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Goal

Determine when parallelization is safe.



Idea

• Dependencies block parallelization.

• Stack structure models dependencies.

• Static analysis can bound the stack.



Example

(let ((a (f x))
      (b (g y)))
 ...)
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The Game

• What resources does a procedure write?

• What resources does a procedure read?

• ...when invoked while in context k?



Example: Context matters

(define (write-a) (set! a 1701))
(define (write-b) (set! b 42)

(define (call f) (f))

(call write-a) ; call writes a
(call write-b) ; call writes b



Example: Context matters

(define (loop g t)
 (set! t 10)      ; writes t
 (g)              ; writes prior t
 (loop (lambda () (set! t 11))
       (+ t 1)))



Context-sensitive
dependence graphs



Context-sensitive
dependence graphs
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Observation

• If f calls g, and

• g depends on x

• then f depends on x.



Harrison’s principle

• When x is read/written,

• if f is live on the stack

• then f depends on x.



What about 
proper tail calls!?



Continuation marks
(Clements, Felleisen)

Just mark continuations with calling context.



Building the analysis

• Construct CESK machine for ANF, but

• Heap-allocate the continuations, and then

• Abstract directly into k-CFA for ANF
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Running the analysis
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What resources are written?

What resources are read?

Which calling contexts are live?



Make it feasible

Use abstract garbage collection (Might & Shivers, 2006).



What’s in the paper?

• Abstract interpretation of CESP for ANF.

• Dependence analysis thereof.

• Abstract garbage collection for ANF.



Limits

• Analysis doesn’t work on parallel programs.

• Analysis breaks in the presence of call/cc.



Future work

• Rinse, repeat with ΔCFA.

• Rinse, repeat with push-down CFA.

• Analysis for profitable parallelism.



Thanks!


