
100 communications of the acm | september 2011 | vol. 54 | no. 9

The goal of program analysis is to stati-
cally predict runtime properties of pro-
grams without running them. The se-
mantic approach to program analysis
originates in Cousot’s path-breaking
work on abstract interpretation: start
from a formal mathematical model of
program execution—a semantics—and
approximate it with Galois connec-
tions (or similar means) into a com-
putable model based on lattices of
runtime properties that accounts for
all possible execution paths. Each pro-
gram gives rise to a collection of equa-
tions that are then typically solved by
fixed-point iteration.

Semantics-based program analysis
therefore requires one to (1) start from
a “friendly” semantics; design a “con-
genial” lattice of runtime properties;
(3) associate a “relevant” set of equa-
tions to a program; and (4) solve these
equations efficiently.

Each of these requirements is
fraught with difficulties:

1.	 Among the varieties of formal se-
mantics that exist (operational, deno-
tational, axiomatic, among others) and
their sub-varieties (for example, small
step or big step), where is your friendly
semantics? Ideally, it should lend itself
to a good approximation into a com-
putable model.

2.	 What is a congenial lattice of run-
time properties? How wide should it
be? How high? Ideally, it should lend
itself to a good widening operator that
accelerates the convergence of fixed-
point iteration without compromising
the precision of its result.

3.	 What is a relevant set of equa-
tions? Ideally, each equation should
mimic the friendly semantics as closely
as possible.

4.	 What is the best representation of
equations and the most efficient way
to solve them? This is an algorithmics
problem.

Effective answers to each of these
questions have been found before, but
it is like each of them is a tour de force.

In the following paper, David Van
Horn and Matthew Might take a radi-
cal bet of simplicity and effectiveness:

˲˲ Since most semantic artifacts are
inter-derivable, without loss of gener-
ality, they select abstract machines—
deterministic state-transition systems
with potentially infinite state spaces—
as their friendly semantics.

˲˲ They then refactor each abstract
machine into a non-deterministic
state-transition system with a finite
state space.

Their methodology is concretely
useful: it enables program-analysis
designers to start from an existing ab-
stract machine rather than from an ad
hoc, tailored one, and then factor it
uniformly into an abstraction-friendly
semantic artifact. Their methodol-
ogy is effective: it scales to a variety
of computational situations involv-
ing realistic programming-language
constructs, for example, exceptions.
Their methodology is structural and
generic: it enables program-analysis
designers to concentrate on what is
specific to their analysis and is still dif-
ficult—their lattice of runtime proper-
ties, their widening operator, how to
represent their equations, and how to
solve them efficiently—instead of be-
ing forced to perform one global tour
de force after another, from scratch,
every time.

As such, we find Van Horn and
Might’s scientific contribution to be a
significant stepping stone conceptual-
ly and practically as well as an effective
tutorial on how to develop a higher-or-
der program analysis by abstracting an
abstract machine. We also found their
article a pleasure to read.	

Olivier Danvy (danvy@cs.au.dk) is an associate professor
and Jan Midtgaard (jmi@cs.au.dk) is a post-doctoral
researcher in the Department of Computer Science at
Aarhus University, Aarhus, Denmark.

© 2011 ACM 0001-0782/11/09 $10.00

Technical Perspective
Abstracting
Abstract Machines
By Olivier Danvy and Jan Midtgaard

research highlights

doi:10.1145/1995376.1995399

We find Van Horn
and Might’s scientific
contribution to be
an effective tutorial
on how to develop
a higher-order
program analysis
by abstracting
an abstract machine.

