
A Posteriori Environment Analysis with Pushdown Delta CFA

Kimball Germane Matthew Might
University of Utah, USA

Abstract
Flow-driven higher-order inlining is blocked by free variables, yet
current theories of environment analysis cannot reliably cope with
multiply-bound variables. One of these, ∆CFA, is a promising
theory based on stack change but is undermined by its finite-state
model of the stack. We present Pushdown ∆CFA which takes a
∆CFA-approach to pushdown models of control flow and can cope
with multiply-bound variables, even in the face of recursion.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors and Optimization

Keywords Static analysis; Environment analysis

1. Introduction
Higher-order procedure inlining requires higher-order considera-
tions. To illustrate, consider the Scheme program

(let ([f (λ (x h) (if (zero? x) (h) (λ () x)))])
(f 0 (f 3 #f)))

which first binds f and then invokes it twice, the second time with
its own result.

It seems apparent that (λ () x) can be inlined at (h): only
closures over (λ () x) flow to h at (h) and x is in scope at (h).
However, x’s binding in the environment of (h) is different than
its binding in the environment of (λ () x) when the closure that
flows to h is captured. Were we to proceed with the inlining, the
meaning of the program would change from 3 to 0. Consequently,
this inlining is unsafe.

Shivers [13, Ch. 10] outlines three sufficient safety conditions
for inlining the operator f of a call site call . These are:

1. That closures over only a single λ-term lam flow to f , i.e., that
the inlining operation is even sensible. This condition concerns
control flow and can be established by a control-flow analysis
such as k-CFA [12, 13] or CFA2 [16].

2. That each free variable x of lam is in scope at call . The inlining
operation syntactically replaces f with lam in call so each free
variable x of lam must be bound in the environment of call .
This condition is trivial to establish under lexical binding.

3. That the binding of each free variable x of lam is the same
in the environment of call as it is in the environment of lam

before inlining. This condition concerns environments and may
be established by an environment analysis.

Environment analysis plays a critical role: the potential inline in the
previous example met the first two conditions but not the third.

Several theories of environment analysis have been developed.
To see them in action, we consider a higher-order program with
a non-trivial nested loop, seen in Figure 1.1 This program recurs
on a list of numbers and produces a list of accumulated sums.
For instance, when invoked on (list 1 2 3 4 5) (the first five
natural numbers), it produces (list 1 3 6 10 15) (the first five
triangle numbers). At each step, the number at the front of the list
is captured in a closure to map across the rest of the list. Before
doing so, however, tri recurs on the rest of the list, so the list of
accumulated sums is built incrementally from back to front.

Control-flow analysis reveals that each operator of the call site
(f w) is a closure over (λ (u) (+ y u)) and that its free vari-
able y is in scope there, satisfying the first two inlining conditions.
As the previous example demonstrates, the bindings of y in the en-
vironment of (λ (u) (+ y u)) and the environment of (f w)
may not agree. To establish inlining safety, we turn to environment
analysis.

We now look at the approaches taken by five existing environ-
ment analyses and examine how each behaves on this example, in
hopes to expose the issues at hand and give a taste of possible ap-
proaches. Each of these analyses is built upon abstract interpreta-
tion [3].

Reflow analysis [13, Ch. 8] re-runs the control-flow analysis—
starting it mid-stream—for each binding of closure-captured
variables, isolating a single binding each time. When applied to
the binding of y in this example, reflow analysis successfully
proves the inlining safe at the cost of another control-flow
analysis.

ΓCFA [11] keeps track of the number of concrete counterparts to
each abstract binding, using abstract garbage collection to reap
stale bindings. Applied to this example, it attempts to prove that
only a single binding of y may be live at any point. As multiple
bindings of y are co-live within nested recursive calls, it fails to
prove the inlining safe.

Binding anodization [9] attempts to generalize reflow analysis by
isolating bindings according to a user-specified policy. Unlike
reflow analysis, however, it is performed in conjunction with
and not after the initial control-flow analysis. Specific bind-
ing isolation policies are tailored to specific binding patterns
and, though programs typically exhibit myriad binding patterns,
only a single policy may be active for each analysis. In short,
there is likely a policy which justifies this inlining, but the user

1 This program exhibits an unspecialized use of map which is unlikely to
arise in practice but illustrates a particular issue that blocks most environ-
ment analyses.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

POPL’17, January 15–21, 2017, Paris, France
ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009899

19

(λ (us)
(letrec ([tri (λ (xs)

(match xs
[(list) (list)]
[(cons y ys) (letrec ([map (λ (f zs)

(match zs
[(list) (list)]
[(cons w ws) (cons (f w) (map f ws))]))])

(cons y (map (λ (u) (+ y u)) (tri ys))))]))])
(tri us)))

Figure 1. Accumulating sum program

must manually devise it for this particular binding pattern and
implement it up front.

UVA [2] casts binding equivalence in terms of graph reachability:
using a control-flow graph built from the control-flow analysis,
it equivocates the binding and use of a variable that are graph-
connected but only if no connecting path touches a rebinding
of that variable. As y is recursively rebound between a partic-
ular binding and use in this example, UVA fails to justify this
inlining.

∆CFA [10] uses stack behavior as a proxy for the environment
and identifies bindings allocated at the same point in the stack
history. However, its finite-state abstraction of the stack is
coarse and the recursion leads it to conflate distinct bindings
of y. Consequently, it too is unable to justify this inlining.

In summary, only reflow analysis is able to justify this inlining (but
lacks formal justfication for its correctness).

The ∆CFA approach is worth revisiting. In fact, the failure of
∆CFA to justify this inlining is not inherent in its approach but is
instead a result of the imprecise finite-state abstraction afforded by
its host analysis, k-CFA [12, 13].

1.1 A Brief ∆CFA Primer
∆CFA comprises semantic machinery, an environment theory, and
a sound abstraction of the semantic machinery with respect to that
theory.

∆CFA meticulously tracks stack change during program evalu-
ation in terms of frame strings, sequences of stack actions. Having
done so, ∆CFA can reconstruct a frame string representation of the
intervening stack motion between any two points in evaluation.

The environment theory of ∆CFA leverages this ability by
imagining that all environment bindings are allocated on the stack
(at least initially) and viewing a stack action as the introduction
or removal of particular bindings. It can then reason about binding
equivalence by comparing frame strings.

In the exact programming language semantics, where perfect
frame string reconstruction is possible, these comparisons yield
exact though incomputable answers. The finite-state approximation
employed by the abstract semantics of ∆CFA brings it into the
realm of computability but out of the realm of recursion.

1.2 Pushdown ∆CFA

Pushdown models of control flow provide a fundamentally more
precise account of the stack than their finite-state forebears. This
feature makes them a natural foundation for ∆CFA’s stack-centric
environment theory. Moreover, stack behavior is embedded in the
pushdown model itself meaning that it alone is sufficient to apply
∆CFA’s environment theory to answer binding equivalence ques-
tions. This feature provides a mechanism to perform environment
analysis after the model is constructed, i.e., after control-flow anal-

u ∈ UVar = a set of identifiers
k ∈ CVar = a set of identifiers

lam ∈ Lam = ULam + CLam
ulam ∈ ULam ::= (λ` (u∗ k) call)
clam ∈ CLam ::= (λγ (u∗) call)

call ∈ Call = UCall + CCall
ucall ∈ UCall ::= (f e∗ q)`
ccall ∈ CCall ::= (q e∗)γ

e, f ∈ UExp = UVar + ULam
q ∈ CExp = CVar + CLam

ψ ∈ Lab = ULab + CLab
` ∈ ULab = a set of labels
γ ∈ CLab = a set of labels

pr ∈ Pr = {ulam : ulam ∈ ULam, closed(ulam)}

Figure 2. Partitioned CPS λ-calculus syntax

ysis, and allows us to avoid coupling the implementations and cor-
rectness arguments of the underlying flow analysis with those of
∆CFA.

In this paper, we present Pushdown ∆CFA, an a posteriori
environment analysis that takes just such an approach. We employ
the control-flow analysis CFA2 [16] to host ∆CFA, due to their
common heritage. We briefly introduce their shared language, the
CPS λ-calculus, in Section 2 and its semantics in Section 3. We
review the essential aspects of CFA2 in Section 5 and ∆CFA in
Section 6. We introduce Pushdown ∆CFA proper in Section 7 and
walk through an example in Section 8. Finally, we discuss related
and future work in Section 9.

Readers already familiar with ∆CFA or CFA2 may want to
skim its respective section to become acquainted with our notation.

2. Partitioned CPS λ-Calculus
∆CFA and CFA2 both operate over a continuation-passing style
(CPS) λ-calculus. This language is best seen as an intermediate
representation produced from a direct-style source program. CPS is
convenient for us in part because it allows us to distinguish source-
program tail calls, inner calls, and returns solely by the evaluation
control string (see Section 6.3). We assume the CPS translation
keeps terms present in the original program (user-world terms)
distinct from terms it introduces (continuation-world terms).

Figure 2 presents the syntax of this CPS language. Within the
user and continuation world, respectively, there are the typical λ-
calculus syntax classes: variables references u and k, λ-terms ulam
and clam , and calls ucall and ccall . We assume that both λ-terms

20

ς ∈ State = Eval + Apply

E ∈ Eval = Call × BEnv ×VEnv × Time

A ∈ Apply = Proc ×D∗ ×VEnv × Time

β ∈ BEnv = Var ⇀ Time

ve ∈ VEnv = Var × Time ⇀ D

t ∈ Time = a countably-infinite ordered set

d, c ∈ D = Proc

proc ∈ Proc = Clos + {halt}
clos ∈ Clos = Lam × BEnv

Figure 3. Standard state space

and calls are given a distinct label drawn from their native world
and let Lpr (ψ) denote the ψ-labelled term in program pr . (Most
of the time, the program pr is apparent from context and, in such
cases, we omit the subscript.) A program pr is simply a closed
ulam .

Given a user-call ucall with label `, we let OEpr (`) de-
note ucall ’s operator expression f . Similarly, given a (user- or
continuation-world) call call with label ψ, we let IEpr (ψ, i) de-
note the ith argument expression e of call . We will sometimes
abuse these notations by providing the call syntax itself and, later,
its enclosing machine state, but the intention should always be clear
from context.

Given a λ-term lam with label ψ, we let BPpr (ψ, i) denote
the ith parameter u of lam . BPpr , coupled with IEpr , will allow
us to track value flow across calls. With that same label ψ, we let
Bpr (ψ) denote the set of parameters {u1, . . . , un}. Given a call
site call with label ψ, we let Scopepr (ψ) denote the set of user
variables {u1, . . . , un} in lexical scope at call .

We impose a restriction on programs that a continuation variable
k cannot appear free under a ulam . This restriction prevents con-
tinuations from escaping (and prohibits first-class continuations, in
turn) but ensures that the dynamic continuations can be managed
by a stack. We discuss extending our analysis to remove this re-
striction in Section 9.

3. Standard Semantics
We define the semantics of our CPS λ-calculus in terms of a small-
step abstract machine; Figure 3 presents its state space. The ma-
chine operates over states ς ∈ State with computation alternating
between the atomic evaluation of an operator and its arguments,
performed from states E ∈ Eval , and the application of that opera-
tor to those arguments, performed from states A ∈ Apply .

Each state ς has a value environment ve , which serves as a store,
and timestamp t. Each Eval state E has a call call closed over by a
binding environment β. Each Apply state A has a procedure proc
to be applied to the argument vector d.

Figure 4 presents the Eval and Apply transitions of the ma-
chine. In the Eval transition, the operator and arguments to a call
are atomically evaluated using A and the arguments are packaged
in a vector for the subsequent transition. In the Apply transition,
the environment β of the operator is extended with bindings for the
arguments. This binding takes a mapping from a parameter variable
x to the timestamp t′ of the successor state. The value environment
ve is likewise extended, mapping the bindings themselves to the
argument values.

An Eval transition from a user-world call and an Apply transi-
tion of a user-world procedure will evaluate and bind a continuation
argument, respectively, reflected by q? and c?. These transitions re-

Eval
ς︷ ︸︸ ︷

((f e1 . . . en q
?)ψ, β, ve, t)→ (proc, 〈d1, . . . , dn, c

?〉, ve, t′)

t′ = tick(ς)

proc = A(f, β, ve)

di = A(ei, β, ve) for i = 1, . . . , n

c = A(q, β, ve)

Apply

ς︷ ︸︸ ︷
(proc, 〈d1, . . . , dn, c

?〉, ve, t)→ (call , β′, ve ′, t′)

proc = ((λψ (u1 . . . un k
?) call), β)

t′ = tick(ς)

β′ = β[u1 7→ t′, . . . , un 7→ t′, k 7→ t′]

ve ′ = ve[(u1, t
′) 7→ d1, . . . , (un, t

′) 7→ dn, (k, t
′) 7→ c]

A(x, β, ve) = ve(x, β(x))

A(lam, β, ve) = (lam, β)

I(pr , 〈d1, . . . , dn〉) = ((pr , ∅β), 〈d1, . . . , dn, halt〉, ∅ve , t0)

Figure 4. Standard Semantics

spect the user- and continuation-world distinction: values derived
from user-world terms are bound only to user-world variables and
values derived from continuation-world terms (continuations) are
bound only to continuation-world variables.

Each transition uses tick to derive the timestamp t′ of the suc-
cessor state from ς . Depending on the application, different instan-
tiations of tick are useful. For our purposes, the most important
feature of an instantiation is that a state’s timestamp is fresh with
respect to its predecessors’. Freshness guarantees that a time found
within a state can be treated as a reference to the state it stamps. We
use this property to translate time-oriented statements in ∆CFA’s
environment theory to state-oriented ones (see Section 7). The triv-
ial instantiation Time = N and tick(ς) = tς + 1 exhibits this
feature.

The atomic evaluator function A takes an atomic expression—
a variable x or a λ-term lam—along with a binding environment
β and value environment ve , and produces a value. If the atomic
expression is a variable x, its binding is looked up in β which is
then used to key into ve . If it’s a lam , it is combined with β to
produce a closure.

The injection function I injects a program pr and its arguments
d into an Apply state with an empty value environment and an
epoch time (here 0).

4. An Example Program
When reviewing CFA2 and ∆CFA, we will use the factorial pro-
gram of Figure 5 which presents its direct-style expression and CPS
translation. User-world terms are labelled with an uppercase letter
while continuation-world terms with a lowercase.

In the direct-style program, we use recursive procedures via
letrec, integers, the primitive procedures * and - over the inte-

21

(λA (m)
(letrec ([fact (λB (n)

(if0 n
1
(* n (fact (- n 1)))))])

(fact m)))

(λA (m k0)
(letrec ([fact (λB (n k1)

(if0 n
(λa () (k1 1))
(λb ()

(- n 1
(λc (n-1)

(fact n-1
(λd (a)

(* n a k1))))))))])
(fact m k0)))

Figure 5. The fact program and its CPS translation

gers, and the branching construct if0. We have left the letrec
construct in the CPS translation for clarity, but we treat (letrec
([f lam]) call) as (let ([f (Y (λ (f) lam))]) call) where Y
is a call-by-value fixed-point combinator. Additionally, we have
expressed the if0 form as a primitive procedure that accepts two
nullary continuations in addition to its argument n. This rendering
promotes uniformity in our explanations but doesn’t introduce any
significant issues to our analysis.

5. CFA2

CFA2 [16] is a higher-order flow analysis which precisely matches
returns to their corresponding calls. CFA2 achieves this by mod-
elling program evaluation as a pushdown automaton in which the
stack records return points.

5.1 Evaluation Paths
An evaluation path P is some contiguous sequence of machine
steps ς1 → ς2 → . . . → ςn, often headed by the initial machine
state I(pr ,d). Paths are often interjected with other relations such
as the reflexive →0, the transitive closure →+ over →, and the
reflexive, transitive closure→∗.

5.2 Path Decomposition
Program evaluation produces paths with rich structure, arising from
both the steady alternation between Eval and Apply states and the
restrictive continuation protocol to which procedures adhere.

To illustrate, consider the fact program of Figure 5. If we
apply this program to 0, we obtain the evaluation path depicted
in Figure 6. Each node in this depiction represents a state which
is labelled according to that state’s type and annotated with its
timestamp and, where applicable, its operator label. Type labels are
a sequence of three characters and can be decoded as follows:

1. The first character of U or C signifies which of the user world
User and continuation world Cont , respectively, has control
at that state. For Eval states, this is the world of the call; for
Apply states, this is the world of the applied procedure.

2. The second character of E or A signifies whether it is an Eval
or Apply state, respectively.

3. The third character qualifies the first two characters. For an
Eval state, an I signifies an inner state. For a Cont-Apply state,
an I signifies that its predecessor state (an Eval state) is an inner
state. An E can suffix an Eval state to signify that it is an exit
state and an R can suffix a Cont-Apply state to signify that its
predecessor is an exit state. A User -Apply state has only one
variant, so it brandishes the two-character label UA.

Labels convey a surprising amount of information about the role
its state plays in evaluation. For example, a User -Eval -Exit la-
bel UEE signifies a tail call and a Cont-Apply-Return label CAR

signifies a return to a particular point in a procedure body. Remark-
ably, the appropriate label for a state—that state’s classification—
can be determined entirely by the shape of the state’s control syn-
tax, or the shape of its predecessor’s.

The following table illustrates this correspondence.

Label Syntax shape Label Syntax shape
UEE (f e∗ k) UA (λ` (u∗ k) call)
UEI (f e∗ clam) UA (λ` (u∗ k) call)
CEE (k e∗) CAR (λγ (u∗) call)
CEI (clam e∗) CAI (λγ (u∗) call)

Eval state variants are on the left half of the table with their suc-
cessor Apply state variants on the right. Eval state classification as
“exit” (E) or “inner” (I) depends merely on whether its call’s contin-
uation expression is k or clam , respectively. A User -Apply state
is always a procedure entry state; Cont-Apply state classification
as “return” (R) or “inner” (I) is dictated by the state’s predecessor.

CFA2 emphasizes the roles signified by these labels by decom-
posing paths according to them. Figure 7 presents a depiction of
the same evaluation path of Figure 6, decomposed. In this depic-
tion, nodes are colored according to the invocation to which they
belong. An invocation is a subsequence of an evaluation path which
begins with a procedure entry state (labelled UA) and includes ev-
ery state evaluating that procedure’s body in an extension of the
entry state’s environment.2 The vertical position of nodes in this de-
piction corresponds to the height of the stack in the denoted state.
When the tail call of the white UEE node is made, neither a return
point to nor the environment of the exiting procedure needs to be
saved, so the stack doesn’t grow. In contrast, when the inner call
of the yellow UEI node is made, a frame is pushed to preserve the
calling procedure’s environment and return point.

To increase our intuition about decomposition, let’s consider
Figure 8 which presents the decomposed evaluation path of the
factorial program applied to 1. We can see that, even without
program syntax, a decomposed path provides a fairly clear picture
of the structure of evaluation. Notice that the inner invocation of
fact applied to 0 has precisely the same form as that of the path in
Figure 7. In fact, modulo the continuation, the machine states are
precisely the same as well.

Our informal definition of “invocation” appeals directly to the
environments of states. As we will see, CFA2 sheds environments
as we know them, so we must find some other means of defining it.
Fortunately, it is no coincidence that states in the same invocation
have the same stack height and CFA2 defines the complementary
notions of a corresponding entry and same-context entry to make
this connection. Together, these notions inductively decompose a
path according to the classification of the path’s states and we
formally define “invocation” in terms of this decomposition.

2 To be precise, evaluation must be in an extension of the entry state’s
successor’s environment, after the arguments and continuation are bound.

22

UA
0

A

CEI
1

CAI
2

letrec

UEE
3

UA
4

B

UEI
5

UA
6

if0

CEE
7

CAR
8

a

CEE
9

CAR
10

halt

Figure 6. Evaluation path of fact(0)

UA
0

A

CEI
1

CAI
2

letrec

UEE
3

UA
4

B

UEI
5

UA
6

if0

CEE
7

CAR
8

a

CEE
9

CAR
10

halt

Figure 7. Decomposed evaluation path of fact(0)

5.2.1 A Note on Notation
Just as we’ve let E and A stand for Eval and Apply states, we will
now let UA and UEI, for example, stand for states labelled UA and
UEI. We will also synthesize corresponding domains, so that, for
example, UA ∈ UserApply and UEI ∈ UserEvalInner . Finally,
we will omit characters when irrelevant: for example, we let EE
stand for an exit state, user- or continuation-world, and UE stand
for a user call, inner or tail.

5.3 Path Decomposition, Formally
We first review CFA2’s definitions of corresponding entry and
same-context entry, adapting them to our notation.

Definition 1 (Corresponding and Same-Context Entry, [16]). Let
CE(ς) denote the corresponding entry of a state ς in path P . For
path P ≡ UA →∗ ς , CE(ς) = UA if:

1. P ≡ UA →0 ς;
2. P ≡ UA →∗ ς ′ → ς , UA = CE(ς ′), ς ′ 6∈ UserEval , and
ς ′ 6∈ ContEvalExit; or

3. P ≡ UA →+ UEI → UA0 →+ CEE → ς , UA = CE(UEI),
and UA0 ∈ CE∗(CEE).

For a path P ≡ UA →+ ς , we define UA ∈ CE∗(ς) if:

1. UA = CE(ς); or
2. P ≡ UA →+ UEE → UA0 →∗ ς , UA = CE(UEE), and

UA0 ∈ CE∗(ς).

The corresponding entry of a state ς is the procedure entry state
UA that can reach ς through function calls balanced precisely by
returns. A same-context entry of a state ς is a procedure entry state
UA that can reach ς through tail calls as well.

This joint definition describes paths with well-behaved call–
return structure. A key result of CFA2 is that, if a path is push-
monotonic, we can decompose it according to this structure.

Definition 2 (Push Monotonicity). A path P ≡ UA →∗ ς is push
monotonic if no state ς ′ such that UA →+ ς ′ →∗ ς has form
(c,d, ve, t) where c is the continuation argument of UA.

All paths we consider are rooted at I(pr ,d) making them push-
monotonic by definition. Hence, by the following theorem, they
decompose into one of a handful of forms.

Theorem 1 (Path Decomposition [16]). If P ≡ UA →∗ ς is push
monotonic, then either

1. UA = CE(ς) and CE∗(ς) = {UA};
2. P ≡ UA1 →+ UEE1 → . . . → UAn →+ UEEn → UA →∗ ς

where n > 0, UAi = CE(UEEi), UA = CE(ς) and CE∗(ς) =
{UA1, . . . , UAn, UA};

3. P ≡ UA∗ →+ UEI → UA →∗ ς where UA = CE(ς) and
CE∗(ς) = {UA};

4. P ≡ UA0 →+ UEI → UA1 →+ UEE1 → . . . → UAn →+

UEEn → UA →∗ ς where n > 0, UAi = CE(UEEi),
UA = CE(ς) and CE∗(ς) = {UA1, . . . , UAn, UA};

The upshot of path decomposition is that we can relate states that
have related environments without appealing to those environments
directly. To assist in this task, we formally define an invocation step.

Definition 3 (Invocation Step). For path P ≡ ς →+ ς ′, ς ⇒ ς ′ if:

1. ς → ς ′, ς 6∈ UserEval , and ς 6∈ ContEvalExit; or
2. ς → UA →+ CEE → ς ′, ς ∈ UserEvalInner , and UA ∈

CE∗(CEE).

An invocation step connects an inner state to the successive state
in that invocation. This connection either corresponds directly to a
step in the standard semantics (clause 1) or bridges a balanced call
and return (clause 2).

Path decomposition is concerned with the call–return structure
of a path. However, from our definitions, it follows that, for E ⇒
A ⇒ E′, βE′ extends βE. That is, there is an inherent connection
between the call–return structure and environment structure of a
path. We will use this connection in Section 7 to apply ∆CFA’s
environment theory to decomposed paths.

5.4 Abstract Semantics
CFA2 uses abstract interpretation to perform its flow analysis.
Accordingly, it defines an abstract semantics which replaces the
binding and value environments with a stack and heap and discards
machine times completely. In this semantics, the stack is composed
of frames, each of which contains both a local environment (devoid
of times) and a return point. The heap stores values that may outlive
the local environment of their birth.

A consequence of this abstraction is the introduction of im-
precision in the semantics. Specifically, multiple abstract proce-
dures may flow to the operator of a call, making procedure calls
non-deterministic in general. Nevertheless, the abstract semantics
is sound with respect to the concrete standard semantics. In this
context, soundness means that, for each path taken by the concrete
semantics, there is some path taken by the abstract semantics which
abstracts it, state for state.

The abstract state space retains the features on which state clas-
sification depends and has corresponding domains for each domain
in the concrete semantics (UserEval , ContEvalExit , etc.). In fact,
a critical feature of abstract evaluation paths is that they decompose
just as concrete evaluation paths do. For us, this feature means that
any results we obtain solely from the decomposition of a concrete
evaluation path immediately apply to abstract evaluation paths as
well.

We decorate the domains, domain constituents, and metafunc-
tions of the abstract semantics with a hat ·̂ and denote the abstract
evaluation relation with .

5.5 Summarization
The final step of CFA2 is to summarize the abstract semantics.
Summarization builds relations between program points that hold,
in some sense, regardless of the stack. Accordingly, summarization
operates on a semantics that itself does not model the stack. This se-
mantics, the local semantics, is merely the abstract semantics with
the stack and stack-dependent transitions excised. (We decorate the

23

UA
0

A

CEI
1

CAI
2

letrec

UEE
3

UA
4

B

UEI
5

UA
6

if0

CEE
7

CAR
8

b

UEI
9

UA
10

-

CEE
11

CAR
12

c

UEI
13

UA
14

B

UEI
15

UA
16

if0

CEE
17

CAR
18

a

CEE
19

CAR
20

d

UEE
21

UA
22

*

CEE
23

CAR
24

halt

Figure 8. Decomposed evaluation path of fact(1)

domains, domain constituents, and metafunctions of the local se-
mantics with a tilde ·̃ and denote the local evaluation relation with
 ̃.)

We call the removal of the stack from an abstract state local
abstraction and let |ς̂|al denote the local state ς̃ that locally abstracts
ς̂ . For a given program, there may be arbitrarily many reachable
states that are identical modulo the stack and, hence, that ς̃ locally
abstracts.

Summarization builds five intra-path relations over local states:
Seen , Summaries , Callers , TCallers , and Final .

• For each (ŨA, ς̃) ∈ Seen , ŨA is the corresponding entry of ς̃ .
• For each (ŨA, ˜CEE) ∈ Summaries , ŨA is a same-context entry

of ς̃ .
• For each (ŨA, ŨEI, ŨA

′) ∈ Callers , ŨA is the corresponding
entry of ŨEI and ŨA

′ is the successor of ŨEI. Similar relations
hold for each (ŨA, ˜UEE, ŨA

′) ∈ TCallers .
• For each ˜CAR ∈ Final , ˜CAR is a final state, i.e., applies halt to

an argument vector.

The summarization algorithm is sound with respect to the local
semantics, meaning that every abstract path has a corresponding
path through the control-flow graph.

Theorem 2 (Summarization Soundness [16]). After summariza-
tion,

1. if P̂ ≡ Î(pr , d̂) ∗ ÛA ∗ ς̂ such that ÛA = CE P̂ (ς̂), then
(|ÛA|al , |ς̂|al) ∈ Seen;

2. if P̂ ≡ Î(pr , d̂) ∗ ÛA + ˆCEE such that ÛA ∈ CE∗
P̂

(ˆCEE),
then (|ÛA|al , | ˆCEE|al) ∈ Seen; and

3. if P̂ ≡ Î(pr , d̂) ∗ ς̂ such that ς̂ is a final state, then
|ς̂|al ∈ Final .

Lemma 1. After summarization, if

P̂ ≡ Î(pr , d̂) ∗ ÛA + ÛEI ÛA
′

such that ÛA = CE(ÛEI), then

(|ÛA|al , |ÛEI|al , |ÛA
′|al) ∈ Callers.

A similar lemma holds for TCallers soundness as well.

5.6 Control-flow Graph Reconstruction
Taken together, the five relations built by summarization combined
with the local semantics define a control-flow graph of a program.
Figure 9 presents the CFA2-built control-flow graph of the factorial
program applied to >nat , the abstract value representing any natu-
ral number. Solid-line arrows indicate intra-procedural control flow
while dashed-line arrows indicate inter-procedural control flow.
This distinction is necessary as, in the abstract, inter-procedural
control may flow from an invocation to itself; correspondingly, a
node’s vertical position no longer reliably corresponds to its de-
noted state’s stack height. A node with multiple successors indi-
cates non-deterministic evaluation inherent to the abstracted set-

ting. Valid paths through this graph are those that respect a control
stack: inner calls require a return point to be pushed on the stack to
be consulted at continuation call.

For convenience, we derive two additional relations from the
control-flow graph.

We define the first relation, Returns , as

Returns = {(˜CEE, ˜CAR) : (ŨA0, ŨEI, ŨA1) ∈ Callers,

(ŨA1, ˜CEE) ∈ Summaries,

˜CAR = Return(ŨA0, ŨEI, ŨA1, ˜CEE)}.
This definition uses Return to synthesize a return state for each
caller (ŨA0, ŨEI, ŨA1) given summary (ŨA1, ˜CEE). Return syn-
thesizes such states in precisely the same way as Update of
CFA2—it simply doesn’t interact with the workset as Update
does. This relation makes the connection between exit states and
their corresponding return states explicit.

We define the second relation, Pred , in terms of Returns as
Pred = {(ŨEI, ˜CAR) : (ŨA0, ŨEI, ŨA1) ∈ Callers,

(ŨA1, ˜CEE) ∈ Summaries,

(˜CEE, ˜CAR) ∈ Returns}
∪ {(ς̃ , ς̃ ′) : (ŨA, ς̃) ∈ Seen,

ς̃ ̃ς̃ ′,

ς̃ ′ 6∈ ˜UserApply}.
This relation allows us to both jump over a balanced call–return
pair and take a single step as we traverse the control-flow graph.

6. ∆CFA

The goal of an environment analysis is to determine when two
references to some variable u in fact reference the same binding
of u. One approach to achieving this would be to determine when
the two bindings were introduced: if introduced at the same point
in computation (and, hence, map u to the same timestamp in their
respective environments), they are the same binding. This approach
is fine with concrete times that are perfectly precise, but not for
abstract times which regularly conflate distinct concrete times. In
consequence, an analysis that takes such an approach can answer
“may be equivalent” but not “must be equivalent” binding queries.

Traditional ∆CFA comes at the problem slightly differently.
Instead of tracking computation over time, it tracks the actions of a
conceptual stack used to manage the environment. Then, instead of
locating the introduction of bindings temporally within evaluation,
it locates their introduction spatially on a representation of the
stack’s motion over time. Using its equipped theory to connect
stack behavior to the environment, ∆CFA can turn a conservative
account of stack motion into the answer to a “must be equivalent”
binding query.

6.1 The Stack Behavior of a CPS Language
When a compiler of a CPS language has some means to distinguish
between user- and continuation-world entities—e.g., the syntactic

24

UA

A

CEI CAI

letrec

UEE UA

B

UEI

UA

if0

CEE

CAR

b

UEI

UA

-

CEE

CAR

c

UEI CAR

d

UEE UA

*

CEE

CAR

a

CEE

CAR

CAR

halt

halt

Figure 9. Control-flow graph for fact

partition of our language—it can manage the continuation using a
stack rather than a heap. In such a setup, the stack houses both the
code pointer and environment bindings of the continuation. When
a procedure is called, a stack frame is pushed to house the bindings
of its arguments. When a procedure returns, its frames are popped
as its environment bindings expire and a frame is pushed on behalf
of its calling procedure to house the returned result’s binding.

The possibility of using a run-time stack to host the continuation
closure was realized fairly early. For instance, both Rabbit [14] and
Orbit [1], two early Scheme compilers that employed a CPS inter-
mediate representation, used one. (Orbit accomplished this feat in
the presence of the continuation-reifying call/cc by dynamically
migrating the stack to the heap when it was called.)

6.2 Frame Strings
∆CFA records stack motion using frame strings which have the
state space F where

p, q ∈ F = Φ∗

φ ∈ Φ :=
〈
ψ
t

∣∣ | ∣∣ψ
t

〉
A frame string p is a sequence of characters each of which repre-
sents an atomic stack action. A frame character φ has one of two
orientations, frame push

〈·
·

∣∣ or frame pop
∣∣·
·

〉
, and is annotated with

a label ψ and time t. Two frame characters with the same label and
time but different orientations are said to be complementary. The
empty frame string is denoted ε.

Three operations on frame strings will be useful: concatentation,
the net, inversion.

1. Frame strings p and q are concatenated, denoted p + q, by
appending their constituent frame characters. For example,〈
`
t1

∣∣∣∣ `
t1

〉
+
〈
γ
t2

∣∣ =
〈
`
t1

∣∣∣∣ `
t1

〉〈
γ
t2

∣∣.
2. The net operation b·c recursively annihilates adjacent comple-

mentary frame characters. For example, b
〈
ψ
t

∣∣∣∣ψ
t

〉
c = ε just as

b
〈
ψ
t0

∣∣〈ψ′

t1

∣∣∣∣ψ′

t1

〉∣∣ψ
t0

〉
c = ε.

3. The inverse φ−1 of frame character φ is the complementary
frame character with the same label and time. For example,〈
ψ
t

∣∣−1
=
∣∣ψ
t

〉
. The inverse p−1 of frame string p is the inverse

of its frame characters in reverse order. So, if p = φ1 . . . φn,
then p−1 = φ−1

n . . . φ−1
1 .

Finally, we define Lab by

Lab : F → P(Lab)

Lab(p) = {ψ :
〈
ψ
t

∣∣ ∈ bpc} ∪ {ψ :
∣∣ψ
t

〉
∈ bpc}

which produces the set of labels that appear in the net of a given
frame string.

6.3 Delta Frame Strings
Frame strings can represent the stack motion across a single transi-
tion, several transitions in succession, or even the entire evaluation
history. When using them to represent stack motion in the first two
cases, we will often use the term delta frame string, denoted p∆, to
emphasize that they represent an incremental change to the entire
stack history. The delta frame string across successive transitions
is merely the concatenation of the delta frame strings arising from
each individual transition.

Given times t1 and t2 in the context of program pr applied to
argument vector d, we let [t1, t2]pr,d denote the delta frame string
for the computation intervening those times. (We omit the subscript
when pr and d are apparent.)

To get a better picture of which frame strings arise during eval-
uation, let’s consider them with respect to the factorial program
of Figure 5 applied to 1. Figure 8 depicts the resultant (decom-
posed) evaluation path in which each node is annotated by the
timestamp of the represented state. The following table records the
frame string behavior of this evaluation.

Net Frame String Call Site ∆ Frame String
〈A1 |

〈A1 | (letrec ...) 〈letrec3 |
〈A1 |〈letrec3 | (fact m k0) |letrec3 〉|A1〉〈B5 |
〈B5 | (if0 n ...) 〈if07 |
〈B5 |〈if07 | if0 internal |if07 〉〈b9|
〈B5 |〈b9| (- n 1 ...) 〈 -

11|
〈B5 |〈b9|〈 -

11| - internal | -11〉〈 c13|
〈B5 |〈b9|〈 c13| (fact n-1 ...) 〈B15|
〈B5 |〈b9|〈 c13|〈B15| (if0 n ...) 〈if017|
〈B5 |〈b9|〈 c13|〈B15|〈if017| if0 internal |if017〉〈 a19|
〈B5 |〈b9|〈 c13|〈B15|〈 a19| (k1 1) | a19〉|B15〉〈 d21|
〈B5 |〈b9|〈 c13|〈 d21| (* n a k1) | d21〉| c13〉|b9〉|B5〉〈 *

23|
〈 *
23| * internal | *23〉

Each line of this table represents the effect of the two-step
Eval–Apply–Eval transition, with the exception of the first and
last which represent those of the single-step Apply–Eval and
Eval–Apply transitions, respectively. The “Net Frame String” col-
umn contains the net of the entire frame string history. In effect, it
provides a picture of the stack at each Eval state. The “Call Site”
column contains the call site that has focus in each state. The “∆
Frame String” column contains the delta frame string that arises in
the transition from that state.

Applying the program to an argument has the same frame string
effect as procedure entry; the

〈
A
1

∣∣ represents the frame pushed to
house the binding for m. We treat the (letrec ...) form as de-
scribed in Section 4 but omit stack behavior due to the fixed-point
combinator for clarity; hence, the delta frame string is

〈
letrec

3

∣∣.
(fact m k0) represents a tail call in the source program—a form

25

of procedure exit. At exit, the environment bindings of the invoca-
tion expire and their enclosing frames are popped before an en-
vironment frame for the called procedure is pushed. That these
frames are contiguous and on the top of the stack is not mere hap-
penstance; it is a consequence of the semantics of environments and
the stack management policy necessary to implement it. Upon entry
to the called fact, the call (if0 n ...) has focus. By expressing
if0 as a primitive procedure call with clam-shaped continuation
argument expressions, we are construing it as a source-program in-
ner call. This view makes sense in our context since work remains
in fact after the work of the if0 call (which merely discriminates
n). As an inner call, the environment frames of its caller, fact,
must be left intact for its return. Hence, no frames are popped be-
fore if0’s frame is pushed. When if0 returns, this frame is popped
and the frame

〈
b
9

∣∣ is pushed to bind if0’s nonexistent result value.3

The remaining evaluation proceeds similarly and the entire
stack history of this evaluation〈

A
1

∣∣〈letrec
3

∣∣∣∣letrec
3

〉∣∣A
1

〉〈
B
5

∣∣〈if0
7

∣∣∣∣if0
7

〉〈
b
9

∣∣〈 -

11

∣∣∣∣ -
11

〉〈
c
13

∣∣〈
B
15

∣∣〈if0
17

∣∣∣∣if0
17

〉〈
a
19

∣∣∣∣ a
19

〉∣∣B
15

〉〈
d
21

∣∣∣∣ d
21

〉∣∣ c
13

〉∣∣b
9

〉∣∣B
5

〉〈
*

23

∣∣∣∣ *
23

〉
can be obtained by merely concatenating the delta frame strings of
each step.

From this example, we can begin to see the connection between
the shape of the delta frame string and the state classification of
Section 5. Apply states labelled UA, CAI, or CAR always cause a
single frame to be pushed. EvalExit states labelled UEE or CEE
always cause all frames up to and including the exited procedure
entry frame to be popped. Because of the balanced nature of calls
and returns, only frames belonging to that procedure sit above it on
the stack. EvalInner states labelled UEI or CEI induce no stack
change since all environment frames must be preserved in case the
call they perform returns.

6.4 An Environment Theory
The environment theory of ∆CFA hinges on two observations.

The first observation is that, given environment β, some later
environment β′, and some variable u with a binding in each envi-
ronment,

b[β(u), β′(u)]c = ε only if β(u) = β′(u).

In other words, if the net delta frame string between the introduc-
tion of two bindings of the same variable is empty, they are in fact
the same binding. This fact turns a question about equality of two
binding times—a precarious notion in the abstract—into one about
a property of the delta frame string intervening those times.

The second observation is that these times merely locate the
introduction of the binding in evaluation. That is, if we consider an
evaluation path to be indexed by the states’ timestamps, then β(u)
identifies u’s binding state—the state in which that binding of u
was introduced—in the path. If we can recover such states without
appealing to times, we can express binding equivalence conditions
the same way, allowing us to apply the full environment theory of
∆CFA in a setting without times (e.g., CFA2’s abstract semantics).
We accomplish this recovery in Section 7.2.1.

6.5 Higher-Order Inlining
The primary goal of ∆CFA is to establish higher-order inlining
safety. To this end, ∆CFA does not apply the first observation of
the previous section directly. Instead, it derives weaker conditions
that are easier to meet in the abstract semantics.

3 In an actual stack-based implementation of a CPS language, such frames
are unnecessary. In our context, they are harmless and the uniformity they
provide simplifies our analysis.

These weaker conditions are expressed in terms of the collecting
semantics of a program pr applied to arguments d, defined as

Vpr : D∗ → P(State)

Vpr (d) = {ς : I(pr ,d)→∗ ς}.
They also refer to the birth time of a closure, the timestamp of the
state in which the closure was created. ∆CFA’s concrete semantics
imprint this timestamp on the closure itself but we have no such
luxury in the standard semantics. For now, we will assume we have
access to an oracle

OracleBirthpr : D∗ × Clos → Time

such that OracleBirthpr (d, clos) yields the birth time of clos in
the evaluation of pr applied to d. (In Section 7.2.1, we show how
to obtain this time from the evaluation path.)

We consider two of these conditions.

Theorem 3 (LOCAL-INLINABLE [8]). It is safe to inline the
term ulam ′ in place of procedure term f ′ if for every state
((f e∗ q)`, β, ve, t) ∈ Vpr (d) such that f ′ = f :

1. A(f, β, ve) = clos = (ulam ′, β′);
2. free(ulam ′) ⊆ dom(β);
3. Lab([OracleBirthpr (d, clos), t]) ⊆ CLab

Intuitively, this condition justifies inlining when none of the
free variables of the closure could be rebound between its point
of capture and use by demanding that only continuation frames
change on net. For example, it justifies the transformation of
((identity (λ` (u∗) call)) e∗) to ((λ` (u∗) call) e∗).

Theorem 4 (EXACT-INLINABLE [8]). It is safe to inline the
term ulam ′ in place of procedure term f ′ if for every state
((f e∗ q)`, β, ve, t) ∈ Vpr (d) such that f ′ = f :

1. A(f, β, ve) = clos = (ulam ′, β′); and
2. for each u ∈ free(ulam ′), b[β(u), β′(u)]c = ε.

This condition justifies inlining when the bindings of each of the
free variables can be proven equivalent in the closure and calling
environments. Its frame string condition is more powerful than
LOCAL-INLINABLE’s but also harder to meet in the abstract.

7. Pushdown ∆CFA

The crux of Pushdown ∆CFA is that, in a given path, we can re-
cover arbitrary delta frame strings (Section 7.1) and resolve arbi-
trary binding and birth states (Section 7.2) from that path’s CFA2
decomposition. Together, these are sufficient to apply ∆CFA’s en-
vironment theory and, ultimately, test its inlining conditions.

7.1 Delta Frame String Recovery
CFA2’s path decomposition allows us to recover the delta frame
string of an evaluation step, given the path of which it’s a part.

• For step A → E where A = (L(ψ),d, ve, t), we have [tA, tE] =〈
ψ
tE

∣∣. This case doesn’t require any path decomposition and
covers half of all evaluation steps.

• For step EI → A, we have [tEI, tA] = ε. Once again, no
decomposition is necessary.

• For path UA → EI1 ⇒ CA1 → EI2 ⇒ · · · ⇒ CAn → EE → A
where

UA = (L(`),d0, ve0, t0)

CA1 = (L(γ1),d1, ve1, t1)

. . .

CAn = (L(γn),dn, ven, tn),

26

we have [tEE, tA] =
∣∣γn
tEE

〉
· · ·
∣∣ γ1
tEI2

〉∣∣ `
tEI1

〉
. This case is an applica-

tion of our observation that, at procedure exit, the frames of the
exiting procedure are contiguous at the top of the stack.

The log semantics of ∆CFA have explicity machinery for calculat-
ing delta frame strings which provides a ground truth. In a technical
report [5], we prove that the delta frame strings born of decompo-
sition agree with those calculated by the log semantics.

7.2 Binding- and Birth-State Resolution
7.2.1 Binding-State Resolution
Let P ≡ I(pr ,d)→+ E and t = βE(u) for some variable u. Sup-
pose we wish to determine u’s binding state ςt without consulting
βE and let Bind(P, u) denote the path rooted at I(pr ,d) ending
in this binding state. We can start to determine Bind(P, u) by de-
composing P as I(pr ,d)→∗ A → E and considering the applied
procedure clos of A.

If clos binds u, then E is u’s binding state—the first state in
which this particular binding of u appeared—and Bind(P, u) =
P .

If clos doesn’t bind u, then P takes one of two forms. If
A ∈ ContApply , then A has a predecessor E′ in its invocation and
P ≡ I(pr ,d) →+ E′ ⇒ A → E. Letting P ′ ≡ I(pr ,d) →+ E′,
we have Bind(P, u) = Bind(P ′, u). On the other hand, if A ∈
UserApply , then u must appear free in clos’s underlying λ-term.
At this point, we can’t resolve the binding state of u any further
solely in terms of binding states.

We observe, however, that u’s binding in βE is the same as its
binding in the environment of clos . If we can determine the birth
state of clos—the state at which clos was constructed by A—we
can continue resolving the binding state of u.

7.2.2 Birth-State Resolution
Because u appears free in its enclosing λ-term and programs are
closed, it must be that P ≡ I(pr ,d) →+ UE → A → E where
UE = ((f e∗ q)`, βUE, ve, t) and, by the standard semantics, clos =
A(f, βUE, ve). Let PUE ≡ I(pr ,d) →+ UE and Birth(PUE, f)
denote the path ending in the birth state of clos . From here, we’ll
consider the possible forms of f . If f ∈ ULam , then, by definition
of A, UE is the birth state of clos and Birth(PUE, f) = PUE.
Otherwise, f ∈ UVar and clos was born before being bound to
f . If we can resolve where f was bound—its binding state—we
can continue to trace the genesis of clos . Section 7.2.1 describes
how to resolve f ’s binding state.

Remarkably, the preceding reasoning suffices to obtain the bind-
ing state of an arbitrary reference and birth state of an arbitrary
closure without appealing to binding environments or timestamps.

7.2.3 Binding- and Birth-State Resolution, Formally
Figure 10 presents the general binding- and birth-state resolution
equations. For brevity, we will sometimes describe a path in terms
of its final state and use a path in place of its final state (and vice
versa).

Birth takes an E-terminated path P and an expression e in call E

and yields the birth path—the path terminated by the birth state—
of the value that flows to e. If e is some ulam , then the closure that
“flows” to it is born in E; hence, the result is P . If e is some u, the
binding path of u is resolved with Bind and the birth path of the
value bound to u is resolved with BirthBP .

Once a binding path P ≡ I(pr ,d) →+ E′ → A → E is
obtained, a three-step process is used to correspond the variable
u bound in E with its argument expression. First, BirthBP uses
BP to obtain the binding position n of u in A’s procedure. Second,
BirthIP shifts focus to E′, the state in which the argument expres-
sion was evaluated. Third, BirthIE uses IE to obtain the argument

Birth
For P ≡ I(pr ,d)→+ E,

Birth(P, ulam) = P

Birth(P, u) = BirthBP(Bind(P, u), u)

BirthBP
For P ≡ I(pr ,d)→∗ A → E,

BirthBP(P, u) = BirthIP(I(pr ,d)→∗ A,BP (A, u))

BirthIP
For P ≡ I(pr ,d)→+ E → A,

BirthIP(P, n) = BirthIE(I(pr ,d)→+ E, n)

BirthIE
For P ≡ I(pr ,d)→+ E,

BirthIE(P, n) = Birth(P, IE (E, n))

Bind
For P ≡ I(pr ,d)→∗ A → E,

Bind(P, u) = P if u ∈ B(A)

Bind(P, u) = Find(P, u) if u 6∈ B(A)

Find
For P ≡ I(pr ,d)→∗ A → E,

1. if P ≡ I(pr ,d) →∗ UA → E, then Find(P, u) =
Bind(BirthOP(I(pr ,d)→∗ A), u); and

2. if P ≡ I(pr ,d) →+ E′ ⇒ CA → E, then Find(P, u) =
Bind(I(pr ,d)→+ E′, u).

BirthOP
For P ≡ I(pr ,d)→+ UE → UA,

BirthOP(P) = BirthOE(I(pr ,d)→+ UE)

BirthOE
For P ≡ I(pr ,d)→+ UE,

BirthOE(P) = Birth(P,OE (UE))

Figure 10. General binding- and birth-state resolution

expression e for its expression position n. While verbose, decom-
posing the process in this way simplifies birth-time resolution in a
control-flow graph.

Bind takes an E-terminated path P and a variable u in βE and
yields the binding path of u. If u is bound by the procedure of the
predecessor state, Bind produces P . If not, Bind uses Find to find
the previous time the environment was extended to try again.

Given an E-terminated path P , Find finds the previous time
βE was extended. If the predecessor state A ∈ ContApply , Find
uses path decomposition to walk back through the invocation to
A’s predecessor. If instead A ∈ UserApply , Find uses BirthOP
to resolve the birth path of the currently-invoked procedure and
determines the binding path of u from there.

BirthOP uses the same process as BirthBP to resolve the birth
path. Essentially, the operator is treated as the zeroth argument to
the call.

The correctness of these equations is expressed via two theo-
rems.

Theorem 5 (Bind Correctness). If P ≡ I(pr ,d) →+ E where
E = (call , β, ve, t) and Bind(P, u) = I(pr ,d) →+ E′, then
β(u) = tE′ .

27

Theorem 6 (Birth Correctness). If P ≡ I(pr ,d) →+ E where
E = (call , β, ve, t), and Birth(P, e) = I(pr ,d) →+ E′, then
OracleBirthpr (d,A(e, β, ve)) = tE′ .

The standard semantics records variable binding times and the
log semantics of ∆CFA records closure birth times, together pro-
viding a ground truth. In a technical report [5], we prove these equa-
tions correct with respect to this ground truth by induction over the
definitions and path decomposition.

Now that we have achieved a perfect time–state correspondence,
we will replace times as used by ∆CFA with the states they stamp.
Thus, intervals will be [ς0, ς1] for some ς0 and ς1.

7.3 State Resolution in a Control-Flow Graph
The binding- and birth-state resolution method of Section 7.2 as-
sumes a linear evaluation path in which every state has exactly one
predecessor (except the program entry state). A control-flow graph
breaks this assumption: non-determinism gives rise to forks and
joins, and recursion gives rise to cycles. However, by Theorem 2,
every abstract evaluation path is a stack-respecting path through
the graph. Thus, if we can show that every stack-respecting path
through the graph meets a given environment condition, then ev-
ery abstract evaluation path—and concrete evaluation path, by ab-
straction soundness—does also. This observation will govern our
approach.

A given state ς̃ in a control-flow graph typically represents
a state in many abstract paths and even many states in a single
abstract path. Consequently, the task is not to resolve a particular
state in a single path but every state in every path ς̃ represents. Thus,
we will let ς̃ represent the set of stack-respecting paths rooted at
Ĩ(pr , d̂) that reach ς̃ .

Because these paths may follow a circuit in the graph arbitrarily
many times, we will instead find the fixed point of state resolution
over the graph. This resolution process is symmetric to that of
CFA2 summarization:

• Summarization traverses the local relation forward; resolution
traverses it backward.

• Summarization keeps track of callers to connect discovered
procedure exits with returns; resolution keeps track of returns
to connect resolved invocations with callers.

• Summarization memoizes the control flow from an entry state
to a reachable exit state; resolution memoizes net resolution
from an exit state to a same-level entry. (For simplicity, the
resolution function we present omits memoization.)

To ensure termination, we will not allow intraprocedural path seg-
ments to be visited multiple times in different stages of resolu-
tion. This policy admits paths in which, for example, recursive calls
merely intervene the birth or binding state and the end of the path,
a common feature when inlining is safe.

In a control-flow graph, resolution is incremental so we use
resolution terms to capture the state of resolution along a path. A
resolution term κ[ς̃] ∈ Z is a resolution context κ composed with
path ς̃ . A resolution context κ, defined as

κ :=Birth(κ, e) | BirthBP(κ, u) | BirthIP(κ, n)

BirthIE(κ, n) | Bind(κ, u) | Find(κ, u)

BirthOP(κ) | BirthOE(κ) | •

denotes a stage of resolution with respect to its composed term.
Composition of a resolution context with path ς̃ replaces the “hole”
• with ς̃ , and can be performed on other resolution contexts and
terms as well. The only resolution contexts we use arise directly
from the resolution equations in Figure 10.

H : S ×R×F → S ×R×F

H(S,R, F) =
⊕

(κ[ς̃],κ0[Ẽ])∈S

Inner(S,R, F, κ[ς̃], κ0[Ẽ])

Inner(S,R, F, κ[ς̃], κ0[Ẽ]) =
Link(S,R, F, κ[ς̃], κ0[Ẽ]) if κ = κ′[γ]

(S,R, F ⊕ {ς̃}) if κ = •
Inner(S,R, F, resolve(κ[ς̃]), κ0[Ẽ]) otherwise

Link(S,R, F, κ[Ã], κ0[Ẽ]) ={
LinkCall(S,R, F, κ[Ã], κ0[Ẽ]) if Ã ∈ ˜UserApply

CheckRetr(S,R, F, κ[Ã], κ0[Ẽ]) if Ã ∈ ˜ContApply

LinkCall(S,R, F, κ[ŨA], κ0[Ẽ]) ={
(S ⊕ LocalCall(R, κ[ŨA], κ0[Ẽ]), R, F) Ẽ ∈ ˜CEvalExit

(S ⊕GlobalCall(κ[ŨA], κ0[Ẽ]), R, F) Ẽ ∈ ˜UserEval

LocalCall(R, κ[γ[ŨA]], κ0[˜CEE]) =

{(κ[link(γ)[ŨEI]], κ2[Ẽ]) : (κ0[˜CEE], κ1[˜CAR], κ2[Ẽ]) ∈ R,
(ŨEI, ˜CAR) ∈ Pred ,

(ŨA0, ŨEI, ŨA) ∈ Callers}
∪

{(κ[link(γ)[˜UEE)], κ0[˜CEE]) : (ŨA0, ˜UEE, ŨA) ∈ TCallers}

GlobalCall(κ[γ[ŨA]], κ0[ŨE0]) =

{(κ[link(γ)[ŨE]], κ[link(γ)[ŨE]]) :

(ŨA
′, ŨE, ŨA) ∈ Callers ∪ TCallers}

CheckRetr(S,R, F, κ[γ[C̃A]], κ0[Ẽ]) ={
Inner(S,R, F, κ[link(γ)[C̃EI]], κ0[Ẽ]) if (C̃EI, C̃A) ∈ Pred

(S,R⊕ LinkRetrs(κ[γ[C̃A]], κ0[Ẽ]), F) if (ŨEI, C̃A) ∈ Pred

LinkRetrs(κ[γ[˜CAR]], κ0[Ẽ]) =

{(κ[link(γ)[˜CEE]], κ[γ[˜CAR]], κ0[Ẽ]) : (˜CEE, ˜CAR) ∈ Returns}

Figure 11. Resolution function H

To record the resolution on each path segment, we pair each
resolution term κ[ς̃] with an “anchor” resolution term κ0[Ẽ] which,
with κ[ς̃], defines the span of the resolved segment. We term these
pairs resolution segments. In addition to facilitating the link be-
tween the resolution of interprocedural path segments, the anchor
state provides a small degree of polyvariance to the resolution pro-
cess.

Resolution is expressed as a fixed point of the function H ,
defined in Figure 11. H operates over triples (S,R, F) ∈ S ×
R×F where

S = P(Z × Z) R = P(Z × Z × Z) F = P(S̃tate).

Given a resolution to calculate of the form κ[ŨE], we seed the fixed-
point finder of H with (S0, ∅, ∅) where S0 = {(κ[ŨE], κ[ŨE])}.
H is defined as the fixed-point join (via the ⊕ operator) of

Inner mapped over the accumulating set S. For relations X0 and
X1, X0 ⊕ X1 is merely the union of relations X0 and X1 with
element equality modulo resolution contexts. If the resulting rela-

28

tion would relate states ς̃ and ς̃ ′ in multiple distinct ways, the union
“fails” and communicates this failure to the fixed-point finder. For
example, {(κ[ς̃], κ0[Ẽ])}⊕{(κ′[ς̃], κ0[Ẽ])} fails for κ 6= κ′. Fixed-
point join behaves componentwise on tuples so that

(S0, R0, F0)⊕ (S1, R1, F1) = (S0 ⊕ S1, R0 ⊕R1, F0 ⊕ F1),

with fixed-point join over F devolving to set union.
Inner is the workhorse of the resolution process. If it detects

that its resolution term argument has reached a procedure boundary,
it dispatches Link . If it detects that its argument is resolved, it adds
it to the set of resolved states F . Otherwise, it performs one step
of resolution via resolve . The resolve function simply applies an
identity from the resolution equations of Figure 10.

Link connects its Ãpply-focused argument to its calling states
via LinkCall or exiting states via CheckRetr , depending on
whether its argument focuses on an entry or return state. If the con-
text state of LinkCall ’s argument is ˜CEE, then a resolution segment
recorded in R awaits resolution of this segment and is continued
with LocalCall . If no segment awaits, then all path prefixes must
be considered with GlobalCall .

CheckRetr determines whether a ˜ContApply state is due to an
inner user or continuation call. If due to a user call, CheckRetr
links it with its exit states via LinkRetrs . If due to a continuation
call, CheckRetr immediately links it to its local predecessor and
continues resolution via Inner .

LinkRetrs uses Returns to link to the exits that reach a return
state.

Several functions make use of link contexts γ defined

γ := BirthOP(•) | BirthIP(•, n).

Link contexts are a component of all resolution contexts sitting at
an interprocedural boundary. The single-step resolution function
link : γ → κ defined

link(BirthOP(•)) = BirthOE(•)
link(BirthIP(•, n)) = BirthIE(•, n).

makes the interprocedural jump.

7.4 Applying the Inlining Conditions
Being able to resolve arbitrary binding- and birth-states in a
control-flow graph, we can now look to applying the inlining condi-
tions of ∆CFA’s environment theory. We first present the abstract
conditions for inlining in Pushdown ∆CFA. The soundness of the
first condition rests on that of CFA2. The frame string conditions
require that we express the binding and birth states in terms of our
resolution vocabulary.

Theorem 7 (LOCAL-INLINABLE (Abstract)). It is safe to inline the
term ulam ′ in place of procedure term f ′ if, for every (ŨA, ŨE) ∈
Seen such that ŨE = ((f e∗ q)`, env , h),

1. Ã(f, env , h) = {ulam ′},
2. free(ulam ′) ⊆ Scope(`), and
3. Lab([Birth(ŨE, f), ŨE]) ⊆ CLab.

Theorem 8 (EXACT-INLINABLE (Abstract)). It is safe to inline the
term ulam ′ in place of procedure term f ′ if, for every (ŨA, ŨE) ∈
Seen such that ŨE = ((f e∗ q)`, env , h),

1. Ã(f, env , h) = {ulam ′} and,
2. free(ulam ′) ⊆ Scope(`), and
3. for each u ∈ free(ulam ′),

b[Bind(ŨE, u),Bind(Birth(ŨE, f), u)]c = ε.

We add the second condition of LOCAL-INLINABLE to EXACT-
INLINABLE for early detection of unsafe inlinings. Without it,

resolution is still sound but could walk back to program entry
before it determined that some u was not in Scope(`).

7.5 Joint Resolution
The EXACT-INLINABLE frame string condition concerns the delta
frame string of two resolution terms. In order to for this condition
to hold, these terms must in fact denote the same state. As our
resolution framework handles resolution terms over sets of paths,
our current strategy cannot demonstrate this. For example, both
binding states may resolve to the same local state (i.e., set of paths)
in a recursive invocation, but refer to two different invocations in
an abstract path.

To overcome this limitation, we need to ensure that both reso-
lution terms resolve to the same local state at the same rate. We
achieve this by modifying H to operate over pairs of resolution
segments

((κ[ς̃], κ0[Ẽ]), (κ′[ς̃ ′], κ′0[Ẽ′]))

and resolving them in lock-step.
We likewise modify the domains S and R, the fixed-point

join operator ⊕, and the auxiliary functions to handle pairs. In
particular, Inner is modified to resolve both terms together by
having the separate resolutions rendezvous just before stepping to
another state on the path. Inner fails if only one term resolves at
a particular state, which translates to a failure to meet the frame
string condition.

Resolution of terms A and B may reach some ˜CAR such that
term A can skip over the call to the preceding ŨEI but term B must
traverse it. In this case, we pause joint resolution to find a single,
nested fixed point of resolution for all calls from ŨEI that return to

˜CAR by seeding S with

{(κ[˜CEE], κ[˜CEE]) : ˜CEE ∈ Exits(˜CAR)}

for the appropriate context κ where

Exits(˜CAR) = { ˜CEE : (˜CEE, ˜CAR) ∈ Returns}.

This seed ensures that GlobalCall will never be invoked which has
the effect of cutting off resolution once all same-context entries of
each Exits(˜CAR) have been reached. After the fixed-point search
converges, if either

• F is non-empty, meaning some term resolved within the call, or
• all ŨA such that ŨEI ̃ŨA do not have the same resolution

context κ’ on all paths,

then joint resolution fails. Otherwise, joint resolution continues
with link(κ′) as the context of term B.

8. Example
We will walk through our approach using the introductory example
program seen in Figure 1. Figure 12 presents its control-flow graph
when applied to >list , an abstract value representing any list.

We are interested in inlining (λ (u) . . .) at (f w). The only
state at which (f w) has control is UEI

2
so the conditions must

be met only at this state. The first two conditions of each inlin-
ing condition are easily checked, and both are met. The LOCAL-
INLINABLE frame string condition is met if we can demonstrate
that Birth(UEI

2
, f) ⊆ CLab which holds if Birth(UEI

2
, f) resolves

before UA is reached. The EXACT-INLINABLE frame string condi-
tion is met if we can demonstrate that

b[Bind(Birth(UEI
2
, f), y),Bind(UEI

2
, y)]c = ε

which holds if the resolution terms in each pair resolve simultane-
ously on all path segments.

29

UA CEI CAI UEE UA UEI UA CEE

CEE

CAR CEE

CAR

CAR CEI CAI UEI CAR UEI UA UEI UA CEE

CEE

CAR CEE CAR UEE UA CEE CAR

CAR UEI UA UEE UA CEE CAR UEI CAR UEE UA CEE

1

2 31

2

tri xs

y, ys acc f, zs

Figure 12. Control-flow graph for tri

Resolution begins with the resolution pair of the frame string
condition. (For space, we abbreviate the binding- and birth-state
resolution names.)

Bind(Birth(UEI
2
, f), y)

Bind(BBP(Bind(UEI
2
, f), f), y) Bind(UEI

2
, y)

Bind(BBP(Find(UEI
2
, f), f), y) Find(UEI

2
, y)

Bind(BBP(Bind(UEI
1
, f), f), y) Bind(UEI

1
, y)

Bind(BBP(UEI
1
, f), y) Find(UEI

1
, y)

Bind(BIP(UA , 1), y) Bind(BOP(UA), y)

At this point, we can inspect the resolution trace to determine
whether Birth(UEI

2
, f) resolved fully. If so, the LOCAL-INLINABLE

frame string condition is met and we can cut off the remainder of
the process. In this case, it didn’t resolve, so we must continue
resolution of other path segments.

Paths arrive at UA via both an outside call and a recursive
call. Resolution for path segments that arrive via the recursive call
proceeds as

Bind(BIE(UEI
3
, 1), y) Bind(BOE(UEI

3
), y)

Bind(Birth(UEI
3
, f), y) Bind(Birth(UEI

3
, acc), y)

Bind(BBP(Bind(UEI
3
, f), f), y) Bind(UEI

3
, y)

Bind(BBP(Find(UEI
3
, f), f), y) Find(UEI

3
, y)

Bind(BBP(Bind(UEI
2
, f), f), y) Bind(UEI

2
, y)

Bind(BBP(UEI
1
, f), y) Find(UEI

1
, y)

Bind(BIP(UA , 1), y) Bind(BOP(UA), y)

Because recursion is achieved through unfolding, Birth(UEI
3
, acc)

resolves immediately. (We have removed all trace of the combina-
tor, however.) Having seen this resolution state pair before, no new
path segments are discovered to resolve.

Resolution for path segments that arrive via UEI
2

proceeds as

Bind(BIE(UEI
2
, 1), y) Bind(BOE(UEI

2
), y)

Bind(Birth(UEI
2
, λ), y) Bind(Birth(UEI

2
, acc), y)

Bind(UEI
2
, y) Bind(BBP(Bind(UEI

2
, acc), acc), y)

Find(UEI
2
, y) Bind(BBP(Find(UEI

2
, acc), acc), y)

Bind(UEI
1
, y) Bind(BBP(Bind(UEI

1
, acc), acc), y)

Find(UEI
1
, y) Bind(BBP(UEI

1
, acc), y)

Bind(BIP(CAI , 1), y)
Bind(BIE(CEI , 1), y)
Bind(Birth(CEI , (λ (f zs) . . .)), y)

Bind(CEI , y) Bind(CEI , y)
CEI CEI

with resolution on this path segment converging. As the resolved
state is the same, we have

b[CEI , CEI]c = bεc = ε.

Since all path segments have been considered, the EXACT-INLINABLE
frame string condition is met.

9. Related and Future Work
Vardoulakis suggested that a pushdown abstraction could increase
the precision of ∆CFA [15, p. 110] as this work demonstrates.

We’ve presented Pushdown ∆CFA in terms of CFA2 [16], but it
can, in principle, be applied to other pushdown-abstraction analy-
ses, such as PDCFA [4], AAC [7], and P4F [6]. Since we’ve for-
mulated it as an a posteriori analysis, neither the implementation
nor the correctness claim of any of these analyses would need to be
changed to do so.

Pushdown ∆CFA leverages the environment theory of ∆CFA [8,
10] but avoids its explicit stack machinery.

Both our framework and reflow analysis [13, Ch. 8] are able
to justify the inlining in the introductory example using, it seems,
fundamentally different approaches. While our framework has the
benefit of formal correctness, it would be useful to better under-
stand their relative strengths and weaknesses.

Unchanged Variable Analysis (UVA) [2] operates over the
control-flow graph produced by a k-CFA analysis [12, 13]. It proves
bindings equivalent when there is no path in the control-flow graph
between binding and use site via which it can be rebound. As an
a posteriori analysis, our approach is similar in spirit. UVA suffers
from the weaknesses inherent in a finite-state analysis and the au-
thors observe that it is not as effective as k-CFA-supported ∆CFA.

Abstract counting [8, 11] can equivocate abstract bindings over
the same variable when only one concrete counterpart can exist and,
unlike ours, its technique is impervious to control flow. Combining
the two approaches and discharging the justification to the one more
equipped to handle it seems promising.

Our binding- and birth-time resolution mechanism is quite flex-
ible, and can support analyses for both higher-order copy propaga-
tion [13] and escape analysis [8, Ch. 10].

A natural extension to this work would be to remove the re-
striction on the appearance of continuation references k, allowing
user-world programs with call/cc. Vardoulakis and Shivers [17]
extend CFA2 to support call/cc by enlarging the correspond-
ing entry definition to match continuation calls with all possible
binding states. This extension introduces a new kind of imprecision
into the summarization algorithm: while traditional CFA2 is com-
plete with respect to the abstract semantics—meaning that every
stack-respecting path through the control-flow graph corresponds
state-for-state to some abstract path—call/cc-supporting CFA2
is not: some paths through the control-flow graph have no corre-
sponding abstract path. This imprecision certainly impedes Push-
down ∆CFA but does not render it unsound. In fact, resolution of
binding and birth states of variables not bound to the result of the
call/cc call is completely unaffected by call/cc calls—even in-
tervening ones.

Acknowledgements
We thank the anonymous reviewers for their thoughtful, thorough,
and constructive comments which have greatly improved this paper.

This material is partially based on research sponsored by DARPA
under agreement number AFRL FA8750-15-2-0092 and by NSF
under CAREER grant 1350344. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.

30

References
[1] Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul

Hudak, and James Philbin. Orbit: An optimizing compiler for Scheme,
volume 21. ACM, 1986.

[2] Lars Bergstrom, Matthew Fluet, Matthew Le, John Reppy, and Nora
Sandler. Practical and effective higher-order optimizations. In Pro-
ceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’14, pages 81–93. ACM, 2014.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In 4th ACM Symposium on Principles of
Programming Languages, pages 238–252. ACM, 1977.

[4] Christopher Earl, Matthew Might, and David Van Horn. Pushdown
control-flow analysis of higher-order programs. In 2010 Workshop
on Scheme and Functional Programming (Scheme 2010), Montreal,
Quebec, Canada, August 2010.

[5] Kimball Germane and Matthew Might. A posteriori en-
vironment analysis via pushdown ∆CFA. Technical re-
port, November 2016. http://kimball.germane.net/
germane2017pddeltacfa-techreport.pdf.

[6] Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and
David Van Horn. Pushdown control-flow analysis for free. In 43rd
Annual ACM Symposium on Principles of Programming Languages,
POPL ’16, pages 691–704, New York, NY, USA, 2016. ACM.

[7] James Ian Johnson and David Van Horn. Abstracting abstract control.
In 10th ACM Symposium on Dynamic Languages, pages 11–22. ACM,
2014.

[8] Matthew Might. Environment Analysis of Higher-Order Languages.
PhD thesis, June 2007.

[9] Matthew Might. Shape analysis in the absence of pointers and struc-
ture. In International Workshop on Verification, Model Checking, and
Abstract Interpretation, pages 263–278. Springer, 2010.

[10] Matthew Might and Olin Shivers. Environment analysis via ∆CFA.
In 33rd ACM Symposium on Principles of Programming Languages,
POPL ’06, pages 127–140, New York, NY, USA, 2006. ACM.

[11] Matthew Might and Olin Shivers. Improving flow analyses via ΓCFA:
Abstract garbage collection and counting. In Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’06, pages 13–25, New York, NY, USA, 2006. ACM.

[12] Olin Shivers. Control flow analysis in scheme. In ACM 1998 Confer-
ence on Programming Language Design and Implementation, PLDI
’88, pages 164–174. ACM, 1988.

[13] Olin Shivers. Control-flow analysis of higher-order languages. PhD
thesis, Carnegie Mellon University, 1991.

[14] Guy L Steele Jr. Rabbit: A compiler for scheme. Technical report,
Technical Report AI-TR-474, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 1978.

[15] Dimitrios Vardoulakis. Cfa2: pushdown flow analysis for higher-order
languages. PhD thesis, Northeastern University Boston, 2012.

[16] Dimitrios Vardoulakis and Olin Shivers. CFA2: a context-free ap-
proach to control-flow analysis. In European Symposium on Program-
ming, pages 570–589, 2010.

[17] Dimitrios Vardoulakis and Olin Shivers. Pushdown flow analysis of
first-class control. In Proceedings of the 16th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’11, pages 69–
80. ACM, 2011.

31

