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Abstract
We present a functional approach to parsing unrestricted context-
free grammars based on Brzozowski’s derivative of regular expres-
sions. If we consider context-free grammars as recursive regular ex-
pressions, Brzozowski’s equational theory extends without modifi-
cation to context-free grammars (and it generalizes to parser combi-
nators). The supporting actors in this story are three concepts famil-
iar to functional programmers—laziness, memoization and fixed
points; these allow Brzozowski’s original equations to be translit-
erated into purely functional code in about 30 lines spread over
three functions.

Yet, this almost impossibly brief implementation has a draw-
back: its performance is sour—in both theory and practice. The
culprit? Each derivative can double the size of a grammar, and with
it, the cost of the next derivative.

Fortunately, much of the new structure inflicted by the derivative
is either dead on arrival, or it dies after the very next derivative.
To eliminate it, we once again exploit laziness and memoization
to transliterate an equational theory that prunes such debris into
working code. Thanks to this compaction, parsing times become
reasonable in practice.

We equip the functional programmer with two equational theo-
ries that, when combined, make for an abbreviated understanding
and implementation of a system for parsing context-free languages.

Categories and Subject Descriptors F.4.3 [Formal Languages]:
Operations on languages

General Terms Algorithms, Languages, Theory

Keywords formal languages, parsing, derivative, regular expres-
sions, context-free grammar, parser combinator

1. Introduction
It is easy to lose sight of the essence of parsing in the minutiae
of forbidden grammars, shift-reduce conflicts and opaque action
tables. To the extent that understanding in computer science comes
from implementation, a deeper appreciation of parsing often seems
out of reach. Brzozowski’s derivative upsets this calculus of effort
and understanding to make the construction of parsing systems
accessible to the common functional programmer.
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The derivative of regular expressions [1], if gently tempered
with laziness, memoization and fixed points, acts immediately
as a pure, functional technique for generating parse forests from
arbitrary context-free grammars. Despite—even because of—its
simplicity, the derivative transparently handles ambiguity, left-
recursion, right-recursion, ill-founded recursion or any combina-
tion thereof.

1.1 Outline
• After a review of formal languages, we introduce Brzozowski’s

derivative for regular languages. A brief implementation high-
lights its rugged elegance.
• As our implementation of the derivative engages context-free

languages, non-termination emerges as a problem.
• Three small, surgical modifications to the implementation (but

not the theory)—laziness, memoization and fixed points—
guarantee termination. Termination means the derivative can
recognize arbitrary context-free languages.
• We generalize the derivative to parsers and parser combinators

through an equational theory for generating parse forests.
• We find poor performance in both theory and practice. The

root cause is vestigial structure left in the grammar by earlier
derivatives; this structure is malignant: though it no longer
serves a purpose, it still grows in size with each derivative.
• We develop an optimization—compaction—that collapses gram-

mars by excising this mass. Compaction, like the derivative,
comes from a clean, equational theory that exploits laziness
and memoization in its transliteration to working code.

In this article, we provide code in Racket, but it should adapt readily
to any Lisp. All code and test cases within or referenced from this
article (plus additional implementations in Haskell and Scala) are
available from:

http://www.ucombinator.org/projects/parsing/

2. Preliminary: Formal languages
A language L is a set of strings. A string w is a sequence of
characters from an alphabet A. (From the parser’s perspective, a
“character” might be a token/terminal.)

Two atomic languages arise often in formal languages: the
empty language and the null (or empty-string) language:

• The empty language ∅ contains no strings at all:

∅ = {} .

• The null language ε contains only the length-zero “null” string:

ε = {w} where length(w) = 0.



Or, using C notation for strings, ε = {""}. For convenience,
we may use the symbol ε to refer to both the null language and
the null string.

Given an alphabet A, there is a singleton language for every char-
acter c in that alphabet. Where it is clear from context, we use the
character itself to denote that language; that is:

c ≡ {c} .

2.1 Operations on languages
Because languages are sets, set operations like union apply:

{foo} ∪ {bar, baz} = {foo, bar, baz} .

Concatenation (◦) appends the product of the two languages:

L1 ◦ L2 = {w1w2 : w1 ∈ L1 and w2 ∈ L2} .

The nth power of a language is the set of strings of n consecutive
words from that language:

Ln = {w1w2 . . . wn : wi ∈ L for 1 ≤ i ≤ n} .

And, the non-empty repetition of a language (its Kleene star) is the
infinite union of all its powers:

L? =

∞⋃
i=0

Li.

2.2 Regular languages and context-free languages
If a language is non-recursively definable from atomic sets using
only union, concatenation and repetition, that language is regular.

If we allow mutually recursive definitions, then the set of de-
scribable languages is exactly the set of context-free languages.
(Even without Kleene star, the resulting set of languages is context-
free.) We assume, of course, a least-fixed-point interpretation of
such recursive structure. For instance, given the language L:

L = ({x} ◦ L) ∪ ε.
The least-fixed-point interpretation of L is a set containing a finite
string of every length (plus the null string). Every string contains
only the character x. [The greatest-fixed-point interpretation of L
adds an infinite string of x’s.]

2.3 Encoding languages
To represent the atomic and complex languages in code, there is a
struct for each kind of language:

(define-struct empty {}) ; ∅
(define-struct eps {}) ; ε
(define-struct char {value})

(define-struct cat {left right}) ; left ◦ right
(define-struct alt {this that}) ; this ∪ that
(define-struct rep {lang}) ; lang?

Example In code, the language:

Lab = Lab ◦ {a, b}
∪ ε,

becomes:

(define L (alt (cat L (alt (char ’a) (char ’b)))
(eps)))

3. Brzozowski’s derivative
Brzozowski defined the derivative of regular expressions in his
work on the recognition of regular languages [1]. The derivative

of a language L with respect to a character c is a new language that
has been “filtered” and “chopped”—Dc(L):

1. First, retain only the strings that start with the character c.

2. Second, chop that first character off every string.

Formally:

Dc(L) = {w : cw ∈ L} .

Examples

Db {foo, bar, baz} = {ar, az}
Df {foo, bar, baz} = {oo}
Da {foo, bar, baz} = ∅.

3.1 Recognition with the derivative
The simplicity of the derivative’s definition masks its power. If one
can compute successive derivatives of a language, it is straightfor-
ward to determine the membership of a string within a language,
thanks to the following property:

cw ∈ L iff w ∈ Dc(L).

To determine membership, derive a language with respect to each
character, and check if the final language contains the null string: if
yes, the original string was in; if not, it wasn’t.

3.2 A recursive definition of the derivative
Brzozowski noted that the derivative is closed over regular lan-
guages, and admits a recursive implementation:

• For the atomic languages:

Dc(∅) = ∅
Dc(ε) = ∅
Dc(c) = ε

Dc(c
′) = ∅ if c 6= c′.

• For the derivative over union:

Dc(L1 ∪ L2) = Dc(L1) ∪Dc(L2).

• The derivative over Kleene star peels off a copy of the language:

Dc(L
?) = Dc(L) ◦ L?.

• For the derivative of concatenation, we must consider the pos-
sibility that the first language could be null:

Dc(L1 ◦ L2) = Dc(L1) ◦ L2 if ε 6∈ L1

Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪Dc(L2) if ε ∈ L1

We can express concatenation without a conditional through the
nullability function: δ. This function returns the null language
if its input language contains the null string, and the empty set
otherwise:

δ(L) = ∅ if ε 6∈ L
δ(L) = ε if ε ∈ L.

Thus, we can equivalently define concatenation:

Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2)).



3.3 Nullability of regular languages
Conveniently, nullability may also be computed using structural
recursion on regular languages:

δ(∅) = ∅
δ(ε) = ε

δ(c) = ∅
δ(L1 ∪ L2) = δ(L1) ∪ δ(L2)

δ(L1 ◦ L2) = δ(L1) ◦ δ(L2)

δ(L?) = ε.

A recursive implementation of the Boolean variant of the nullability
function is straightforward:

(define (δ L)
(match L

[(empty) #f]
[(eps) #t]
[(char _) #f]

[(rep _) #t]
[(alt L1 L2) (or (δ L1) (δ L2))]
[(cat L1 L2) (and (δ L1) (δ L2))]))

Examples A couple examples illustrate the derivative on regular
languages:

Df {foo, bar}? = {oo} ◦ {foo, bar}?

Df {foo, bar}? ◦ {frak} = {oo} ◦ {foo, bar}? ◦ {frak} ∪ {rak} .

3.4 An implementation of the derivative
As the description of a regular language is not recursive, it is
straightforward to transliterate the derivative into working code:

(define (D c L)
(match L

[(empty) (empty)]
[(eps) (empty)]
[(char a) (if (equal? c a)

(eps)
(empty))]

[(alt L1 L2) (alt (D c L1)
(D c L2))]

[(cat (and (? δ) L1) L2)
(alt (D c L2)

(cat (D c L1) L2))]
[(cat L1 L2) (cat (D c L1) L2)]
[(rep L1) (cat (D c L1) L)]))

Matching a regular language L against a consed list of characters
w is straightforward:

(define (matches? w L)
(if (null? w)

(δ L)
(matches? (cdr w) (D (car w) L))))

4. Derivatives of context-free languages
Since a context-free language is a recursive regular language, it is
tempting to use the same code for computing the derivative. From
the perspective of parsing, this has two chief drawbacks:

1. It doesn’t work.

2. It wouldn’t produce a parse forest even if it did.

The first problem comes from the recursive implementation of
the derivative running into the recursive nature of context-free
grammars. It leads to non-termination.

The second comes from the fact that our regular implementation
recognizes whether a string is in a language rather than parsing the
string. We tackle the termination problem in this section, and the
parsing problem in the next.

Example Consider the following left-recursive language:

L = L ◦ {x}
∪ ε.

If we take the derivative of L, we get a new language:

DxL = DxL ◦ {x}
∪ ε.

Mathematically, this is sensible. Computationally, it is not. The
code from the previous section recurs forever as it attempts to
compute the derivative of the language L.

4.1 Step 1: Laziness
Preventing the implementation of the derivative from making an
infinite descent on a recursive grammar requires targeted laziness.
Specifically, it requires making the fields of the structs cat, alt
and rep by-need.1 With by-need fields, the computation of any (po-
tentially self-referential) derivatives in those fields gets suspended
until the values in those fields are required.

4.2 Step 2: Memoization
With laziness, we can compute the derivative until it requires nulla-
bility (as in concatenation or testing membership). Nullability ea-
gerly walks the structure of the entire language. Thus, nullability
fails to terminate on a derived language such as the one above. We
need the derivative to return a finite (if lazily explored) graph. By
memoizing the derivative, it “ties the knot” when it re-encounters a
language it has already seen:

(define/memoize (D c L)
#:order ([L #:eq] [c #:equal])
(match L
[(empty) (empty)]
[(eps) (empty)]
[(char a) (if (equal? a c)

(eps)
(empty))]

[(alt L1 L2) (alt (D c L1)
(D c L2))]

[(cat (and (? δ) L1) L2)
(alt (D c L2)

[(cat L1 L2) (cat (D c L1) L2)]
[(rep L1) (cat (D c L1) L)]))

The define/memoize form above defines a derivative function D
that memoizes first by pointer equality on the language and then by
value equality on the character.

4.3 Step 3: Fixed points
The computation of nullability is more challenging than the com-
putation of the derivative because it isn’t looking for a structure;
it’s looking for a single answer: “Yes, it’s nullable,” or “No, it’s

1 Lisp implementations that do not support lazy fields have to provide them
transparently with macros, delay and force.



not.” As such, laziness and memoization can’t help side-step self-
dependencies the way they did for the derivative. Consider the nul-
lability of the left-recursive language L:

δ(L) = (δ(L) ◦ ∅) ∪ ε.
To know the nullability of L requires knowing the nullability of
L. For decades, this problem has been solved by interpreting the
nullability of L as the least fixed point of the nullability equations.

To bare only the essence of nullability, we can hide the com-
putation of a least fixed point behind a purely functional abstrac-
tion: define/fix. The define/fix form uses Kleene’s theorem
to compute the least fixed point of a monotonic recursive definition,
and it allows the prior definition of nullability to be used with little
change:

(define/fix (δ L)
#:bottom #f
(match L

[(empty) #f]
[(eps) #t]
[(char _) #f]

[(rep _) #t]
[(alt L1 L2) (or (δ L1) (δ L2))]
[(cat L1 L2) (and (δ L1) (δ L2))]))

The #:bottom keyword indicates from where to begin the iterative
ascent toward the least fixed point.

The define/fix form defines a function mapping nodes in a
graph (V,E) to values in a lattice X , so that given an instance:

(define/fix (f v) #:bottom ⊥X body)

After this definition, the function f : V → X is a least fixed point:

f = lfp(λf.λv.body),

which is easily computed with straightforward iteration:

lfp(F ) = Fn(⊥V→X) for some finite n.

4.4 Recognizing context-free languages
No special modification is required for the matches? function. It
works as-is for recognizing context-free languages.

With access to laziness, memoization and a facility for comput-
ing fixed points, we were able to construct a system for recognizing
any context-free language in less than 30 lines of code.

5. Parsers and parser combinators
Using standard techniques from functional programming, we lifted
the derivative from regular languages to context-free languages. If
recognition of strings in context-free languages were our goal, we
would be done.

But, our goal is parsing. So, our next step is to generalize
the derivative to parsers. This section reviews parsers and parser
combinators. (For a more detailed treatment, we refer the reader to
[15, 16].) In the next section, we explore their derivative.

A partial parser p is a function that consumes a string and
produces “partial” parses of that string. A partial parse is a pair
containing the remaining unparsed input, and a parse tree for the
prefix. The set P(A, T ) contains the partial parsers over alphabet
A that produce parse trees in the set T :

P(A, T ) ⊆ A∗ → P(T ×A∗).
A (full) parser p consumes a string and produces all possible

parses of the full string. The set bPc(A, T ) contains the full parsers
over alphabet A that produce parse trees in the set T :

bPc(A, T ) ⊆ A∗ → P(T ).

Of course, we can treat a partial parser p ∈ P(A, T ) as a full parser:

bpc(w) = {t : (t, ε) ∈ p(w)},
by discarding any partial parse that did not exhaust the input.

5.1 Simple parsers
Simple languages can be implicitly promoted to partial parsers:

• A character c converts into a partial parser for exactly itself:

c ≡ λw.

{
{(c, w′)} w = cw′

∅ otherwise.

• The null string becomes the consume-nothing parser:

ε ≡ λw. {(ε, w)} .

• The empty set becomes the reject-everything parser:

∅ ≡ λw. {} .

5.2 Combining parsers
Parsers combine in the same fashion as languages:

• The union of two parsers, p, q ∈ P(A,X), combines all parse
trees together, so that p ∪ q ∈ P(A,X):

p ∪ q = λw.p(w) ∪ q(w).

• The concatenation of two parsers, p ∈ P(A,X) and q ∈
Q(A, Y ), produces a parser that pairs the parse trees of the
individual parsers together, so that p ◦ q ∈ P(A,X × Y ):

p ◦ q = λw.{((x, y), w′′) : (x,w′) ∈ p(w), (y, w′′) ∈ q(w′)}
In effect, the first parser consumes a prefix of the input and
produces a parse tree. It passes the remainder of that input to the
second parser, which produces another parse tree. The result is
the left-over input paired with both of those parse trees.
• A reduction by function f : X → Y over a parser p ∈ P(A,X)

creates a new partial parser, p→ f ∈ P(A, Y ):

p→ f = λw.{((f(x), w′) : (x,w′) ∈ p(w)}
A reduction parser maps trees from X into trees from Y .
In code, a new struct represents reduction parsers:

(define-struct red {lang f})
Once again, the field lang should be lazy.

5.3 The nullability combinator
A special nullability combinator, δ, simplifies the definition of the
derivative over parsers. It becomes a reject-everything parser if the
language cannot parse empty, and the null parser if it can:

δ(p) = λw. {(t, w) : t ∈ bpc(ε)} .

We can add a new kind of language node to represent these:

(define-struct δ {lang})
Once again, the field lang is lazy. (Please note that δ is no longer
the function from the previous section.)

5.4 The null reduction parser
To implement the derivative of parsers for single characters: the
null reduction partial parser, ε ↓ S, is handy. This parser can only
parse the null string; it returns a set of parse trees stored within:

ε ↓ S ≡ λw. {(t, w) : t ∈ S} .

A new struct provides null-reduction nodes:

(define-struct eps* {trees})



5.5 The repetition combinator
It is easiest to define the Kleene star of a partial parser p ∈
P(A, T ) in terms of concatenation, union and reduction, so that
p? ∈ P(A, T ∗):

p? = (p ◦ p?)→ λ(head , tail).head : tail

∪ ε ↓ {〈〉} .

The colon operator (:) is the sequence constructor, and 〈〉 is the
empty sequence.

6. Derivatives of parser combinators
If we can generalize the derivative to parsers and over parser com-
binators, then we can construct parse forests using derivatives. But
first, we must consider the question:

“What is the derivative of a parser?”

Intuitively, the derivative of a parser with respect to the charac-
ter c should be a new parser. It should have the same type as the
original parser; that is, if the original parser consumed the alphabet
A to construct parse trees of type X , then the new parser should do
the same. Formally:

Dc : P(A, T )→ P(A, T ).

But, how should the derived parser behave?
It should act as though the character c has been consumed, so

that if the string w is supplied, it returns parses for the string cw.
However, it also needs to strip away any null parses that come back.
If it didn’t strip these, then null parses containing cw would return
when trying to parse w with the derived parser. It is nonsensical for
a partial parser to expand its input. Thus:

Dc(p) = λw.p(cw)− (bpc(ε)× {cw}).
To arrive at a framework for parsing, we can solve this equation for
the partial parser p in terms of the derivative:

Dc(p) = λw.p(cw)− (bpc(ε)× {cw})
iff Dc(p)(w) = p(cw)− (bpc(ε)× {cw})
iff p(cw) = Dc(p)(w) ∪ (bpc(ε)× {cw}).

Fortunately, we’ll never have to deal with the “left-over” null parses
in practice. With a full parser, these null parses are discarded:

bpc(cw) = bDc(p)c(w).
Given their similarity, it should not surprise that the derivative

of a partial parser resembles the derivative of a language:

• The derivative of the empty parser is empty:

Dc(∅) = ∅.

• The derivative of the null parser is also empty:

Dc(ε) = ∅.

• The derivative of the nullability combinator must be empty,
since it at most parses the empty string:

Dc(δ(L)) = ∅.

• The derivative of a single-character parser is either the null
reduction parser or the empty parser:

Dc(c
′) =

{
ε ↓ {c} c = c′

∅ otherwise.

This rule is important: it allows the derived parser to retain frag-
ments of the input string within itself. Over time, as successive

derivatives are taken, the parser is steadily transforming itself
into a parse forest with nodes like this.
• The derivative of the union is the union of the derivative:

Dc(p ∪ q) = Dc(p) ∪Dc(q).

• The derivative of a reduction is the reduction of the derivative:

Dc(p→ f) = Dc(p)→ f .

• The derivative of concatenation requires nullability, in case the
first parser doesn’t consume any input:

Dc(p ◦ q) = (Dc(p) ◦ q) ∪ (δ(p) ◦ Dc(q)).

• The derivative of Kleene star peels off a copy of the parser:

Dc(p
?) = (Dc(p) ◦ p?)→ λ(h, t).h : t

The rules are so similar to the derivative for languages that we can
modify the implementation of the derivative for languages to arrive
at a derivative suitable for parsers:

(define/memoize (D c L)
#:order ([L #:eq] [c #:equal])
(match L
[(empty) (empty)]
[(eps* T) (empty)]
[(δ _) (empty)]
[(char a) (if (equal? a c)

(eps* (set c))
(empty))]

[(alt L1 L2) (alt (D c L1) (D c L2))]
[(cat L1 L2) (alt (cat (D c L1) L2))

(cat (δ L1) (D c L2))]
[(rep L1) (cat (D c L1) L)]
[(red L f) (red (D c L) f)]))

(Because pairing and list-building in Lisps both use cons, there is
no reduction around the derivative of repetition.)

6.1 Parsing with derivatives
Parsing with derivatives is straightforward—until the last character
has been consumed. To parse, compute successive derivatives of
the top-level parser with respect to each character in a string. When
the string is depleted, supply the null string to the final parser. In
code, the parse function has the same structure as matches?:

(define (parse w p)
(if (null? w)

(parse-null p)
(parse (cdr w) (D (car w) p))))

The question of interest is how to define parse-null, which pro-
duces a parse forest for the null parses of its input.

Yet again, an equational theory guides:

b∅c(ε) = {}
bε ↓ T c(ε) = T

bδ(p)c = bpc(ε)
bp ∪ qc(ε) = bpc(ε) ∪ bqc(ε)
bp ◦ qc(ε) = bpc(ε)× bqc(ε)
bp→ fc(ε) = {f(t1), . . . , f(tn)}

where {t1, . . . , tn} = bpc(ε)
bp?c(ε) = (bpc(ε))∗



A note on repetition The rule for repetition can mislead. If the
interior parser can parse null, then there are an infinite number
of parse trees to return. However, in terms of descriptiveness, one
gains nothing by allowing the interior of a Kleene star operation
to parse null—Kleene star already parses null by definition. So, in
practice, we can replace that last rule by:

bp?c(ε) =

{
{〈〉} p cannot parse null
undefined otherwise.

What we have at this point are mutually recursive set constraint
equations that mimic the structure of the nullability function for
languages. Once again, the least fixed point is a sensible way of
interpreting these equations. Thus, Kleene’s fixed-point theorem,
via define/fix, returns the set of full null parses:

(define/fix (parse-null p)
#:bottom (set)
(match l

[(empty) (set)]
[(eps* T) T]
[(δ L) (parse-null L)]
[(char _) (set)]

[(alt p1 p2) (set-union (parse-null p1)
(parse-null p2))]

[(cat p1 p2) (for*/set ([t1 (parse-null p1)]
[t2 (parse-null p2)])
(cons t1 t2))]

[(red p1 f) (for/set ([t (parse-null p1)])
(f t))]

[(rep _) (set ’())]))

It assumes that the null parse of each node is initially empty.

7. Performance and complexity
The implementation is brief. The code is pure. The theory is ele-
gant. So, how does this perform in practice? In brief, it is awful.

We constructed a parser for Python 3.1. On one-line examples,
it returns interactively. Yet, it takes just under three minutes to
parse a (syntactically valid) 31-line input. The culprit? The size
of the grammar within the parser can grow exponentially with the
number of derivatives. (The rule for concatenation is to blame.)
Specifically, the grammar can double in size under the derivative.
The cost model for parsing with derivatives is:

number of derivatives
× cost of derivative
+ cost of fixed point at the end.

The cost of the derivative is proportional to the size of the current
grammar. The cost of the fixed point is quadratic in the size of
the grammar for unambiguous parses in the worst case. Thus, the
worst-case complexity of parsing a grammar of sizeG over an input
of length n is:

O(n2nG+ (2nG)2) = O(22nG2).

Considering this complexity, it is remarkable that our example
finished at all. That it finished in three minutes is astonishing.

7.1 Example: Growth in the grammar
A glance at run-time behavior on the left-recursive list grammar
exposes the nature of the problem. The image on the left represents
the grammar at the start; the image on the right represents the
grammar after ten derivatives:

or

seq

L R
eps* (set '())

token 1

or

or empty

seq

L R
or

eps* (set '())

empty

seq

L R
or

eps* (set '(() . 1))
seq

L R
or

eps* (set '((() . 1) . 1))
seq

L R
or

eps* (set '(((() . 1) . 1) . 1))
seq

L R
or

eps* (set '((((() . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((() . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((() . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R

seq

L R

eps* (set '(((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1)) eps* (set 1)token 1

If one were to zoom in on image on the right, the node on the bot-
tom right is (empty). All of the inbound edges are from concate-
nation nodes—all of these nodes can be discarded.

8. Compaction
Another equational theory shows how to eliminate unnecessary
structure. The empty parser is an annihilator under concatenation
and the identity under union; a null parser is the identity under
concatenation.

It is possible to aggressively perform reductions as pieces of
parse trees emerge. Our implementation utilizes the following sim-
plifications; we use (⇒) in lieu of (=) to emphasize direction:

∅ ◦ p = p ◦ ∅ ⇒ ∅
∅ ∪ p = p ∪ ∅ ⇒ p

(ε ↓ {t1}) ◦ p⇒ p→ λt2.(t1, t2)

p ◦ (ε ↓ {t2})⇒ p→ λt1.(t1, t2)

(ε ↓ {t1, . . . , tn})→ f ⇒ ε ↓ {f(t1), . . . , f(tn)}
((ε ↓ {t1}) ◦ p)→ f ⇒ p→ λt2.f(t1, t2)

(p→ f)→ g ⇒ p→ (g ◦ f)
∅? ⇒ ε ↓ {〈〉} .

We can implement these simplification rules in a memoized,
recursive simplification function. When simplification is deeply
recursive and memoized, we term it compaction. If the algorithm
compacts after every derivative, then the time to parse the 31-line
Python file drops from three minutes to two seconds. A graph of the
size of the residual Python grammar with respect to each derivative
hints as to why:
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The size of the grammar (and the cost of each derivative) stays
constant.

Warning With mere top-level simplification in lieu of memo-
ization and deep recursive simplification, the grammar still grows
with each derivative, and the cost of parsing the 31-line example
explodes from two seconds to one minute.



8.1 Complexity
The worst-case complexity is unchanged: it is still exponential.
However, we can hypothesize about its average performance given
the observation that the grammar tends to stay roughly constant
in size (until collapsing into a parse forest at the very end). The
cost of each derivative remains proportional to the size of the
original grammar. The cost of the fixed point at the end is negligible
because the grammar has collapsed under compaction. Thus, we
conjecture with reason that the cost of parsing with derivatives is
O(nG) in practice (for unambiguous grammars), where n is the
size of the string, and G is the size of the grammar. Even for the
ambiguous expression grammar, recognition appears to be O(nG)
(while producing all parse trees is exponential).

9. Related work
There has been a revival of interest in Brzozowski’s derivative,
itself a specialization of the well-known left quotient operation on
languages. Owens, Reppy and Turon re-examined the derivative in
light of lexer construction [13], and Danielsson [5] used it to prove
the totality of parser combinators.

The literature on parsing is vast; there are dozens of methods for
parsing, including but not limited to abstract interpretation [3, 4],
operator-precedence parsing [9, 14], simple precedence parsing [7],
parser combinators [15, 16], LALR parsing [6], LR(k) parsing [12],
GLR parsing [17], CYK parsing [11, 20, 2], Earley parsing [8],
LL(k) parsing, and recursive descent parsing [19]. packrat/PEG
parsing [10, 18]. Derivative-based parsing shares full coverage of
all context-free grammars with GLR, CYK and Earley.

Derivative-based parsing is not easy to classify as a top-down
or bottom-up method. In personal correspondence, Stuart Kurtz
pointed out that when the grammar is in Greibach Normal Form
(GNF), the algorithm acquires a “parallel” top-down flavor. For
grammars outside GNF, while watching the algorithm evolve under
compaction, one sees what appears to be a pushdown stack emerge
inside the grammar. (Pushes and pops appear as the jagged edges
in the graph to the left.)

The most directly related work is Danielsson’s work on total
parser combinators [5]. His work computes residual parsers simi-
lar to our own, but does not detail a simplification operation. Ac-
cording to our correspondence with Danielsson, simplification does
exist in the implementation. Yet, because it is unable to memoize
the simplification operation (turning it into compaction), the imple-
mentation exhibits exponential complexity even in practice.
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10. Conclusion
Our goal was a means to abbreviate the understanding and imple-
mentation of parsing. Brzozowski’s derivative met the challenge:
its theory is equational, its implementation is functional and, with
an orthogonal optimization, its performance is not unreasonable.
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