
Shape Analysis in the

Absence of Pointers and Structure

Matthew Might

University of Utah, Salt Lake City, Utah, USA
might@cs.utah.edu

http://matt.might.net/

Abstract. Shape analyses (Chase et al. 1990, Sagiv et al. 2002) discover
properties of dynamic and/or mutable structures. We ask, “Is there an
equivalent to shape analysis for purely functional programs, and if so,
what ‘shapes’ does it discover?” By treating binding environments as
dynamically allocated structures, by treating bindings as addresses, and
by treating value environments as heaps, we argue that we can analyze
the “shape” of higher-order functions. To demonstrate this, we enrich
an abstract-interpretive control-flow analysis with principles from shape
analysis. In particular, we promote “anodization” as a way to generalize
both singleton abstraction and the notion of focusing, and we promote
“binding invariants” as the analog of shape predicates. Our analysis en-
ables two optimizations known to be beyond the reach of control-flow
analysis (globalization and super-β inlining) and one previously unknown
optimization (higher-order rematerialization).

1 Introduction

Control-flow analysis is not enough. In higher-order programs, the three facets
of control, environment and data meet and intertwine in a single construct:
λ. Deep static analysis of higher-order programs requires that all three facets
be co-analyzed with one another. Yet, to date, static analysis of higher-order
programs has focused largely on bounding the control facet [1,12,22,26,27,29].1

Limited excursions have tamed parts of the environment facet [16,18,20,28], and
little work even approaches the data facet [17]. These deficits in reasoning leave
higher-order languages at a disadvantage with respect to optimization. Our goal
in this work is to address these deficits with a holistic approach to the abstract
interpretation [5,6] of higher-order programs.

1.1 Limitations of Control-Flow Analysis

To motivate the kind of analysis we need, we will consider specific problems
beyond the reach of the control-flow analysis; we will identify the common thread
1 Control-flow analyses (CFA) answer the higher-order control-flow question: Given a

call site [[(f e1 . . . en)]], which procedures may be invoked here? 0CFA, for instance,
answers which λ-terms may have closures invoked at the call site.

G. Barthe and M. Hermenegildo (Eds.): VMCAI 2010, LNCS 5944, pp. 263–278, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://matt.might.net/

264 M. Might

as the “generalized environment problem”; and we will then argue that the
higher-order analog of shape analysis is what we need to solve it.

CFA Limitation: Super-β inlining. Inlining a function based on flow infor-
mation is blocked by the lack of environmental precision in control-flow analysis.
Shivers termed the inlining of a function based on flow information super-β in-
lining [27], because it is beyond the reach of ordinary β-reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h), the only procedure ever
invoked is a closure over the lambda term (lambda () x). The lambda term’s
only free variable, x, is in scope at the invocation site. It feels safe to inline.
Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x), the meaning of the program will change from #f to #t. This happens
because the closure that gets invoked was closed over an earlier binding of x (to
#f), whereas the inlined lambda term closes over the binding of x currently in
scope (which is to #t). Programs like this mean that functional compilers must
be conservative when they inline based on information obtained from a CFA. If
the inlined lambda term has a free variable, the inlining could be unsafe.

Specific problem. To determine the safety of inlining the lambda term lam at the
call site [[(f . . .)]], we need to know that for every environment ρ in which this
call is evaluated, that ρ[[f]] = (lam , ρ′) and ρ(v) = ρ′(v) for each free variable v
in the term lam .2

CFA Limitation: Globalization. Sestoft identified globalization as a sec-
ond blindspot of control-flow analysis [25]. Globalization is an optimization that
converts a procedure parameter into a global variable when it is safe to do so.
Though not obvious, globalization can also be cast as a problem of reasoning
about environments: if, for every state of execution, all reachable environments
which contain a variable are equivalent for that variable, then it is safe to turn
that variable into a global.

Specific problem. To determine the safety of globalizing the variable v, we need to
know that for each reachable state, for any two environments ρ and ρ′ reachable
inside that state, it must be that ρ(v) = ρ′(v) if v ∈ dom(ρ) and v ∈ dom(ρ′).

CFA Limitation: Rematerialization. Compilers for imperative languages
have found that it can be beneficial to rematerialize (to recompute) a value at
its point of use if the values on which it depends are still available. On modern
hardware, rematerialization can decrease register pressure and improve cache
2 The symbol ρ denotes a conventional variable-to-value environment map.

Shape Analysis in the Absence of Pointers and Structure 265

performance. Functional languages currently lack analyses to drive rematerial-
ization. Consider a trivial example:

((let ((z y))
(lambda () z)))

At the top-level call site in this program, only a closure over the lambda term
(lambda () z) is invoked. Yet, we cannot inline the lambda term, changing the
program into ((lambda () z)), because at the very least, the variable z isn’t
even in scope at the call site. We could, however, rematerialize the lambda term
(lambda () y) instead. Of course, justifying this transformation goes beyond
reasoning about the equivalence of environments. What we need is an analysis
that can reason about the equivalence of individual bindings between environ-
ments, e.g., the equality of the binding to the variable z within the closure and
the binding to the variable y at the call site. At the moment, no such analysis
exists for higher-order programs.

Specific problem To rematerialize the expression e′ in place of expression e, it
must be the case that for every environment ρ that evaluates the expression
e into a closure (lam , ρ′), that the environment ρ evaluates the expression e′

into a closure (lam ′, ρ′′) such that the terms lam and lam ′ are equal under a
substitution σ ⊆ Var×Var and for each (v, v′) ∈ σ, it must be that ρ′(v) = ρ′′(v′).

1.2 The Generalized Environment Problem

The brief survey of optimizations beyond the reach of higher-order control-flow
analysis highlighted the importance of reasoning precisely about environments,
and more atomically, about individual bindings. In fact, Shivers’s work on k-
CFA [27] classified optimizations beyond the reach of CFA as those which must
solve “the environment problem.”

The term environment problem connotes the fact that control-flow analy-
ses excel at reasoning about the λ-term half of closures, but determine little
(useful) information about the environment half. Might refined Shivers’s defi-
nition of the environment problem to be determining the equivalence of a
pair of environments, for every pair in a given set of environment pairs [16].3

Equivalence in this case means showing that the environments agree on some
specified subset of their domains. This narrow definition is suitable for en-
abling super-β inlining and globalization, but it is too limited for higher-order
rematerialization.

For example, we could not declare the closures ([[(lambda (z) (f z))]], ρ)
and ([[(lambda (x) (g x))]], ρ′) to be equivalent unless we knew that ρ[[f]] ≡
ρ′[[g]] as well. In this case, the analysis cares about the equality of bindings to two
different variables in two different environments. Thus, the generalized envi-
ronment problem asks whether two bindings are equivalent to one another,

3 The set of pairs comes from concretizing abstract environments, i.e., γ(ρ̂) × γ(ρ̂′).

266 M. Might

where a binding is a variable plus the environment in which it was bound, e.g.,
“Is [[x]] in environment ρ equivalent to [[y]] in environment ρ′?”

1.3 Insight: Environments as Data Structures; Bindings as
Addresses

Under the hood, environments are dynamically allocated data structures that de-
termine the value of a λ-term’s free variables, and as a consequence, the mean-
ing of the function represented by a closure. When we adapt and extend the
principles of shape analysis (specifically, singleton abstractions [2,4] and shape
predicates [23]) to these environments, we can reason about the meaning of and
relationships between higher-order functions. As we adapt, we find that, in a
higher-order control-flow analysis, bindings are the proper analog of addresses.
More importantly, we will be able to solve the aforementioned problems beyond
the reach of traditional CFA.

1.4 Contributions

We define the generalized environment problem. We define higher-order rema-
terialization as a novel client of the generalized environment problem, and we
note that super-β inlining and globalization—both known to be beyond the reach
CFA—are also clients of the generalized environment problem. We find the philo-
sophical analog of shape analysis for higher-order programs; specifically, we find
that we can view binding environments as data structures, bindings as addresses
and value environments as heaps. Under this correspondence, we discover an-
odization, a means for achieving both singleton abstraction and focusing; and
we discover binding invariants as an analog of shape predicates. We use this
analysis to solve the generalized environment problem.

2 Platform: Small-Step Semantics, Concrete and
Abstract

For our investigation into higher-order shape analysis, our platform is a small-
step framework for the multi-argument continuation-passing-style λ-calculus:

f, e ∈ Exp = Var + Lam v ∈ Var ::= id �

� ∈ Lab is a set of labels lam ∈ Lam ::= (λ� (v1 . . . vn) call)

call ∈ Call ::= (f e1 . . . en)
�.

2.1 State-Spaces

The concrete state-space (Σ in Figure 1) for the small-step machine has four
components: (1) a call site call , (2) a binding environment β to determine the
bindings of free variables, (3) a value environment ve to determine the value of
bindings, and (4) a time-stamp t to encode the current context/history.

Shape Analysis in the Absence of Pointers and Structure 267

The abstract state-space (Σ̂ in Figure 1) parallels the structure of the con-
crete state-spaces. For these domains, we assume the natural partial orders; for
example, v̂e � v̂e ′ = λb̂.v̂e(b̂) ∪ v̂e ′(b̂).

Binding environments (BEnv), as a component of both machine states and
closures, are the environments to which the environment problem refers. In our
semantics, binding environments map variables to bindings. A binding b is a
commemorative token minted for each instance of a variable receiving a value;
for example, in k-CFA, a binding is a variable name paired with the time-stamp
at which it was bound. The value environment ve tracks the denotable values
(D) associated with every binding. A denotable value d is a closure.

In CFAs, bindings—the atomic components of environments—play the role
that addresses do in pointer analysis. Our ultimate goal is to infer relationships
between the concrete values behind abstract bindings. For example, we want to
be able to show that bindings to the variable v at some set of times are equal,
under the value environment, to the bindings to the variable x at some other set
of times. (In the pure λ-calculus, the only obvious relationships between bindings
are equality and inequality.)

In CFA theory, time-stamps also go by the less-intuitive name of contours.
Both the concrete and the abstract state-spaces leave the exact structure of
time-stamps and bindings undefined. The choices for bindings determine the
polyvariance of the analysis. Time-stamps encode the history of execution in
some fashion, so that under abstraction, their structure determines the context
in context-sensitivity.

The concrete and abstract state-spaces are linked by a parameterized second-
order abstraction map, αη : Σ → Σ̂, where the parameter η : (Addr → Âddr) ∪
(Time → T̂ime) abstracts both bindings and times:

αη(call , β, ve, t) = (αη(V), αη(β), αη(ve), η(t))
αη

BEnv (β) = λv.η(β(v))

αη
VEnv (ve) = λb̂.

⊔
η(b)=b̂

αη(ve(b))

αη
D (d) = {αη

Val (d)}
αη

Val (lam , β) = (lam , αη(β)).

2.2 Transition Rules

With state-spaces defined, we can specify the concrete transition relation for
CPS, (⇒) ⊆ Σ × Σ; then we can define its corresponding abstraction under
the map αη, (�) ⊆ Σ̂ × Σ̂. With the help of an argument-expression evaluator,
E : Exp× BEnv ×VEnv ⇀ D:

E (v, β, ve) = ve(β(v))
E (lam , β, ve) = (lam , β),

268 M. Might

ς ∈ Σ = Call × BEnv × VEnv × Time

β ∈ BEnv = Var ⇀ Bind

ve ∈ VEnv = Bind ⇀ D

d ∈ D = Val

val ∈ Val = Clo

clo ∈ Clo = Lam × BEnv

b ∈ Bind is an infinite set of bindings

t ∈ Time is an infinite set of times

ς̂ ∈ Σ̂ = Call × B̂Env × V̂Env × T̂ime

β̂ ∈ B̂Env = Var ⇀ B̂ind

v̂e ∈ V̂Env = B̂ind → D̂

d̂ ∈ D̂ = P(V̂al)

v̂al ∈ V̂al = Ĉlo

ĉlo ∈ Ĉlo = Lam × B̂Env

b̂ ∈ B̂ind is a finite set of bindings

t̂ ∈ T̂ime is a finite set of times

Fig. 1. State-space for the lambda calculus: Concrete (left) and abstract (right)

we can define the single concrete transition rule for CPS:

([[(f e1 . . . en)
�]], β, ve, t)⇒ (call , β′′, ve ′, t′), where:

di = E(ei, β, ve)

d0 = ([[(λ�′ (v1 . . . vn) call)]], β′)
t′ = tick(call , t)
bi = alloc(vi, t

′)
β′′ = β′[vi 	→ bi]
ve ′ = ve[bi 	→ di].

With the help of an abstract evaluator, Ê : Exp× B̂Env × V̂Env → D̂:

Ê (v, β̂, v̂e) = v̂e(β̂(v))

Ê (lam , β̂, v̂e) =
{
(lam , β̂)

}
,

we can define an analogous transition rule for the abstract semantics:

([[(f e1 . . . en)
�]], β̂, v̂e, t̂) � (call , β̂′′, v̂e ′, t̂′), where:

d̂i = Ê(ei, β̂, v̂e)

d̂0
 ([[(λ�′ (v1 . . . vn) call)]], β̂′)

t̂′ = t̂ick(call , t̂)

b̂i = âlloc(vi, t̂
′)

β̂′′ = β̂′[vi 	→ b̂i]

v̂e ′ = v̂e � [b̂i 	→ d̂i].

Shape Analysis in the Absence of Pointers and Structure 269

2.3 Concrete and Abstract Interpretation

To evaluate a program call in the concrete semantics, its meaning is the set of
states reachable from the initial state ς0 = (call , [], [], t0):

{ς : ς0 ⇒∗ ς} .
A näıve abstract interpreter could behave similarly, exploring the states reach-
able from the initial state ς̂ = (call , [],⊥, t̂0):

{ς̂ : ς̂0 �∗ ς̂} .
In practice, widening on value environments [5] accelerates convergence [16,27].

2.4 Parameters for the Analysis Framework

Time-stamp incrementers and binding allocators serve as parameters:

alloc : Var× Time → Bind âlloc : Var× T̂ime → B̂ind

tick : Call× Time → Time t̂ick : Call× T̂ime → T̂ime.

Time-stamps are designed to encode context/history. Thus, the abstract time-
stamp incrementer t̂ick and the abstraction map αη decide how much history to
retain in the abstraction. As a result, the function t̂ick determines the context-
sensitivity of the analysis. Similarly, the abstract binding allocator chooses how
to allocate abstract bindings to variables, and in doing so, it fixes the polyvari-
ance of the analysis. Once the parameters are fixed, the semantics must obey a
straightforward soundness theorem:

Theorem 1. If αη(ς) � ς̂ and ς ⇒ ς ′, then there exists a state ς̂ ′ such that
ς̂ � ς̂ ′ and αη(ς ′) � ς̂ ′.

3 Analogy: Singleton Abstraction to Binding Anodization

Focusing on our goal of solving the generalized environment problem—reasoning
about the equality of individual bindings—we turn to singleton abstraction [4].
Singleton abstraction has been used in pointer and shape analyses to drive must-
alias analysis; we extend singleton abstraction, and the framework of anodiza-
tion, to determine the equivalence of bindings to the same variable. That is, we
will be able to solve the environment problem with our singleton abstraction,
but not the generalized environment problem. In Section 4, we will solve the
generalized problem by bootstrapping binding invariants on top of anodization.

A Galois connection [6] X −−−→←−−−α

γ
X̂ has a singleton abstraction iff there exists a

subset X̂1 ⊆ X̂ such that for all x̂ ∈ X̂1, size(γ(x̂)) = 1. The critical property of
singleton abstractions is that equality of abstract representatives implies equal-
ity of their concrete constituents. Hence, when the set X contains addresses,
singleton abstractions enable must-alias analysis. Analogously, when the set X
contains bindings, singleton abstraction enables binding-equality testing.

270 M. Might

Example 1. Suppose we have a concrete machine with three memory addresses:
0x01, 0x02 and 0x03. Suppose the addresses abstract so that α(0x01) = â1 and
α(0x02) = α(0x03) = â∗. The address â1 is a singleton abstraction, because
it has only one concrete constituent—0x01. After a pointer analysis, if some
pointer variable p1 points only to address â′ and another pointer variable p2
points only to address â′′ and â′ = â1 = â′′ then p1 must alias p2.

In order to solve the super-β inlining problem, Shivers informally proposed a sin-
gleton abstraction for k-CFA which he termed “re-flow analysis” [27]. In re-flow
analysis, the CFA is re-run, but with a “golden” contour inserted at a point of
interest. The golden contour—allocated only once—is a singleton abstraction by
definition. While sound in theory, re-flow analysis does not work in practice: the
golden contour flows everywhere the non-golden contours flow, and inevitably,
golden and non-golden contours are compared for equality. Nevertheless, we can
salvage the spirit of Shivers’s golden contours through anodization. Under an-
odization, bindings are not golden, but may be temporarily gold-plated.

In anodization, the concrete and abstract bindings are split into two halves:

Bind = Bind∞ + Bind1 B̂ind = B̂ind∞ + B̂ind1,

and we assert “anodizing” bijections between these halves:

g : Bind∞ → Bind1 ĝ : B̂ind∞ → B̂ind1,

such that:
η(b) = b̂ iff η(g(b)) = ĝ(b̂).

Every abstract binding has two variants, a summary variant, b̂, and an anodized
variant, ĝ(b̂). We will craft the concrete and abstract semantics so that the an-
odized variant will be a singleton abstraction. We must anodize concrete bind-
ings as well because the concrete semantics have to employ the same anodization
strategy as the abstract semantics in order to prove soundness.

The concrete semantics must also obey an abstraction-uniqueness constraint
over anodized bindings, so that for any reachable state (call , β, ve, t):

If g(b) ∈ dom(ve) and g(b′) ∈ dom(ve) and η(b) = η(b′) then b = b′. (1)

In other words, once the concrete semantics decides to allocate an anodized bind-
ing, it must de-anodize existing concrete bindings which abstract to the same
abstract binding. Anodization by itself does not dictate when a concrete seman-
tics should allocate an anodized binding; this is a policy decision; anodization is
a mechanism. For simple policies, the parameters alloc and âlloc, by selecting
anodized or summary bindings, jointly encode the policy.

As an example of the simplest anodization policy, we describe the higher-
order analog of Balakrishnan and Reps’s recency abstraction in Section 3.3. An
example of a more complicated policy is closure-focusing (Section 3.4).

Shape Analysis in the Absence of Pointers and Structure 271

Formally, the concrete transition rule must rebuild the value environment with
every transition:

([[(f e1 . . . en)
�]], β, ve, t)⇒ (call , β′′, ve ′, t′), where:

di = E(ei, β, ve)

d0 = ([[(λ�′ (v1 . . . vn) call)]], β′)
t′ = tick(call , t)
bi = alloc(vi, t

′)
B = {bi : bi ∈ Bind1}
β′′ = (g−1

B β′)[vi 	→ bi]

ve ′ = (g−1
B ve)[bi 	→ (g−1

B di)],

where the de-anodization function g−1
B : (BEnv → BEnv) ∪ (VEnv → VEnv) ∪

(D → D) ∪ (Bind → Bind) strips the anodization off bindings that abstract to
any binding in the set B:

g−1
B (b) = b

g−1
B (g(b)) =

{
b η(b) = η(b′) for some g(b′) ∈ B

g(b) otherwise

g−1
B (lam , β) = (lam , g−1

B (β))

g−1
B (β) = λv.g−1

B (β(v))

g−1
B (ve) = λb.g−1

B (ve(b)).

The corresponding abstract transition rule must also rebuild the value environ-
ment with every transition:

([[(f e1 . . . en)
�]], β̂, v̂e, t̂) � (call , β̂′′, v̂e ′, t̂′), where:

d̂i = Ê(ei, β̂, v̂e)

d̂0
 ([[(λ�′ (v1 . . . vn) call)]], β̂′)

t̂′ = t̂ick(call , t̂)

b̂i = âlloc(vi, t̂
′)

B̂ =
{
b̂i : b̂i ∈ Bind1

}
β̂′′ = (ĝ−1

B̂
β̂′)[vi 	→ b̂i]

v̂e ′ = (ĝ−1

B̂
v̂e) � [b̂i 	→ (ĝ−1

B̂
d̂i)],

where the de-anodization function ĝ−1

B̂
: (B̂Env → B̂Env) ∪ (V̂Env → V̂Env) ∪

(D̂ → D̂) ∪ (V̂al → V̂al) ∪ (B̂ind → B̂ind) strips the anodization off abstract
bindings in the set B̂:

272 M. Might

ĝ−1

B̂
(b̂) =

{
b̂′ b̂ ∈ B̂ and b̂ = ĝ(b̂′)
b̂ otherwise

ĝ−1

B̂

{
d̂1, . . . , d̂n

}
=

{
ĝ−1

B̂
(d̂1), . . . , ĝ−1

B̂
(d̂n)

}
ĝ−1

B̂
(lam , β̂) = (lam , ĝ−1

B̂
(β̂))

ĝ−1

B̂
(β̂) = λv.ĝ−1

B̂
(β̂(v))

ĝ−1

B̂
(v̂e) = λb̂.ĝ−1

B̂
(v̂e(b̂)).

Because the concrete semantics obey the uniqueness constraint (Equation 1), the
abstract interpretation may treat the set B̂ind1 as a set of singleton abstractions
for the purpose of testing binding equality.

3.1 Solving the Environment Problem with Anodization

Given two abstract environments β̂1 and β̂2, it is easy to determine whether the
concrete constituents of these environments agree on the value of some subset
of their domains, {v1, . . . , vn}:

Theorem 2. If αη(β1) = β̂1 and αη(β2) = β̂2, and β̂1(v) = β̂2(v) and β̂1(v) ∈
B̂ind1, then β1(v) = β2(v).

Proof. By the abstraction-uniqueness constraint.

3.2 Implementing Anodization Efficiently

The näıve implementation of the abstract transition rule is inefficient: the de-
anodizing function ĝ−1

B̂
must walk the abstract value environment with every

transition. Even in 0CFA, this walk adds a quadratic penalty to every transition.
To avoid this walk, the analysis should use serial numbers on bindings “under
the hood,” so that:

B̂ind ≈ B̂ind∞ × N.

That is, the value environment should be implemented as two maps:

V̂Env ≈ (B̂ind∞ → N→ D̂)× (B̂ind∞ → N).

Given a split value environment v̂e = (f̂ , ĥ), a binding (b̂, n) is anodized only if
n = ĥ(b̂), and it is not anodized if n < ĥ(b̂). Thus, when the allocator chooses to
anodize a binding, it does need to walk the value environment with the function
ĝ−1

B̂
to strip away existing anodization; it merely needs to increment the serial

number associated with that binding.

Shape Analysis in the Absence of Pointers and Structure 273

3.3 Instantiating Anodization: Recency Abstraction

In recency abstraction [2], the most-recently allocated abstract variant of a
resource is tracked distinctly from previously allocated variants. Anodization
makes it straightforward to model recency in a higher-order setting. In a language
with mutation, recency abstraction solves the initialization problem, whereby
addresses are allocated with a default value, but then set to another shortly
thereafter. Recency abstraction prevents the default value from appearing as a
possibility for every address, which is directly useful in eliminating null-pointer
checks. In a higher-order setting, recency permits precise computation of bind-
ing equivalence for variables that are bound in non-recursive and tail-recursive
procedures or that die before the recursive call.

3.4 Instantiating Anodization: Closure-Focusing

Anodization enables another shape-analytic technique known as focusing [15,23].
In focusing, a specific, previously-allocated variant is split into the singleton
variant under focus—and all other variants. In a higher-order language, there
is a natural opportunity to focus on all of the bindings of a closure when it is
created. Focusing provides a way to solve the environment problem for closures
which capture variables which have been re-bound since closure-creation.

4 Analogy: Binding Invariants as Shape Predicates

Anodization can solve the environment problem, but it cannot solve the gen-
eralized environment problem, where we need to be able to reason about the
equality of bindings to different variables in different environments. To solve
this problem, we cast shape predicates as binding invariants. A binding invari-
ant is an equivalence relation over abstract bindings, and it can be considered
as a separate, relational abstraction of program state, αη

≡ : Σ → Σ̂≡, where:

Σ̂≡ = P
(
B̂ind × B̂ind

)
,

such that:

αη
≡(call , β, ve, t) =

{
(b̂, b̂′) : ve(b) = ve(b′) if η(b) = b̂ and η(b′) = b̂′

}
.

In contrast with earlier work, binding-invariant abstraction is a relational ab-
stract domain over abstract bindings rather than program variables [7,8].

Informally, if (b̂, b̂′) ∈ αη
≡(ς), it means that all of the concrete constituents of

the bindings b̂ and b̂′ agree in value. To create the analysis, we can formulate a
new abstraction as the direct product of the abstractions αη and αη

≡:

α̇η : Σ → Σ̂ × Σ̂≡
α̇η(ς) = (αη(ς), αη

≡(ς)).

274 M. Might

The constraints of a straightforward soundness theorem (Theorem 1) lead to an
abstract transition relation over this space:

(([[(f e1 . . . en)
�]], β̂, v̂e, t̂),≡) � ((call , β̂′′, v̂e ′, t̂′),≡′), where:

d̂i = Ê(ei, β̂, v̂e)

d̂0
 ([[(λ�′ (v1 . . . vn) call)]], β̂′)

t̂′ = t̂ick(call , t̂)

b̂i = âlloc(vi, t̂
′)

B̂ =
{

b̂i : b̂i ∈ B̂ind1

}
β̂′′ = (ĝ−1

B̂
β̂′)[vi 	→ b̂i]

v̂e ′ = (ĝ−1

B̂
v̂e) � [b̂i 	→ (ĝ−1

B̂
d̂i)],

and singleton bindings are reflexively equivalent:

b̂ ∈ B̂ind1

b̂ ≡′ b̂,

and bindings between singletons are trivially equivalent:

β̂(ei) ∈ B̂ind1 b̂i ∈ B̂ind1

β̂(ei) ≡′ b̂i,

and untouched bindings retain their equivalence:

b̂ ≡ b̂′ b̂ �∈ B̂ b̂′ �∈ B̂

b̂ ≡′ b̂′,

and bindings re-bound to themselves also retain their equivalence:

β̂(ei) ≡ b̂i

β̂(ei) ≡′ b̂i.

4.1 Solving the Generalized Environment Problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , β̂, v̂e, t̂),≡) and two ab-
stract bindings, b̂ and b̂′, if α̇η(call , β, ve, t) � ((call , β̂, v̂e, t̂),≡) and η(b) = b̂

and η(b′) = b̂′ and b̂ ≡ b̂′, then ve(b) = ve(b′).

Proof. By the structure of the direct product abstraction α̇η.

Shape Analysis in the Absence of Pointers and Structure 275

5 Application: Higher-Order Rematerialization

Now that we have a generalized environment analysis, we can precisely state
the condition under which higher-order rematerialization is safe. Might’s work
on the correctness of super-β inlining formally defined safe to mean that the
transformed program and the untransformed program maintain a bisimulation
in their concrete executions [16].

Theorem 4. It is safe to rematerialize the expression e′ in place of the expres-
sion e in the call site call iff for every reachable compound abstract state of
the form ((call , β̂′′, v̂e, t̂),≡), it is the case that Ê(e′, β̂′′, v̂e) = (lam ′, β̂′) and
Ê(e, β̂′′, v̂e) = (lam , β̂) and the relation σ ⊆ Var×Var is a substitution that uni-
fies the free variables of lam ′ with lam and for each (v′, v) ∈ σ, β̂′(v′) ≡ β̂(v).

Proof. The proof of bisimulation has a structure identical to that of the proof
correctness for super-β inlining in [16].

6 Related Work

Clearly, this work draws on the Cousots’ abstract interpretation [5,6]. Binding
invariants succeed the Cousots’ work as a relational abstraction of higher-order
programs [7,8], with the distinction that binding invariants range over abstract
bindings instead of formal parameters. Binding invariants were also inspired by
Gulwani et al.’s quantified abstract domains [9]; there is an implicit universal
quantification ranging over concrete constituents in the definition of the abstrac-
tion map αη

≡. This work also falls within and retains the advantages of Schmidt’s
small-step abstract interpretive framework [24]. As a generalization of control-
flow analysis, the platform of Section 2 is a small-step reformulation of Shivers’s
denotational CFA [27], which itself was a extension of Jones’s original CFA [13].
Like the Nielsons’ unifying work on CFA [22], this work is an implicit argument
in favor of the inherent flexibility of abstract interpretation for the static analy-
sis of higher-order programs. In contrast with constraint-based, type-based and
model-checking CFAs, small-step abstract interpretive CFAs are easy to extend
via direct products and parameterization.

From shape analysis, anodized bindings draw on singleton abstraction while
binding invariants are inspired by both predicate-based abstractions [3] and
three-valued logic analysis [23]. Chase et. al had early work on counting-based
singleton abstractions [4], while Hudak’s work on analysis of first-order functional
programs employed a precursor to counting-based singleton abstraction [10]. An-
odization, using factored sets of singleton and non-singleton bindings, is most
closely related to the Balakrishnan and Reps’s recency abstraction [2], except
that anodization works on bindings instead of addresses, and anodization is not
restricted to a most-recent allocation policy. Superficially, one might also term
Jones and Bohr’s work on termination analysis of the untyped λ-calculus via
size-change as another kind of shape analysis for higher-order programs [14].

276 M. Might

Given the importance of inlining and globalization, the functional community
has responded with ad hoc extensions to control-flow analyses to support these
optimizations. Shivers’s re-flow analysis developed the concept of singleton ab-
straction independently to determine equivalence over environments [27]. Wand
and Steckler approached the environment problem by layering a constraint-
based environment-equivalence analysis on top of 0CFA [28]. Jagannathan et al.
developed a counting-based constraint analysis to drive lightweight closure con-
version [11]. More recently, Might and Shivers attacked the problem with stack-
driven environment-analysis (ΔCFA), but this analysis also proved too brittle for
many programs [18]. Might and Shivers’ reachability- and counting-driven envi-
ronment analysis (ΓCFA) provides a scalable analysis which can reason about
environment equivalence [19,21]. All of these extensions are capable of solving
the environment problem in limited cases; none of them can solve the generalized
environment problem, and none take the principled, flexible approach provided
by anodization and binding invariants.

7 Conclusion

We motivated the need to reason about the equivalence of environments in
higher-order programs by finding optimizations beyond the reach of ordinary
control-flow analysis: super-β inlining, globalization and higher-order remateri-
alization. We distilled the core problem which must be solved in order to enable
these optimizations—the generalized environment problem. The generalized en-
vironment problem asks whether two variables bound in different environments
are equivalent, e.g., “Is [[x]] in bound in ρ equivalent to [[y]] bound in ρ′?” We then
created an analysis framework for solving the generalized environment problem
by considering the analog of shape analysis in terms of control-flow analysis. We
rendered the principle of singleton abstraction as anodization, and we rendered
the principle of shape predicates as binding invariants. By composing anodiza-
tion and binding invariants, we arrived at an extended higher-order flow-analysis
framework that can solve the generalized environment problem.

8 Future Work

Next steps for this work include folding more language features into the frame-
work, considering the impact of these features on both anodization and binding
invariants and integrating Gulwani’s techniques for bounding of numeric vari-
ables [9]. For instance, once numbers are introduced, we could enrich binding
invariants to reason about both equality and inequality among the concrete con-
stituents of abstract bindings. We also expect that when we introduce dynamic
allocation, that anodization and binding invariants will naturally morph back
into the must-alias analysis and shape predicates from whence they came. This
technology is also being introduced into the U Combinator higher-order flow
analysis toolkit; the latest beta version of this toolkit is always available from
http://www.ucombinator.org/.

Shape Analysis in the Absence of Pointers and Structure 277

References

1. Agesen, O.: The cartesian product algorithm: Simple and precise type inference of
parametric polymorphism. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp.
2–26. Springer, Heidelberg (1995)

2. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of c programs. In: PLDI 2001: Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, pp. 203–213.
ACM Press, New York (2001)

4. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:
PLDI 1990: Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, pp. 296–310. ACM Press, New York (1990)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
pp. 238–252. ACM Press, New York (1977)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, pp. 269–282. ACM Press, New York (1979)

7. Cousot, P., Cousot, R.: Relational abstract interpretation of higher-order functional
programs. In: JTASPEFL 1991, Bordeaux. BIGRE 74, pp. 33–36 (1991)

8. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and per anal-
ysis of functional languages). In: Proceedings of the 1994 International Conference
on Computer Languages, pp. 95–112. IEEE Computer Society Press, Los Alamitos
(1994)

9. Gulwani, S., Mccloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL 2008: Proceedings of the 35th annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 235–246. ACM,
New York (2008)

10. Hudak, P.: A semantic model of reference counting and its abstraction. In: LFP
1986: Proceedings of the 1986 ACM Conference on LISP and Functional Program-
ming, pp. 351–363. ACM, New York (1986)

11. Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.: Single and loving it: must-
alias analysis for higher-order languages. In: POPL 1998: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 329–341. ACM, New York (1998)

12. Jagannathan, S., Weeks, S.: A unified treatment of flow analysis in higher-order
languages. In: POPL 1995: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 393–407. ACM, New
York (1995)

13. Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Pro-
ceedings of the 8th Colloquium on Automata, Languages and Programming, Lon-
don, UK, pp. 114–128. Springer, Heidelberg (1981)

14. Jones, N.D., Bohr, N.: Call-by-value termination in the untyped lambda-calculus.
Logical Methods in Computer Science 4(1), 1–39 (2008)

15. Kidd, N., Reps, T., Dolby, J., Vaziri, M.: Finding concurrency-related bugs using
random isolation. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 198–213. Springer, Heidelberg (2009)

278 M. Might

16. Might, M.: Environment Analysis of Higher-Order Languages. PhD thesis, Georgia
Institute of Technology (June 2007)

17. Might, M.: Logic-flow analysis of higher-order programs. In: POPL 2007: Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 185–198. ACM Press, New York (2007)

18. Might, M., Shivers, O.: Environment analysis via delta-cfa. In: POPL 2006: Con-
ference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 127–140. ACM, New York (2006)

19. Might, M., Shivers, O.: Improving flow analyses via gamma-cfa: Abstract garbage
collection and counting. In: ICFP 2006: Proceedings of the Eleventh ACM SIG-
PLAN International Conference on Functional Programming, pp. 13–25. ACM,
New York (2006)

20. Might, M., Shivers, O.: Analyzing the environment structure of higher-order lan-
guages using frame strings. Theoretical Computer Science 375(1-3), 137–168 (2007)

21. Might, M., Shivers, O.: Exploiting reachability and cardinality in higher-order flow
analysis. Journal of Functional Programming 18(special double issue 5-6), 821–864
(2008)

22. Nielson, F., Nielson, H.R.: Infinitary control flow analysis: a collecting semantics for
closure analysis. In: POPL 1997: Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 332–345. ACM, New
York (1997)

23. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

24. Schmidt, D.A.: Abstract interpretation of small-step semantics. In: Dam, M. (ed.)
LOMAPS-WS 1996. LNCS, vol. 1192, pp. 76–99. Springer, Heidelberg (1997)

25. Sestoft, P.: Analysis and efficient implementation of functional programs. PhD
thesis, University of Copenhagen, Denmark (October 1991)

26. Shivers, O.: Control flow analysis in Scheme. In: Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation, vol. 23,
pp. 164–174. ACM, New York (1988)

27. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University (1991)

28. Wand, M., Steckler, P.: Selective and lightweight closure conversion. In: POPL
1994: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 435–445. ACM, New York (1994)

29. Wright, A.K., Jagannathan, S.: Polymorphic splitting: An effective polyvariant
flow analysis. ACM Transactions on Programming Languages and Systems 20(1),
166–207 (1998)

	Shape Analysis in the Absence of Pointers and Structure
	Introduction
	Limitations of Control-Flow Analysis
	The Generalized Environment Problem
	Insight: Environments as Data Structures; Bindings as Addresses
	Contributions

	Platform: Small-Step Semantics, Concrete and Abstract
	State-Spaces
	Transition Rules
	Concrete and Abstract Interpretation
	Parameters for the Analysis Framework

	Analogy: Singleton Abstraction to Binding Anodization
	Solving the Environment Problem with Anodization
	Implementing Anodization Efficiently
	Instantiating Anodization: Recency Abstraction
	Instantiating Anodization: Closure-Focusing

	Analogy: Binding Invariants as Shape Predicates
	Solving the Generalized Environment Problem

	Application: Higher-Order Rematerialization
	Related Work
	Conclusion
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

