ ⊑ lfp(F̂ ) then f̂call(σ̂′) ⊑ lfp(F̂ ), for any
call sitecall .

Proof. By contradiction, and cases: (1)̂fcall(σ̂′) ⊒ lfp(F̂ ) and (2)
f̂call(σ̂

′) 6⊑ lfp(F̂ ) andf̂call(σ̂′) 6⊒ lfp(F̂ ).

5.4 GPU-specific optimization: Texture memory

A final GPU-specific tweak led to additional speedup. The selection
matrices (which had by now been reduced to a linear array) were
all stored in texture memory, a way of designating read-only data in



global memory so that it is cached for low-latency memory access.
We did this because texture data doesn’t have the size restrictions of
constant memory. The use of texture memory resulted in a roughly
20% speedup over the use of global memory.

6. Empirical evaluation
In total, we created four implementations to evaluate and compare.
In case it is not clear, EigenCFA and 0CFA have exactly the same
precision, so time is the only relevant metric for comparison.Ulti-
mately, our fastest GPU implementation was a factor of 72 faster
than our fastest CPU implementation at scale.We compared two
CPU implementations against two GPU implementations:

• CPU (S): A fast CPU implementation of 0CFA in Racket. We
implemented a traditional small-step version of 0CFA accord-
ing to best practices.

• CPU (Sp): A sparse-matrix CPU implementation of EigenCFA
in C. Since many of our optimizations to the sparse-matrix
implementation were not GPU-specific, and many good sparse
matrix algorithms for the CPU exist, we had to make sure
that merely representing 0CFA as a sparse matrix algorithm
was not the sole cause of the speedup. We implemented this
CPU version of the sparse-matrix algorithm in order to show
that the speedups from the GPU mattered. In fact, this matrix
CPU version beat our Racket CPU version in performance, so
we report our relative speedup against this sparse-matrix CPU
implementation instead.

• GPU (D): A dense-matrix implementation of EigenCFA on the
GPU. It performed terribly. We implemented this version as a
cautionary point of comparison. (This implementation corre-
sponds to Attempt 2.)

• GPU (Sp): A sparse-matrix implementation of EigenCFA on
the GPU. We implemented this version to measure the speedup
over the fastest CPU version, which ended up being a factor of
72.

6.1 Platform

We evaluated our implementations on an NVidia GTX-480 “Fermi”
GPU with 1.5 GB of memory. The host machine (on which we also
ran the CPU implementations) was equipped with an Intel i7 CPU
running at 2.79 GHz.

6.2 Benchmarks

To benchmark our implementations across a range of program
sizes, we exploited Van Horn and Mairson’s recent work on the
complexity of control-flow analyses [26, 27]. Because Van Horn
and Mairson offerconstructiveproofs of complexity, we can extract
a “benchmark generator” from these proofs that emits a program
of the requested size that will be worst-case to analyze fork-CFA
when k ≥ 1. For 0CFA, the programs it generates are difficult
but not worst-case. Might, Smaragdakis and Van Horn’s recent
work on the complexity ofk-CFA also used this generator, and
their empirical results provide a sense of its verisimilitude to hand-
written benchmarks [21]. In short, these benchmarks are about an
order of magnitude harder to analyze than code written by humans.

6.3 Measurements

Table 1 presents the running time of the analysis for each imple-
mentation. The first column is the number of terms in the program.
A time of “∞” indicates that the analysis took longer than 6 hours
to complete. Figure 1 is a plot of the same data. Note the logarith-
mic scale on the time-axis. As programs grow larger, the sparse-
matrix GPU implementation of EigenCFA has a significant advan-
tage over the other implementations.
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Figure 1. Comparison of implementations: Running times versus
number of terms. Note that the time axis islog-scale. The sparse-
matrix GPU implementation of EigenCFA clearly dominates.

Terms GPU (Sp) CPU (Sp) CPU (S) GPU (D)

297 0.4 ms 0.1 ms 6.3 ms 7.7 ms

545 0.7 ms 0.16 ms 18 ms 13.9 ms

1,041 1.15 ms 0.33 ms 74.3 ms 34.2 ms

2,033 2.27 ms 0.84 ms 433 ms 0.11 s

4,017 6.51 ms 4.2 ms 2.46 s 0.47 s

7,985 24.01 ms 34.7 ms 15.53 s 4.13 s

15,921 94.48 ms 0.4 s 1m 30s 49.16 s

31,793 0.4 s 5.6 s 8m 30s 11m 43s

63,537 2.49 s 1m 24s 52 min 3hr 2m

127,025 21.3 s 20 min 5hr 46m ∞

222,257 2m 53s 3hr 30 m ∞ ∞

Table 1. Analysis running times versus number of terms. (∞
means greater than 6 hours.)
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Figure 2. Comparison of GPU and CPU at smaller program sizes.
Up to 4500 program terms, the CPU implementation beats the GPU
implementation.



In the interest of showing trade-offs, Figure 2 compares the per-
formance of the sparse-matrix implementation of the analysis run-
ning on the CPU and the GPU for smaller program sizes. For small
programs (less than 4500 terms), the CPU (barely) outperforms the
GPU for the following reasons:

• Kernel invocation cost.

There is a fixed cost associated with each invocation of a kernel
on a GPU. At smaller program sizes, since the number of
iterations and the time taken per iteration is small, the start-up
cost becomes a significant percentage of the total running time.

• Faster CPU clock.

The CPU clock runs twice as fast as the GPU (2.8 GHz against
1.4Ghz). In small programs, there isn’t as much parallelism that
can be exploited by the GPU. In this situation, the slower clock
of the GPU limits speed.

• Fewer CPU iterations.

On larger program sizes, the number of iterations is large
enough that in the limit, both the serial and parallel algorithms
converge in exactly the same number of iterations. For the
smaller programs, this isn’t true and the GPU often takes twice
as many iterations to converge.

Figure 3 is a plot of the speedup obtained by the sparse-
matrix GPU implementation of EigenCFA over the CPU. Negative
speedup values (barely visible at the left side of the chart) indicate a
slowdown. Figure 2 shows this territory of the chart in more detail.
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Figure 3. Speedup (in multiples) of GPU over CPU versus the
number of program terms.

7. Related Work
Our work in flow analysis descends from a long line of research,
beginning with the Cousots’ foundational work on abstract inter-
pretation [7, 8], continuing through Jones’ work on control-flow
analysis [11] and, most recently, through Shivers’ work onk-
CFA [20, 24, 25].

The literature on parallelizing static analyses is sparse. To the
best of our knowledge, there haven’t been any efforts to parallelize
higher-order control-flow analyses. Notable very recent contribu-
tions include Mendez-Lojoet al.’s use of multicore architectures
to accelerate classical inclusion-based points-to analysis [18] and
Lopes et al.’s framework for distributed software model check-
ing [16]. Given that 0CFA can also be phrased as an inclusion-based
analysis, Mendez-Lojo’s techniques are likely applicable.

Most of the prior work in parallelizing static analyses have
been focused on data-flow analysis for first-order, imperative pro-
grams. Classically, data-flow analyses have been performed by it-
erative methods such as those originally proposed by Kildall [12]
and Hecht [10], elimination methods [2, 23] or hybrid algorithms
which combine both approaches [17]. Most efforts at parallelizing
data flow analysis have involved parallelizing these algorithms. Zo-
bel [28] and Gupta [9] parallelized Allen-Cocke’s interval analysis.
Ryder [15] improved on the graph partitioning scheme from [2]
which led to a more effective parallel algorithm. Lee implemented
the hybrid approach for MIMD architectures using message pass-
ing between the processors [14]. Gupta et al. moved away from
parallelizing existing algorithms to developing specific techniques
for parallel program analysis. In [13], they convert the control-flow
graph of a program into a DAG and solve the data-flow problem for
each node of the graph in parallel.

The GPU has been used to accelerate static analysis most no-
tably by Banterle and Giacobazzi [4] who implemented the Oc-
tagon Abstract Domain (OAD) on a GPU. Since OAD computa-
tions are based on matrices, it was easily mapped to the GPU.

8. Future Work
There are at least two promising avenues for future work: adapting
our techniques to pointer analysis and exploiting “superposition”
within EigenCFA to achieve a genuinely new kind of flow analysis.

8.1 Accelerating pointer analyses

Given recent results unearthing the connection between control-
flow and pointer analyses [21], we believe that the techniques
presented here can be adapted to pointer analyses as well. Pointer
analyses face additional hurdles, such as the fact that its small-step
transition relation is much more complex, and a reduction to binary
CPS seems out of the question. But these problem do not seem
insurmountable.

8.2 Exploiting “superposition”

Using matrices to represent the store and vectors allows “superpo-
sition” to be used as another potential source of parallelism. This
parallelism is implicit in the structure of the matrices themselves,
so it could be exploited in addition to the explicit parallelism that
was described in section 5.3.

8.3 Phased analysis

It took a lot of syntactic normalization and abstract Church en-
codings to impose control-flow uniformity on the abstract transfer
function. We hypothesize that a better approach would be to al-
low different syntactic forms, and then process each kind of form
in parallel—to process all function calls in parallel, then allset!
statements in parallel, then all conditionals, and so on, in each pass
of the analysis.

A. The GPU and CUDA
In this section, we provide a brief, high-level description of the
architecture, memory hierarchy and programming model of the
GPU. CUDA (Compute Unified Device Architecture) is a general
purpose parallel computing architecture that leverages the parallel
compute engine in NVidia GPUs. The parallel programming model
provides three levels of abstraction—a hierarchy of thread groups,
shared memories and barrier synchronization [1].

Threads on a GPU are organized into groups called blocks. Only
threads within a block can be synchronized cheaply. Synchroniza-
tion of threads across blocks would have to be done on the host
which can be quite expensive. Threads are scheduled and executed
in groups of parallel threads called warps. Divergence in execution



paths of threads within a warp can have an adverse impact on per-
formance. The GPU has different types of memories:

• Global memory: is large, global, read-write, uncached DRAM.

• Shared Memory: is small, private to each block, read-write
memory whose access time is potentially as low as register
access time

• Constant Memory: is small, global, read-only3 and cached.

• Texture Memory: is read-only3 and cached. It is optimized for
2D spatial locality which means that certain memory access
patterns can be very efficient.

Data placement in memory and divergent execution in threads
must be carefully controlled to maximize performance.
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