
Interprocedural
Dependence Analysis of
Higher-Order Programs
via Stack-Reachability

Matthew Might, Tarun Prabhu
University of Utah
www.ucombinator.org

http://www.ucombinator.org
http://www.ucombinator.org

Goal

Determine when parallelization is safe.

Idea

• Dependencies block parallelization.

• Stack structure models dependencies.

• Static analysis can bound the stack.

Example

(let ((a (f x))
 (b (g y)))
 ...)

Is it safe to turn this...

Example

(let ((a (f x))
 (b (g y)))
 ...)

Is it safe to turn this...

(let|| ((a (f x))
 (b (g y)))
 ...)

...into this?

It depends...

It depends...
...on what depends.

Dependencies

f writes g reads

Not unsafe...

Dependencies

f writes g reads

Not safe!

Dependencies

f writes g writes

Not unsafe...

Dependencies

f writes g writes

Not safe!

Dependencies

f reads g reads

Not unsafe...

Dependencies

f reads g reads

Not unsafe...

The Game

The Game

• What resources does a procedure write?

The Game

• What resources does a procedure write?

• What resources does a procedure read?

The Game

• What resources does a procedure write?

• What resources does a procedure read?

• ...when invoked while in context k?

Example: Context matters

(define (write-a) (set! a 1701))
(define (write-b) (set! b 42)

(define (call f) (f))

(call write-a) ; call writes a
(call write-b) ; call writes b

Example: Context matters

(define (loop g t)
 (set! t 10) ; writes t
 (g) ; writes prior t
 (loop (lambda () (set! t 11))
 (+ t 1)))

Context-sensitive
dependence graphs

Context-sensitive
dependence graphs

v bound in k

f called in k’

Resources

Calls

Observation

• If f calls g, and

• g depends on x

• then f depends on x.

Harrison’s principle

• When x is read/written,

• if f is live on the stack

• then f depends on x.

What about
proper tail calls!?

Continuation marks
(Clements, Felleisen)

Just mark continuations with calling context.

Building the analysis

• Construct CESK machine for ANF, but

• Heap-allocate the continuations, and then

• Abstract directly into k-CFA for ANF

Running the analysis

Running the analysis

e ς̂

ς̂

ς̂

ς̂

ς̂

ς̂ ς̂ς̂

Running the analysis

ς̂

Running the analysis

ς̂

What resources are written?

What resources are read?

Which calling contexts are live?

Make it feasible

Use abstract garbage collection (Might & Shivers, 2006).

What’s in the paper?

• Abstract interpretation of CESP for ANF.

• Dependence analysis thereof.

• Abstract garbage collection for ANF.

Limits

• Analysis doesn’t work on parallel programs.

• Analysis breaks in the presence of call/cc.

Future work

• Rinse, repeat with ΔCFA.

• Rinse, repeat with push-down CFA.

• Analysis for profitable parallelism.

Thanks!

