Shape analysis of
higher-order programs:

A colorless green idea!

Matthew Might
University of Utah
matt.might.net
www.ucombinator.org

http://www.ucombinator.org
http://www.ucombinator.org

Is shape analysis of higher-order programs meaningful?

What is shape analysis of higher-order programs!?

It’s still shape analysis, but with different words.

address :: binding

structure :: binding environment

heap :: value environment

shape analysis :: environment analysis

Why bother?

Top-down reason: Need to move beyond CFAs.

Bottom-up reason

Bottom-up reason

Pointer analysis

Bottom-up reason

Pointer analysis

Bottom-up reason

Pointer analysis

Shape analysis

Bottom-up reason

Pointer analysis

What is “higher order?”

The essence of higher-order: Lambda calculus.

Syntax

Variables; function abstractions; applications.

Syntax

Variables; function abstractions; applications.
v (A (v) e) (e1 e2)

Semantics

Value = Value — Value

No integers.

No floats.

No arrays.

No structs.

No pointers.

No mutation.

Lambda-calculus lacks linked, mutable, dynamic structures.

Shape analysis studies linked, mutable, dynamic structures.

So, does shape analysis of the A-calculus mean anything?

Do functions have shape!

What determines the shape of these functions!?

Parameters.

-1.0 =035

flr) = az* + bz + c

f= Ar.A sin(wz +)

Free variables determine function shape.

What determines the value of free variables?

Environments.

Function = Closure = Lambda-term + Environment

Az A sin(wz +)

(Az. A sin(wx + @),|A=1,w=1,00="/5|)

COS

Environments are linked, mutable, dynamic data structures.

Shape analysis studies linked, mutable, dynamic structures.

Shape analysis of the A-calculus is environment analysis.

Shape analysis determines the meaning of functions.

Same tools apply

® Singleton abstraction
® Relational abstraction

® Heap/shape predicates

But first,

do environments matter?

Application: Inlining

(let ((f (lambda (x h)
(if x
(h)
(lambda () x)))))
(f #t (f #f nil)))

Application: Inlining

(let ((f (lambda (x h)
(if x
(h)
(lambda () x)))))
(f #t (f #f nil)))

Environment in closure must match environment at call.

Special environment problem

“Does enuvi(X) = enwa(X)?”

Application: Rematerialization

(f)

|

(lambda () z)

Compiler wants to inline, but Z is out of scope at the call!

Application: Rematerialization

((lambda () y))

|

(lambda () z)

Compiler wants to inline, but Z is out of scope at the call!

General environment problem

“Does envi(Z) = enw(y)?”

Approach: Build general solution atop special solution.

Starting point:

k-CFA for CPS

In CPS, all calls must be tail calls.

Functions never return, so no stack required.

Small-step state-space

¢ € State = Call x Env
p € Env = Var — Clo
clo € Clo = Lam x Env

Small-step state-space

¢ € State = Call x Env
— Var — (Clo

0 € Enu
><

clo € Clo = Lam x Env

Split environments

(Shivers, 1991)

o € Env = Var — Clo

Split environments

(Shivers, 1991)

o € Env =Var — Clo
o € Env =Var — Clo

Split environments

(Shivers, 1991)

8 € BEnv = Var — Bind
ve € VEnv = Bind — Clo

¢ € State = Call x BEnv x VEnv
8 € BEnv = Var — Bind
ve € VEnv = Bind — Clo

clo € Clo = Lam x BEnwv

b € Bind 1s some infinite set

¢ € State = PC x Struct x Heap
s € Struct = Var — Addr
h € Heap = Addr — Tagged

t € Tagged = Type X Struct

a € Addr i1s some infinite set

Solving the

special problem

Special problem

B/

Special problem

Special problem

Special problem

When does «a(b) = a(b’) imply b=10"?

When the abstract bindings are singleton abstractions.

A singleton abstraction has only one concrete constituent.

Next step: Engineer a singleton abstraction into semantics.

Anodized bindings

Bindings

Anodized bindings

Original Anodized

Anodized bindings

Original - Anodized

Anodization constraint

If g(b) and ¢(b’) are reachable and a(b) = a(b’), then b =",

Policy example: Recency
(Balakrishnan & Reps, 2006)

Anodize most-recently allocated binding.

Solving the

general problem

What implies ve(b) = ve(b')?

Fact 1: ve(b) = ve(b)

Fact 2: ve(b) = ve(b') and ve(b') = ve(b”) implies ve(b) = ve(b”).

When will we know that ve(b') = ve(b”)?

When b is bound to b’ during function call.

When (f x) calls (A (v) call), we know ve(5(x)) = ve(F'(v)).

Solution: Track binding invariants as separate abstraction.

Binding invariants

HEStateEQ%X%

74

Relational

Mechanical

Relational

“‘11—‘[ﬁl—[

Mechanical

Relational

[] 1]’

¢¢w X
S

0..

Mechanical

Relational

Yy 11 ﬂﬂ'ﬂﬂ”ﬁﬂ”’ﬁ

0, 2%, 2%, 2%, 2%

..“ § ﬁ gﬁg’ﬁg"ﬁ

Mechanical

Relational

[] 1]’

Mechanical

Related work

Cousot & Cousot, 1977, 1979, 1991, 1994.
Sagiv, Reps, & Wilhelm, 2002.

Ball et al., 2001.

Hudak et al., 1985.

Chase et al., 1990.

Shivers, 1988, 1991.

Jagannathan et al., 1998.

More in paper

Specific problem To determine the satety of inlining the lambda term lam at the
call site [(£ ...)], we need to know that for every environment p in which this

call is evaluated, that p[f] = (lam, p’) and p(v) = p’(v) for each free variable v
in the term lam.?

More in paper

a"(call,@ ’1)6,1‘]) = (o/’(V),a”(ﬁ),oﬂ(ve),n(t)) é\ c ZA’ — Ca” X B/.E'E} X m] X m
Specific problem To determine the safety of inlining the lambda term lam at the o (8) = M.n(B(v))
call site [(£ ...)], we need to know that for every environment p in which this BEnv

call is evaluated, that p[£f] = (lam, p’) and p(v) = p/(v) for each free variable v aVEnv ve) = \b. |_| a'(ve(
. 2 —~ —_— /‘\ A
in the term lam. n(b)=b ve € VEnv = Bind — D

BEB/EE}:VarA%

A A

n(b) = b iff n(g(b)) = g(b). op(d) = {a(d)} d e D =P(Val)

(8] la ,/3 — l() ,lln l} . — —_— —_
—_—

A . o . Theorem 4. It is safe to rematerialize the expression ¢’ in place of the expres- —~ = —
5(61) c Blndl bz - andl . : . ; clo € Clo = Lam x BEnv

sion e in the call site call iff for every reachable compound abstract state of
~ = the form ((call, 3", ve,t),=), it is the case that E(e/, 3", ve) = (lam’,') and he Bind is a finite set of bindings
6(62) =/ bi) E(e, ", ve) = (lam, 3) and the relation o C Var x Var is a substitution that umni-

fies the free variables of lam’ with lam and for each (v',v) € o, §'(v') = B(v). t € Time is a finite set of times

D', B, te, 1), =) ~ ((call, 3", 5e’, '), ="), where:

n(b) = n(¥') for some g(b') € B (([Cfer. E :
otherwise _ E(er. . 0)
95" (lam, B) = (lam, g5* (B)) Theorem 3. Given a compound abstract state ((call, 3, ve,t),=) and two ab- do > ([(A A (or o) eald], B)
95 (B) = Mv.gg' (B(v)) stract bindings, b and V', if a"(call, B, ve,t) T ((call, B, 0e,1),=) and n(b) = b § — tick(call, §
95" (ve) = \b.g5" (ve(D)). and n(b') =b and b=V, then ve(b) = ve(V').

/\

Theorem 2. If (1) = B and a(fa) = By, and (v) = Bg(v) and B (v) €
Bindy, then B:(v) = fB2(v).

([¢f e1...e)"], B, te, &) ~ (call, 3", 0e, '), where: ([¢f er...en)’], B, ve,t) = (call, ", ve', '), where:

Th 1. If a"(<) T ¢ and ', then there exists a state <’ such that di = E(es, ,) di = E(ei, B, ve)
eorem [62aKS ¢ ana ¢ = ¢, en ere exrists a state ¢ Suc a R , N ’
¢no & and aM(¢') T & do 3 (Y (uy...vp) calDd],) do = ([AA" (uy...vp) call], 3)

t" = tick(call, t)

. . — A /.\ — N bi = allOC(Ui,t/)
alloc : Var x Time — Bind alloc : Var x Time — Bind ‘ ' B = {b; : b; € Bindy}
—_ c D . "o (gf;lﬁl)[vi s bz]

tick : Call x Time — Time tick : Call x m — Time . o)
_ (a- , _ ve' = (g5 ve)[bi — (95 di)],

Shape analysis of higher-order programs exists.

Shape analysis is useful.

iGracias!

matt.might.net

| don’t know.

Yes.

No.

Widening!

Narrowing?

