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Abstract. In small-step abstract interpretations, the concrete and ab-
stract semantics bear an uncanny resemblance. In this work, we present
an analysis-design methodology that both explains and exploits that re-
semblance. Specifically, we present a two-step method to convert a small-
step concrete semantics into a family of sound, computable abstract inter-
pretations. The first step re-factors the concrete state-space to eliminate
recursive structure; this refactoring of the state-space simultaneously de-
termines a store-passing-style transformation on the underlying concrete
semantics. The second step uses inference rules to generate an abstract
state-space and a Galois connection simultaneously. The Galois connec-
tion allows the calculation of the “optimal” abstract interpretation. The
two-step process is unambiguous, but nondeterministic: at each step,
analysis designers face choices. Some of these choices ultimately influ-
ence properties such as flow-, field- and context-sensitivity. Thus, under
the method, we can give the emergence of these properties a graph-
theoretic characterization. To illustrate the method, we systematically
abstract the continuation-passing style lambda calculus to arrive at two
distinct families of analyses. The first is the well-known k-CFA family
of analyses. The second consists of novel “environment-centric” abstract
interpretations, none of which appear in the literature on static analysis
of higher-order programs.

1 Introduction: Can we get two for the price of one?

In small-step abstract interpretation [4, 5, 16], there is often a tight correspon-
dence between the concrete and abstract semantics. When one implements a
small-step interpreter and then a small-step static analyzer, the correspondence
is so obvious that there is a “nagging sense” of duplicated effort—large tracts
of code for the analyzer and the interpreter end up looking almost identical.
Suffering this déjà vu long enough leads one to ask:

Is there a principled method for constructing a sensible abstract inter-
pretation of a small-step concrete semantics automatically?

As we will demonstrate, the answer is yes: for any given small-step concrete se-
mantics, there exist “natural” abstract interpretations, and there is a procedure
an analysis designer can execute to construct these analyses.

By applying our method to the concrete semantics for continuation-passing
style, we end up discovering both known analyses (like k-CFA) and unknown



analyses (which take a fundamentally different approach to abstraction of envi-
ronments and closures). Choice points in the method also end up (quite unex-
pectedly) providing graph-theoretic explanations for the emergence of properties
such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal
dimension to the art of analysis design. One can teach a student what abstract
interpretation is, and what Galois connections are, but this knowledge doesn’t
make a student an analysis designer any more than rote knowledge of the syntax
of Java makes her a programmer. She is still left with the question of how to
design a static analysis. The method described in this work provides one answer
to that question: it constitutes a process students can follow to go from a concrete
semantics to an abstract interpreter.

1.1 An example to illustrate correspondence and redundancy

A brief example informally illustrates the degree to which the abstract semantics
resemble the concrete semantics. We point out this resemblance to encourage
the idea that the abstract semantics might be synthesized from the concrete
semantics. Consider the concrete rule for Move in a register machine:

([[var := var ′]] : stmt , env , heap)⇒ (stmt , env [var 7→ env(var ′)], heap).

The transition moves to the next statement, and updates the environment in
the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var ′]] : stmt , ênv , ĥeap) ; (stmt , ênv [var 7→ ênv(var ′)], ĥeap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-
ilar that presenting them both in a technical paper begs charges of redundancy.
Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule
for pointer assignment:

([[*var := var ′]] : stmt , env , heap)⇒ (stmt , env , heap[env(var) 7→ env(var ′)]),

and its abstract counterpart:

â ∈ ênv(var)

([[*var := var ′]] : stmt , ênv , ĥeap) ; (stmt , ênv , ĥeap t [â 7→ ênv(var ′)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there
is one subsequent state for each possible abstract address to which the machine
may write. The abstract rule also changed from functional extension to join for
updating the heap. Staring at the similarities, it feels like there should be a
principled method that can figure out where to introduce the nondeterminism
and where to swap functional extension for join.



1.2 The two-step method: Snipping and trickling

We will describe a process for converting a small-step concrete semantics into a
parameterized abstract semantics. At high level, the process has two steps:

1. The first step snips recursive structure out of concrete state-space. While
state-spaces with recursive structure can be abstracted, it’s much easier to
abstract state-spaces without recursive structure. To perform the “snip,” we
view the concrete state-space as a dependence graph. Snipping selectively
cuts cycle-forming edges in this graph. Each cut induces a corresponding
store-passing-style transformation [17] of the concrete semantics.

2. The second step trickles abstraction up the concrete state-space, starting
with the leaves of the DAG left over from the snipping operation. The de-
signer must choose a specific abstraction for these leaves. Then, to automate
remainder of the process, we recursively apply inference rules that form Ga-
lois connections [5]. A Galois connection inference rule has the form, “If the
structures X and Y form a Galois connection, the structure F (X,Y ) is also a
Galois connection,” for some functor F . Consequently, these inference rules
“trickle up” abstraction from the leaves of the concrete state-space. Once
the rules infer a top-level Galois connection between concrete and abstract
states, we can calculate the “optimal” abstract interpretation.1

The rationale for these two steps comes from an observation on the design
of abstract interpretations—finite abstract state-spaces are easier to work with,
because no widening is necessary in order to achieve termination. Yet, in order
for a small-step semantics to describe a Turing-complete system, the state-space
for the small-step semantics must have infinite size. Thus, the motivation for the
two-step process is to effect a systematic compaction from an infinite to a finite
state-space.

The first step (snipping) exposes the source of the unboundedness of the
concrete state-space; it then isolates this unboundedness to the leaf nodes in
a dependence graph over the state-space. The second step (trickling) starts by
abstracting these leaf nodes into finite sets. Because the snipped concrete state-
space lacks recursion, if the abstractions on these leaves are finite, the resulting
abstract state-space is also finite.

2 Continuation-passing-style λ-calculus

For the sake of grounding our discussion in specific examples, we’ll look at the
continuation-passing style λ-calculus (CPS). We will gradually transform the
1 The word optimal has to be qualified: optimal under what constraints? With Galois

connections [5], the calculated analysis is optimal with respect to the specific ab-
straction embodied by the Galois connection. Every Galois connection implies many
sound analyses, but only one of these is the most precise, and this analysis can be
calculated by composing the concretization function with the concrete semantics
and again with the abstraction function. That is, the optimal analysis appears to
concretize the input, run the exact semantics, and then abstract the output.



concrete semantics for CPS into several abstract interpreters. The grammar for
(pure) CPS is conveniently small:

f, e ∈ Exp ::= Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
v ∈ Var is a set of identifiers

call ∈ Call ::= (f e1 . . . en).

A textbook concrete (small-step) state-space (Σ) for pure CPS is also simple:

ς ∈ Σ = Call× Env
ρ ∈ Env = Var ⇀ Clo

clo ∈ Clo = Lam× Env .

And, the small-step transition relation, (⇒) ⊆ Σ ×Σ needs but one rule:

([[(f e1 . . . en)]], ρ)⇒ (call , ρ′′), where
(lam, ρ′) = E(f, ρ)

lam = [[(λ (v1 . . . vn) call)]]
ρ′′ = ρ′[vi 7→ E(ei, ρ)],

where the argument evaluator E : Exp × Env ⇀ Clo evaluates an expression in
the context of an environment:

E(v, ρ) = ρ(v)
E(lam, ρ) = (lam, ρ).

3 A näıve attempt: “Throw hats on everything”

At first glance, it appears that the only change between concrete and abstract
semantics is typographical: hats appear on all of the abstract domains (and
the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
passing style, to arrive at an abstract state-space Σ̂:

ς̂ ∈ Σ̂ = Call× Ênv

ρ̂ ∈ Ênv = Var→ P
(

Ĉlo
)

ĉlo ∈ Ĉlo = Lam× Ênv .

But, there is an obvious problem with this “abstract” state-space: it’s infinite, be-
cause closures contain environments, and environments contain closures. More-
over, a structural abstraction function defined on the concrete state-space isn’t



well-founded; there is always the possibility (in theory) that it will encounter an
infinite closure, such as clo∞:

clo∞ = (lam, [v 7→ {clo∞}]).

Abstract interpreters typically operate over finite state-spaces in order to guar-
antee termination. For infinite abstract state-spaces, widening can accelerate and
guarantee convergence, but a widening operator has to be defined on a case-by-
case basis. Constructing an appropriate widening operator is not a process that
can be fully mechanized; it requires creativity and intuition. And, in this case,
there is no obvious widening operator.

Instead of widening, we choose to eliminate recursion from the state-space
through an automatable process called “snipping the knots.” Once recursion is
eliminated from the concrete state-space, we can systematically transform it into
an abstract state-space, starting with its leaves and abstracting upward.

4 Step 1: Snipping the knots with store-passing style

Recursive structures pose problems with well-foundedness for mathematicians.
Because they are difficult to abstract “directly,” they also pose a problem for ab-
stract interpretation. Yet, in computer programming, recursive structures—even
infinitely recursive structures—are neither uncommon nor troublesome. Every
first-year computer science student knows how to build recursive data struc-
tures: pointers.

If we view a semantics as an interpreter, then we can exploit this freshman
insight to eliminate recursion from mathematical structures as well—we can in-
troduce a store and pointers into a small-step semantics. Specifically, we can use
an off-the-shelf store-passing style transformation of the concrete semantics [17],
and then thread recursive structure through the store.

To prepare for store-passing style, we represent the concrete definition of the
state-space as a graph with edges from uses to definitions of each set (Figure 1).
For example, in CPS, we add edges from the node Σ to the node Call and to the
node Env , because the definition of the set Σ2 refers to both Call and Env ; for
the same reason, we add edges from the node Clo to the node Lam and to the
node Env .3 Once in dependence-graph form, we must choose a set of edges to
“snip” in order to eliminate cycles from the graph.

To eliminate cycles in the concrete state-space for CPS (Figure 1), we can
snip this graph in either of two places: we can snip the edge from the node Clo
2 Σ = Call× Env .
3 The observant reader might wonder why we omit dependence edges between syntax

nodes, e.g., from Lam to Call and vice versa. In fact, we could add them. However,
we will only operate on programs of finite size, and on subterms of the original pro-
gram. As a result, syntax never contributes to the unboundedness of the concrete
state-space; hence, there is no reason to snip these edges. If we used a substitution-
/reduction-based concrete semantics, which could introduce new terms during exe-
cution, then we would have to add and snip these edges as well.
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Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)
and after snipping the Env → Clo edge (right). After the snip, there are no longer
cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18, 19]. Snipping the Clo → Env edge will end up giving us
a novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr ⇀ B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var ⇀ Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr ⇀ Clo
a ∈ Addr is an infinite set of addresses,



and a new transition rule:

([[(f e1 . . . en)]], ρ, σ)⇒ (call , ρ′′, σ′′), where
((lam, ρ′), σ′0) = E((f, ρ), σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an 6∈ dom(σ′0)

ρ′′ = ρ′[vi 7→ ai]
(cloi, σ′i) = E((ei, ρ), σ′i−1)

σ′′ = σ′n[ai 7→ cloi],

where the argument evaluator E : (Exp×Env)×Store ⇀ (Clo×Store) evaluates
an expression in the context of an environment and a store, to return a value
and a store:

E((v, ρ), σ) = (σ(ρ(v)), σ)
E((lam, ρ), σ) = ((lam, ρ), σ).

Cleaning up with useless-variable elimination Applying useless-variable
elimination [20] to the transformed semantics (again treating the semantics like
an interpreter) picks up on the fact that the argument evaluator never modifies
the store, which leads to a cleaner transition relation:

([[(f e1 . . . en)]], ρ, σ)⇒ (call , ρ′′, σ′), where
(lam, ρ′) = E(f, ρ, σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an 6∈ dom(σ)

ρ′′ = ρ′[vi 7→ ai]
cloi = E(ei, ρ, σ)
σ′ = σ[ai 7→ cloi],

where the argument evaluator E : Exp×Env ×Store ⇀ Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

E(v, ρ, σ) = σ(ρ(v))
E(lam, ρ, σ) = (lam, ρ).

4.3 Option 2: Snipping Clo → Env

The other option for eliminating recursion is to snip the Clo → Env edge. This
snip leads to a family of analyses with a character unlike any in the published
literature on higher-order flow analysis.



Snipping this edge and performing the store-passing transform leads to the
following state-space dependence diagram:
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and the state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var ⇀ Clo

clo ∈ Clo = Lam×Addr
σ ∈ Store = Addr ⇀ Env
a ∈ Addr is an infinite set of addresses,

and the following transition rule:

([[(f e1 . . . en)]], ρ, σ)⇒ (call , ρ′′, σ′), where
a 6∈ dom(σ)
σ′ = σ[a 7→ ρ]

(lam, a′) = E(f, a, σ′)
lam = [[(λ (v1 . . . vn) call)]]
cloi = E(ei, a, σ′)
ρ′′ = (σ(a′))[vi 7→ cloi],

where the argument evaluator E : Exp × Addr × Store ⇀ Clo evaluates an
expression in the context of an environment’s address and a store to return a
value:

E(v, a, σ) = σ(a)(v)
E(lam, a, σ) = (lam, a).

4.4 Optional snips

Of course, one can also snip non-cycle-forming edges. Under the next stage in
the method (trickle-up abstraction), these optional snips manifest themselves as
knobs that tune some well-known properties such as field-sensitivity (if one snips



the Env → Var edge) and flow-sensitivity (if one snips the Σ → Call edge). Yet
other snips (such as the Clo → Lam edge) create knobs for tuning the precision
and speed of the analysis which don’t appear anywhere in the literature.

Finally, we point out that one can snip as many or as few edges in the
dependence graph as desired, so long as the resulting dependence graph is acyclic.

5 Step 2: Trickling up abstraction

Once snips have eliminated recursive structure from the concrete state-space (Σ),
we need (1) an abstract state-space (Σ̂), and (2) a Galois connection between
the concrete state-space and the abstract state-space (P (Σ) −−−→←−−−α

γ
P(Σ̂)). Once

we have the Galois connection, a foundational result by the Cousots [5] enables
us to calculate an “optimal” small-step abstract transition relation: (;) = α ◦
(⇒) ◦ γ.

5.1 Abstracting the leaves of the state-space dependence graph

To generate the abstract state-space, we focus initially on the leaves of the
dependence graph for the concrete state-space. We require that the analysis
designer choose a finite set Â for each leaf node A; these finite sets will become
the leaves of the abstract state-space. For each concrete leaf set A, the analysis
designer must also specify an extraction function η : A→ Â that maps a concrete
element to an abstract element. Once the extraction function is fixed, we can
automate the synthesis of the abstract state-space with inference rules that build
structural Galois connections.

It is straightforward to convert an extraction function into a Galois con-
nection [13]. Specifically, given a surjective map η : A → Â, the structure
(P (A),⊆) −−−→←−−−α

γ
(P(Â),⊆), where:

α(S) = {η(a) : a ∈ S}

γ(Ŝ) =
{
a : â ∈ Ŝ and η(a) = â

}
,

forms a Galois connection.
In practice, snipping and store-passing style transforms will leave an infinite

leaf node in the form of the set of addresses. In this case, the extraction function
on addresses fixes the polyvariance and the context-sensitivity of the analysis [9].

5.2 Recursively constructing the abstract state-space

To synthesize the abstract state-space automatically, we will utilize inference
rules. These inference rules will build up structural Galois connections. In partic-
ular, these rules will take the Galois connections defined on leaves, and percolate
them up to a top-level Galois connection over sets of states.

Most of the inference rules have the form “if structures X1, X2, . . . , Xn are
Galois connections, then F (X1, X2, . . . , Xn) is also a Galois connection (for some
functor F ).”



Example 1. Given Galois connections (A,vA) −−−→←−−−α
γ

(Â,vÂ) and (B,vB) −−−→←−−−
α′

γ′

(B̂,vB̂), the product Galois connection is the structure (A × B,vA×B) −−−−→←−−−−
α′′

γ′′

(Â× B̂,vÂ×B̂), where:

α′′(a, b) = (α(a), α′(b))

γ′′(â, b̂) = (γ(a), γ′(b)).

For the sake of mechanizing the process, we phrase the definitions of structural
Galois connections as inference rules taking us from less-structured Galois con-
nection to a more-structured one; for example:

(A,vA) −−−→←−−−α
γ

(Â,vÂ) (B,vB) −−−→←−−−
α′

γ′

(B̂,vB̂)

(A×B,vA×B) −−−−→←−−−−
α′′

γ′′

(Â× B̂,vÂ×B̂).

5.3 Galois inference rules

In this work, we use the inference rules sketched in Figure 2 in addition to
the “standard” structural Galois connections found in Nielson et al. [13]. (For
brevity, we omit defining new concretization and abstraction maps in each rule.)

(P (A),v1) −−−−−→←−−−−−
λS.S

λS.S
(P(A),v1) (power identity)

(P (A),v1) −−−→←−−−α
γ

(P(Â),v2) (P (B),v′
1) −−−→←−−−

α′

γ′

(P(B̂),v′
2)

(P (A×B),v′′
1 ) −−−−→←−−−−

α′′

γ′′

(P(Â× B̂),v′′
2 )

(power product)

(P (Y ),v1) −−−→←−−−α
γ

(P(Ŷ ),v2)

(P (X → Y ),v′′
1 ) −−−→←−−−

α′

γ′

(P(X → Ŷ ),v′′
2 )

(image)

(P (X),v1) −−−→←−−−α
γ

(X̂,v2)

(P (X),v1) −−−→←−−−
α′

γ′

(P(X̂),v′
2)

(power lift)

(P (X),v1) −−−→←−−−α
γ

(P(X̂),v2) (P (Y ),v′
1) −−−→←−−−

α′

γ′

(P(Ŷ ),v′
2)

(P (X × Y ),v′′
1 ) −−−−→←−−−−

α′′

γ′′

(P(X̂ × Ŷ ),v′′
2 )

(function)

Fig. 2. Structural inference rules for generating an abstract-state space. Once a
designer specifies a Galois connection over the leaves of the concrete state-space,
these inference rules construct an abstract state-space and corresponding abstrac-
tion/concretization functions.



5.4 Synthesizing an abstract interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → Âddr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−α

γ
(P(Σ̂),vP(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

ĉlo ∈ Ĉlo = Lam× Ênv

σ̂ ∈ Ŝtore = Âddr ⇀ Ĉlo

â ∈ Âddr is a finite set of addresses.

The function α : P (Σ)→ P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ, σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
⊔

α(a)=â

α(σ(a))

α(lam, ρ) = {(lam, α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of
the “optimal” abstract transition relation, (;) ⊆ Σ̂ × Σ̂:

ς̂︷ ︸︸ ︷
([[(f e1 . . . en)]], ρ̂, σ̂) ;

ς̂′︷ ︸︸ ︷
(call , ρ̂′′, σ̂′) , where

(lam, ρ̂′) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = âlloc(vi, ς̂)
ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × Ŝtore ⇀ Ĉlo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

We also introduced the abstract address-allocation function âlloc : Var×Σ̂ →
Âddr . (The concrete semantics selected addresses nondeterministically from out-
side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.



Example 2. For example, a simple, monovariant address allocator chooses the
variable itself for the abstract address:

Âddr = Var

âlloc(v, ς̂) = v,

which leads to an abstract interpretive formulation of 0CFA.

5.5 Synthesizing an abstract interpretation for CPS (Option 2)

Recall that the other option for eliminating recursion is to snip the Clo → Env
edge. This snip leads to a family of analyses with a character unlike any in the
published literature on higher-order flow analysis.

Snipping this edge and synthesizing an abstraction leads to the following
abstract state-space:

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Ĉlo

ĉlo ∈ Ĉlo = Lam× Âddr

σ̂ ∈ Ŝtore = Âddr → P
(

Ênv
)

â ∈ Âddr is an finite set of addresses,

and the following transition rule:

ς̂︷ ︸︸ ︷
([[(f e1 . . . en)]], ρ̂, σ̂) ;

ς̂′︷ ︸︸ ︷
(call , ρ̂′′, σ̂′) , where

â = âlloc(ς̂)
σ̂′ = σ̂ t [â 7→ ρ̂]

(lam, â′) ∈ Ê(f, â, σ̂′)
lam = [[(λ (v1 . . . vn) call)]]

ĉloi = Ê(ei, â, σ̂′)

ρ̂′′ = (σ̂(â′))[vi 7→ ĉloi],

where the argument evaluator Ê : Exp × Âddr × Ŝtore → P(Ĉlo) evaluates an
expression in the context of an environment’s address and a store to return a
value:

Ê(v, â, σ̂) = {ρ̂(v) : ρ̂ ∈ σ̂(a)}
Ê(lam, â, σ̂) = {(lam, a)} .



6 Flow-sensitivity, field-sensitivity and context-sensitivity

We mentioned earlier that snipping different edges could lead to different knobs
for tuning the precision of the analysis. Properties such as flow-, field- and
context-sensitivity emerge as the result of extra snips in the original depen-
dence graph, and their degree can be tuned by the extraction function required
to form the Galois connection.

Flow-sensitivity Consider, for example, snipping the Σ → Call edge in the CPS
semantics. That is, instead of a state having the structure ς = (call , . . .), it
will have the structure ς ′ = (acall , . . . , σ), where call = σ(acall). Thus, call
sites become addressable values, and to abstract, one must define an extraction
function. This extraction function on addresses of call sites creates a concrete leaf
node that, under the second step, maps to “abstract call sites.” If all concrete
call sites abstract to the same abstract call site, i.e. η(acall) = â0 for all call site
addresses acall , then the optimal analysis becomes completely flow-insensitive.
If, on the other hand, the extraction function is the identity function, then
the optimal analysis is completely flow-sensitive. The nature of the abstraction
from concrete to abstract call sites precisely captures the flow-sensitivity of the
resulting analysis.

Field-sensitivity In higher-order languages, environments play the role of struc-
tures. Thus, for CPS, field-sensitivity manifests as the degree to which variables
in a given environment have the same abstract address. To create a Galois con-
nection that tunes this parameter, we need only snip the Env → Var edge in
the concrete dependence graph. Once again, a singleton extraction map leads to
field-insensitivity, and an identity extraction map leads to field-sensitivity.

Context-sensitivity and polyvariance The term polyvariance refers to the number
of abstractions (variants) for a given variable (or allocation site). Monovariant
analyses like 0CFA have only one abstract address for each variable. Typically,
context-sensitivity determines polyvariance by carving up the abstract variants
of a variable according the contexts in which it is bound. Thus, to tune poly-
variance, snip the Env → Clo edge in the concrete state-space graph, and adjust
the extraction function for the resulting Galois connection.

7 Related work

This work draws most directly on three lines of research: abstract interpreta-
tion [4], formal semantics [17] and Galois connections [5]. The programmatic
transformation of formal semantics dates to work by Reynolds [15]. More recent
work by Danvy et al. has shown that formal semantics are highly amenable to
program transformations and that it is possible to automatically convert deno-
tational semantics into operational semantics and vice versa [2, 3, 1, 6–8]. These
techniques, combined with ours, should permit the mechanizable construction of
static analyzers for a wider variety of formal semantics paradigms.



The Cousots’ foundational work on Galois connections marks the earliest
attempts to mechanize the process of constructing an abstract interpretation [5].
Given a Galois connection X −−−→←−−−α

γ
X̂, it is possible to calculate the optimal

abstract image of a concrete function f : X → X as f̂ = α ◦ f ◦ γ. Our
work advances the Cousots’ original work by automating the construction of
the Galois connection itself using inference rules. There have been additional
attempts to automate parts of the process of constructing an abstraction; most
recently, work by Qian et al. has focused on constructing minimal abstractions
that lead to completeness [14].

Our running example on the abstraction of continuation-passing style lambda
calculus is an instance of the long line of work on higher-order control-flow anal-
ysis [19]. The first family of analyses we derived corresponds to universal frame-
work for k-CFA-like analyses [12]. The second family of analyses we derived is
difficult to place in relation to existing analyses. To begin, it is the only analy-
sis which does not abstract the range of environments. This gives it the unique
feature that variable look-up in such an analysis yields exactly one abstract clo-
sure. It also opens up the prospect of using techniques such as abstract counting
directly on environment addresses in order to perform must-alias analysis [10,
11].

8 Summary and conclusion

We have presented a two-step method for converting a small-step concrete se-
mantics into an abstract interpretation. The first step eliminates recursive struc-
ture from the concrete state-space by snipping edges in the dependence graph
of the concrete state-space; the second step trickles abstraction up the leaves of
the newly re-factored concrete state-space. Inference rules over structural Galois
connections synthesize the abstract state-space, and a Galois connection between
concrete and abstract states at the same time. The synthesized Galois connec-
tion also determines the optimal abstract interpretation. By snipping additional
edges in the concrete dependence graph, these snips turn into knobs for tuning
flow-, field- and context-sensitivity under abstraction. The immediate payoff of
this method in our work was (1) a re-affirmation that k-CFA is, in some sense
a fundamental technique, and (2) a new family of analyses based on a novel
abstraction of environments.
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