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Is shape analysis of higher-order programs meaningful?




What is shape analysis of higher-order programs!?




It’s still shape analysis, but with different words.




address :: binding




structure :: binding environment




heap :: value environment




shape analysis :: environment analysis




Why bother?



Top-down reason: Need to move beyond CFAs.




Bottom-up reason




Bottom-up reason

Pointer analysis




Bottom-up reason

Pointer analysis




Bottom-up reason

Pointer analysis

Shape analysis




Bottom-up reason

Pointer analysis




What is “higher order?”




The essence of higher-order: Lambda calculus.




Syntax

Variables; function abstractions; applications.




Syntax

Variables; function abstractions; applications.
v (A (v) e) (e1 e2)




Semantics

Value = Value — Value




No integers.



No floats.



No arrays.



No structs.



No pointers.



No mutation.



Lambda-calculus lacks linked, mutable, dynamic structures.




Shape analysis studies linked, mutable, dynamic structures.




So, does shape analysis of the A-calculus mean anything?




Do functions have shape!










What determines the shape of these functions!?




Parameters.



-1.0 =035

flr) = az* + bz + c










f= Ar.A sin(wz + )




Free variables determine function shape.




What determines the value of free variables?




Environments.



Function = Closure = Lambda-term + Environment




Az A sin(wz + )




(Az. A sin(wx + @),|A=1,w=1,00="/5|)




COS



Environments are linked, mutable, dynamic data structures.




Shape analysis studies linked, mutable, dynamic structures.




Shape analysis of the A-calculus is environment analysis.




Shape analysis determines the meaning of functions.




Same tools apply

® Singleton abstraction
® Relational abstraction

® Heap/shape predicates




But first,

do environments matter?




Application: Inlining

(let ((f (lambda (x h)
(if x
(h)
(lambda () x)))))
(f #t (f #f nil)))




Application: Inlining

(let ((f (lambda (x h)
(if x
(h)
(lambda () x)))))
(f #t (f #f nil)))




Environment in closure must match environment at call.




Special environment problem

“Does enuvi(X) = enwa(X)?”




Application: Rematerialization

(f)

|

(lambda () z)

Compiler wants to inline, but Z is out of scope at the call!




Application: Rematerialization

((lambda () y))

|

(lambda () z)

Compiler wants to inline, but Z is out of scope at the call!




General environment problem

“Does envi(Z) = enw(y)?”




Approach: Build general solution atop special solution.




Starting point:

k-CFA for CPS




In CPS, all calls must be tail calls.




Functions never return, so no stack required.




Small-step state-space

¢ € State = Call x Env
p € Env = Var — Clo
clo € Clo = Lam x Env




Small-step state-space

¢ € State = Call x Env
— Var — (Clo

0 € Enu
><

clo € Clo = Lam x Env




Split environments

(Shivers, 1991)

o € Env = Var — Clo




Split environments

(Shivers, 1991)

o € Env =Var — Clo
o € Env =Var — Clo




Split environments

(Shivers, 1991)

8 € BEnv = Var — Bind
ve € VEnv = Bind — Clo




¢ € State = Call x BEnv x VEnv
8 € BEnv = Var — Bind
ve € VEnv = Bind — Clo

clo € Clo = Lam x BEnwv

b € Bind 1s some infinite set




¢ € State = PC x Struct x Heap
s € Struct = Var — Addr
h € Heap = Addr — Tagged

t € Tagged = Type X Struct

a € Addr i1s some infinite set




Solving the

special problem




Special problem

B/




Special problem




Special problem




Special problem




When does «a(b) = a(b’) imply b=10"?




When the abstract bindings are singleton abstractions.




A singleton abstraction has only one concrete constituent.




Next step: Engineer a singleton abstraction into semantics.




Anodized bindings

Bindings




Anodized bindings

Original Anodized




Anodized bindings

Original - Anodized




Anodization constraint

If g(b) and ¢(b’) are reachable and a(b) = a(b’), then b =",




Policy example: Recency
(Balakrishnan & Reps, 2006)

Anodize most-recently allocated binding.




Solving the

general problem




What implies ve(b) = ve(b')?




Fact 1: ve(b) = ve(b)




Fact 2: ve(b) = ve(b') and ve(b') = ve(b”) implies ve(b) = ve(b”).




When will we know that ve(b') = ve(b”)?




When b is bound to b’ during function call.




When (f x) calls (A (v) call), we know ve(5(x)) = ve(F'(v)).




Solution: Track binding invariants as separate abstraction.




Binding invariants

HEStateEQ%X%
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Relational

Mechanical




Relational
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More in paper

Specific problem To determine the satety of inlining the lambda term lam at the
call site [ (£ ...)], we need to know that for every environment p in which this

call is evaluated, that p[f] = (lam, p’) and p(v) = p’(v) for each free variable v
in the term lam.?




More in paper

a"(call,@ ’1)6,1‘]) = (o/’(V),a”(ﬁ),oﬂ(ve),n(t)) é\ c ZA’ — Ca” X B/.E'E} X m] X m
Specific problem To determine the safety of inlining the lambda term lam at the o (8) = M.n(B(v))
call site [(£ ...)], we need to know that for every environment p in which this BEnv

call is evaluated, that p[£f] = (lam, p’) and p(v) = p/(v) for each free variable v aVEnv ve) = \b. |_| a'(ve(
. 2 —~ —_— /‘\ A
in the term lam. n(b)=b ve € VEnv = Bind — D

BEB/EE}:VarA%

A A

n(b) = b iff n(g(b)) = g(b). op(d) = {a(d)} d e D =P(Val)

(8] la ,/3 — l() ,lln l} . — —_— —_
—_—

A . o . Theorem 4. It is safe to rematerialize the expression ¢’ in place of the expres- —~ = —
5(61) c Blndl bz - andl . : . ; clo € Clo = Lam x BEnv

sion e in the call site call iff for every reachable compound abstract state of
~ = the form ((call, 3", ve,t),=), it is the case that E(e/, 3", ve) = (lam’,') and he Bind is a finite set of bindings
6(62) =/ bi) E(e, ", ve) = (lam, 3) and the relation o C Var x Var is a substitution that umni-

fies the free variables of lam’ with lam and for each (v',v) € o, §'(v') = B(v). t € Time is a finite set of times

D', B, te, 1), =) ~ ((call, 3", 5e’, '), ="), where:

n(b) = n(¥') for some g(b') € B (([Cfer. E :
otherwise _ E(er. . 0)
95" (lam, B) = (lam, g5* (B)) Theorem 3. Given a compound abstract state ((call, 3, ve,t),=) and two ab- do > ([(A A (or o) eald], B)
95 (B) = Mv.gg' (B(v)) stract bindings, b and V', if a"(call, B, ve,t) T ((call, B, 0e,1),=) and n(b) = b  § — tick(call, §
95" (ve) = \b.g5" (ve(D)). and n(b') =b and b=V, then ve(b) = ve(V').

/\

Theorem 2. If (1) = B and a(fa) = By, and (v) = Bg(v) and B (v) €
Bindy, then B:(v) = fB2(v).

([¢f e1...e)"], B, te, &) ~ (call, 3", 0e, '), where: ([¢f er...en)’], B, ve,t) = (call, ", ve', '), where:

Th 1. If a"(<) T ¢ and ', then there exists a state <’ such that di = E(es, , ) di = E(ei, B, ve)
eorem [62aKS ¢ ana ¢ = ¢, en ere exrists a state ¢ Suc a R , N ’
¢no & and aM(¢') T & do 3 (Y (uy...vp) calDd], ) do = ([AA" (uy...vp) call], 3)

t" = tick(call, t)

. . — A /.\ — N bi = allOC(Ui,t/)
alloc : Var x Time — Bind alloc : Var x Time — Bind ‘ ' B = {b; : b; € Bindy}
—_ c D . "o (gf;lﬁl)[vi s bz]

tick : Call x Time — Time tick : Call x m — Time . o )
_ (a- , _ ve' = (g5 ve)[bi — (95 di)],




Shape analysis of higher-order programs exists.




Shape analysis is useful.




iGracias!
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| don’t know.



Yes.



No.



Widening!



Narrowing?



