
Logic-Flow Analysis of Higher-Order Programs

Matthew Might
Georgia Institute of Technology

mattm@cc.gatech.edu

Abstract
This work presents a framework for fusing flow analysis and the-
orem proving called logic-flow analysis (LFA). The framework it-
self is the reduced product of two abstract interpretations: (1) an
abstract state machine and (2) a set of propositions in a restricted
first-order logic. The motivating application for LFA is the safe re-
moval of implicit array-bounds checks without type information,
user interaction or program annotation. LFA achieves this by dele-
gating a given task to either the prover or the flow analysis depend-
ing on which is best suited to discharge it. Described within are a
concrete semantics for continuation-passing style; a restricted, first-
order logic; a woven product of two abstract interpretations; proofs
of correctness; and a worked example.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization

General Terms Languages

Keywords logic-flow analysis, LFA, static analysis, environment
analysis, lambda calculus, CPS, abstract garbage collection, ab-
stract counting, Gamma-CFA first-order logic, theorem proving

1. The idea
The main idea is really the product of two ideas:

1. Theorem prover as oracle to higher-order flow analysis.

2. Higher-order flow analysis as oracle to theorem prover.

The objective of this fusion is to continue pushing beyond the
limitations of the k-CFA framework [17].

The key to this weaving is delegation: the tool best suited for
an obligation discharges it. For instance, the theorem prover avoids
obligations where it might have to induct, e.g., the introduction of a
universal quantifier, since that may require user interaction. To ac-
complish these tasks, the flow analysis is outfitted with specialized
abstract counting machinery [11]. Meanwhile, obligations that ex-
ceed the capabilities of the flow analysis, such as reasoning about
abstract constraints or canonicalization, go to the prover. We call
the threaded framework logic-flow analysis (LFA).

For robustness, LFA is engineered so that theorem prover failure
is not catastrophic. As the power of the theorem prover decreases,
LFA’s result gracefully degrades toward a ΓCFA-level flow analy-
sis [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the firs t page. To copy otherw is e, to re publis h, to pos t on s erve rs or to re dis tribute
to lists, requires prior specific permission and/or a fee.

PO PL ’07 January 17-19, 2007, Nice, France
C opyright c© 2007 AC M 1-59593-575-4/07/0001. . . $5. 00.

Mot i vat i n g appl i cat i on : Array access s afet y Proving the safety
of indexing into an array serves as a motivating application. Some-
times, safety is syntactically obvious, as in:

for (int i = 0; i < a.length; i++)
println(a[i]);

But, in other cases, the access doesn’t occur within the scope of an
explicit check:

for (int i = 0; i < a.length; i++)
foo(i); // foo touches a[i].

Complicating matters, the function foo might even touch the array
a through an alias. Sorting out such issues with sufficient precision
can quickly overwhelm existing analyses.

At POPL 2006, Tim Sweeney pointed this out when he issued
a challenge to develop a robust analysis for the safety of vertex
arrays. Vertex arrays are a technique frequently used in graphics
programming and demonstrated by the following fragment:

float[][3] vertices = 〈vector of points〉;
int[] mesh = 〈indices into vertices〉;

for (int i = 0; i < mesh.length; i++)
// Safe if 0 ≤ mesh[i] < vertices.length.
emitv(vertices[mesh[i]]);

The safety of the access to vertices depends upon the manner
in which mesh is built and modified. Furthermore, at certain points
during its lifetime, mesh will only partially satisfy the invariants re-
quired to prove the safety of the subsequent accesses to vertices.
Section 6 steps through an example of vertex arrays to show how
LFA proves safety under these circumstances.

High-level mechanics In Section 2, an operational semantics de-
fines a concrete state machine. The analysis then performs two ab-
stract interpretations of this machine: one where a concrete ma-
chine state (ς) abstracts component-wise into an abstract machine
state (bς), and one where it abstracts into a set of propositions (Π).

However, rather than run each interpretation independently, as
in the following diagram:

bς �� bς ′ �� bς ′′ �� · · ·

Π �� Π′ �� Π′′ �� · · ·
the analysis will weave them together, so that the next step of each
interpretation is a joint product of the current steps for both:

bς ��

��

bς ′ ��

��

bς ′′ ��

��

· · ·

Π ��

����������
Π′ ��

����������
Π′′ ��

����������
· · ·

Through this weaving, the combined interpretation is more precise
than running either alone.

185

const ∈CONST = Z + {#f, #len}

v ∈VAR = an infinite set of identifiers

lam ∈LAM ::= (λ (v1 · · · vn) call)

e, f ∈EXP ::= v
| const
| lam
| (prim e1 · · · en)

call ∈CALL ::= (f e1 · · · en)
| (sprim e1 · · · en)
| (letrec ((v lam)∗) call)

prim ∈PRIM = APRIM + HPRIM + REL
aprim ∈APRIM = {+, -, *, /, . . .}
hprim ∈HPRIM = {aget}

rel ∈REL = {equal?, <, <=:<, . . .}
sprim ∈SPRIM = {anew, aset!, if, halt}

Figure 1. A grammar for CPS.

Contributions The chief contributions of this work are:

1. A framework for weaving higher-order flow analyses, first-
order logic and theorem proving.

2. Soundness with respect to this weaving.

3. An instantiation of this framework for proving the safety of
array-bounds check removal, even in the presence of higher-
orderness and continuations.

2. Continuation-passing style (CPS)
Logic-flow analysis operates over a variant of continuation-passing
style (Figure 1) extended with basic values, primitive operations,
letrec, conditionals and a store with arrays.

2.1 Concrete semantics

The concrete semantics is a hybrid call-by-value/call-by-reference
state machine for CPS: a call-by-identity machine. The identity of
a value can be either (1) a reference to it, or (2) the value itself if
no reference to it yet exists. A reference is a globally unique name
for a value, such as store location plus an offset, or a variable name
plus a time at which it was bound.

The shift in perspective pays off because both references and
values have a “machine-level” scope; that is, references and values
retain their meaning across lexical scopes and even across machine
transitions. This, in turn, makes propositions involving these iden-
tities meaningful across environments and machine states. For ex-
ample, informally, we might say, “The value bound to x at time 3
is equal to the value at store location 16 offset 3,” or “The value
bound to y at time 3 is equal to the value of y at time 4.” Note
that any machine state and any scope can judge the truth of these
propositions.

Later on, to make the analysis computable, propositions will
take forms such as: “Any value bound to y at call site 10 is equal to
0,” and “Any value ever bound to x is equal to any value ever bound
to y.” (Yes, this last one implies that x and y have only been bound
to one value, but they could’ve been bound to that value repeatedly,
e.g., in a loop.)

Figure 2 gives the domains for a concrete operational seman-
tics. The semantics are a two-stage argument-evaluation/procedure-

ς ∈ State = Eval + Apply
Eval = CALL × BEnv × Heap
Apply = Proc × Id∗ × Heap
Heap = VEnv × Store × Time

b ∈ Bind = VAR × Time
β ∈ BEnv = VAR → Time

ve ∈ VEnv = Bind → D

i ∈ Index = Val
� ∈ Loc = an infinite set of locations

arr ∈ Array = Index → D
σ ∈ Store = Loc → Array

bas ∈ Bas = CONST
clo ∈ Clo = LAM × BEnv

proc ∈ Proc = Clo + SPRIM
val ∈ Val = Proc + Bas + Loc
d ∈ D = Val

t ∈ Time = an infinite set of times (contours)

x ∈ LogVar = a set of logical variables
ι ∈ Id ::= b | d | (prim ι1 · · · ιn) | x

Figure 2. Concrete domains.

application transition relation ⇒ in the set State × State .1 This
machine factors the environment into a lexical binding environment
(β) and a State-level, “global,” binding-to-value environment (ve),
as in Shivers’ work [16]. Given a variable v, the time β(v) is the
time that v was bound for the environment β. To retrieve the value
associated with this binding, we can index into the global environ-
ment ve with ve(v, β(v)). Because of this factoring, the binding
(v, β(v)) acts as a reference for the value ve(v, β(v)).

The set of identities Id also supplies the terms in the upcoming
logic. In the semantics, an identity can be a binding (as explained
earlier), a denotable value (if no reference to it is yet available) or
a compound identity. A compound identity allows us to describe
a value as a function of other identities. Anticipating fusion with
the logic, the set Id already includes logical variables; the concrete
semantics does not make use of these.

The choice of the set Time—the contour set—is left open; for
defining the meaning of a program, the naturals suffice. Alternate
choices for the abstract set T̂ime later on may require a different
choice for the set Time in order to show correctness. For instance,
for a k-CFA-level flow analysis, the set Time should be the set
of call strings. For Agesen’s CPA [1], the set Time should be a
sequence of Cartesian products of arguments.

The initial state of a program represented by a call term call is:

(call ,⊥,⊥,⊥, t0).

Execution proceeds until either a stuck state, or application of the
halt primitive.

In their definition, the semantics make use of a few auxiliary
functions; the first turns an identity into the value it represents:

1 As a shorthand, we decompose states as (. . . , ve, σ, t) instead of
(. . . , (ve, σ, t)). The domain Heap merely factors out components com-
mon to both Eval and Apply states.

186

Definition 2.1. The function Vς : Id → D obtains the value of an
identity:

Vς(b) = veς(b)

Vς(d) = d

Vς [[(prim ι1 · · · ιn)]] = Oς(prim)(Vς(ι1), . . . ,Vς(ιn)),

where

Oς [[aget]] = λ(�, i).σς � i

Oς(aprim) is the appropriate arithmetic operation

Oς(rel) is the appropriate relation.

The next function converts an expression into an identity:

Definition 2.2. The function I : EXP ×BEnv → Id obtains the
identity of an expression, a State -level reference to a value when
such a reference is available, and the value itself otherwise:

I(v, β) = (v, β(v))

I(const , β) = const

I(lam, β) = (lam, β)

I([[(prim e1 · · · en)]], β) = [[(prim ι1 · · · ιn)]]
where ιk = I(ek, β).

Loosely, the V function is to C’s pointer-dereference operator
‘*’ as the I function is to the address-of operator, ‘&’.

Definition 2.3. The cases below define the concrete transition
relation, ⇒ ⊆ State × State .

Argument evaluation In an argument-evaluation state, execution
has reached the application of a function expression f to arguments
e1, . . . , en. The purpose of this transition is to look up the pro-
cedure, create a vector of argument identities, and increment the
global time:

([[(f e1 · · · en)]], β, ve, σ, t) ⇒ (proc, 〈ι1, . . . , ιn〉, ve, σ, t′)

where

8<:proc = Vς(I(f, β))
ιk = I(ek, β) if Vς(I(ek, β)) 	= ⊥
t′ = t+ 1.

Procedure application In procedure application, a closure is be-
ing applied to a vector of argument identities. Execution proceeds
by moving to the call site within the closure, evaluating the identi-
ties to values, and updating the environment within the closure for
these values:

(([[(λ (v1 · · · vn) call)]], β), ι, ve, σ, t) ⇒ (call , β′, ve′, σ, t)

where

j
β′ = β[vk
→ t]
ve′ = ve[(vk, t)
→ Vς(ιk)].

Recursive procedure evaluation In transitioning through letrec,
the λ terms are closed over the extended environment β′ before
transitioning to the interior call site:

([[(letrec ((v lam)∗) call)]], β, ve, σ, t) ⇒ (call , β′, ve′, σ, t′)

where

8<: t′ = t+ 1
β′ = β[vk
→ t′]
ve′ = ve[(vk, t

′)
→ Vς(I(lamk, β
′))].

Side-effecting primitive call Calls to side-effecting primitives be-
have much like argument evaluation, except that there is no need to
evaluate the procedure. A side effect can be either a modification to
the store, or a control-flow effect:

([[(sprim e1 · · · en)]], β, ve, σ, t) ⇒ (sprim, 〈ι1, . . . , ιn〉, ve, σ, t′)

where

j
ιk = I(ek, β) if Vς(I(ek, β)) 	= ⊥
t′ = t+ 1.

Conditional In transitioning through conditionals, the condition
is tested against the false constant #f and the appropriate branch is
taken:

([[if]], 〈ιc, ιt, ιf 〉, ve, σ, t) ⇒ (proc, 〈〉, ve, σ, t)

where proc =

(
Vς(ιt) Vς(ιc) 	= #f

Vς(ιf) otherwise.

Array creation The array-creation primitive allocates a fresh lo-
cation in the store, inserts the array and applies the continuation to
the new location:

([[anew]], 〈ιlength , ιc〉, ve, σ, t) ⇒ (Vς(ιc), 〈�〉, ve, σ′, t)

where

8<: � = alloc(σ)
len = Vς(ιlength) if Vς(ιlength) ∈ N

σ′ = σ[�
→ [#len
→ len]].

The function alloc, of course, returns a fresh location outside the
domain of the current store.

Array modification The array-modification primitive inserts an
element into the supplied array, if the index is in bounds:

0 ≤ i < σ � #len
([[aset!]], 〈ιloc , ιind , ιval , ιc〉, ve, σ, t) ⇒ (Vς(ιc), 〈〉, ve, σ′, t)

where

8><>:
� = Vς(ιloc) 	= ⊥
i = Vς(ιind) 	= ⊥
d = Vς(ιval) 	= ⊥
σ′ = σ[�
→ (σ(�))[i
→ d]].

3. An abstract space for CPS
This section defines the abstract domains for LFA (Figure 3) and
operations upon them. With the exception of the domain Ĉount ,
the structure of these domains is straightforward for a flow anal-
ysis by abstract interpretation. The bμ component of each state ap-
proximates the number of concrete identities to which each abstract
identity corresponds: zero, one or more than one counterparts.

The ability to count (at least to one) becomes important when
generating propositions that hold on a state: it is much simpler to
make a claim about all of the concrete counterparts to an abstract
identity if, at the moment, only one such counterpart exists. For
example, if two sets A and B are equal, and each set is a singleton
set, then we can infer that any member ofA is equal to any member
of B. Note that the approximation bN only counts precisely up to
one concrete counterpart. Certainly, we could generalize this to
an arbitrary number, but the previous exercise demonstrates that
diminishing returns sets in at one. (We can’t infer much from two
equal sets of size two.)

The choice of the abstract domain T̂ime is left open. For a
0CFA-level analysis, the set T̂ime is a singleton. For a 1CFA-level
analysis, the set T̂ime is equal to the set of call sites, and the “next”
time is the current call site. For a CPA-level analysis, the set T̂ime
is the powerset of sequences of types, and the “next” time is the
Cartesian product of the types of the arguments.

Note that abstract identities include both dVal and bD , whereas
concrete identities included only D , because D = Val .

The concrete-to-abstract mapping The absolute-value notation,
| · |, denotes “abstraction of,” and the symbol | · |α represents a
function in the space α → α̂. These functions define the corre-
spondence between the concrete and the abstract.

For basic values bas , we have |#len| = #len, |#f| = #f,
|0| = 0, |1| = 1, or, for bas > 1, |bas | = pos , and for bas < 0,
|bas | = neg . One could choose a much richer, even infinite, set of
basic values should one desire. However, thanks to abstract garbage

187

bς ∈ Ŝtate = Êval + Âpply

Êval = CALL × B̂Env × Ĥeap

Âpply = P̂roc × bId∗ × Ĥeap

Ĥeap = V̂Env × Ŝtore × Ĉount × T̂ime

bβ ∈ B̂Env = VAR → T̂imebb ∈ B̂ind = VAR × T̂imebve ∈ V̂Env = B̂ind → bD
bi ∈ Îndex = dValb� ∈ dLoc = a finite set of locationsdarr ∈ Ârray = Îndex → bDbσ ∈ Ŝtore = dLoc → Ârray

cbas ∈ dBas = {neg , 0, 1, pos , #f, #len, . . .}cclo ∈ dClo = LAM × B̂Envdproc ∈ P̂roc = dClo + SPRIMcval ∈ dVal = P̂roc + dBas + dLocbd ∈ bD = P(dVal)

bμ ∈ Ĉount = (B̂ind + dLoc) → bNbN = {0, 1,∞}

bt ∈ T̂ime = a finite set of times (contours)

bι ∈ bId ::= bb | cval | bd | (prim bι1 · · ·bιn)
Figure 3. Abstract domains.

collection (introduced shortly), the finite domains suffice for our
purposes. Note that with an infinite set of abstract basic values,
widening and narrowing may be required to ensure termination [4].

For the remainder of the concrete domains, the abstraction op-
eration is:

|(call , β, ve, σ, t)|Eval = (call , |β|, |ve|, |σ|,M(ve, σ), |t|)
|(proc, ι, ve, σ, t)|Apply = (|proc|, |ι|, |ve |, |σ|,M(ve, σ), |t|)

|〈ι1, . . . , ιn〉|Id∗ = 〈|ι1|Id , . . . , |ιn|Id〉
|ve |VEnv = λ(v,bt). G

|t|=bt

|ve(v, t)|D

|σ|Store = λb�. G
|�|=b�

|σ(�)|Array

|arr |Array = λbi . G
|i|=bi

|arr(i)|D

|(prim ι1 · · · ιn)|Id = (prim |ι1| · · · |ιn|)

|b|Id = |b|Bind |d|Id = |d|D
|d|D = {|d|Val} |sprim |Proc = sprim

|(lam, β)|Val = (lam, |β|) |(v, t)|Bind = (v, |t|)
|β|BEnv = λv.|β(v)| |clo|Proc = |clo|D

As defined, there is not a straightforward Galois connection with
these domains; to see why, consider what the least imprecise con-
crete counterpart to pos is within Val . (It doesn’t exist.) However,

it is not difficult to generalize the concrete semantics (mostly by
making D a powerset of Val) to obtain one if desired.

The Ĉount -abstractor, M : (VEnv × Store) → Ĉount , is

M(ve, σ) bb = dsize{b ∈ dom(ve) : |b| = bb}
M(ve, σ) b� = dsize{� ∈ dom(σ) : |�| = b�}, wheredsize(S) = if size(S) ∈ {0, 1} then size(S) else ∞.

For the domain bN, the elements 0, 1 and ∞ are incomparable under
the order , and the function ⊕ : bN × bN → bN is the natural
abstraction of addition.

The abstract semantics need the following definitions:

Definition 3.1. The function bV
bς : bId → bD obtains the value of an

abstract identity:

bV
bς(bb) = bve

bς(bb)bV
bς(bd) = bdbV

bς(cval) = {cval}bV
bς [[(prim bι1 · · ·bιn)]] = bO

bς(prim)(bV
bς(bι1), . . . , bV

bς(bιn)),

where:

bO
bς [[aget]] = λ(bd1, bd2).

G
b�∈bd1

G
bi∈bd2

bσ
bς

b� bi
bO

bς(aprim) is a sound abstraction of aprimbO
bς(rel) is a sound abstraction of rel .

Definition 3.2. The function bI : EXP × B̂Env → bId obtains
the abstract identity of an expression, a Ŝtate-level reference to
a value when such a reference is available, and the abstract value
itself otherwise:

bI(v, bβ) = (v, bβ(v))bI(const , bβ) = |const |ValbI(lam, bβ) = (lam, bβ)bI([[(prim e1 · · · en)]], bβ) = [[(prim bι1 · · ·bιn)]]
where bιk = bI(ek, bβ).

The set of concrete identities to which an abstract identity cor-
responds is useful in the upcoming logic and in proofs:

Definition 3.3. The concretization of an abstract identity bι with
respect to a state ς is the set Conc ς bι, where:

Conc ς bb = {b : b ∈ dom(veς) and |b| bb}
Conc ς b� = {� : � ∈ dom(σς) and |�| b�}

Conc ς cbas = {bas : |bas | cbas}
Conc ς dproc = {proc : |proc| dproc}

Conc ς bd =
[

cval∈bd

Conc ς cval
Conc ς [[(prim bι)]] = {[[(prim ι)]] : ιk ∈ Conc ς bιk}.

188

Any counter bμ naturally extends to abstract identities of all
kinds: bμ(cbas) = dsize(Conc � cbas)bμ(lam, bβ) = max

`
{bμ(v, bβ(v)) : v ∈ free(lam)} ∪ {1}

´
bμ[[(prim bι)]] = max{1, bμ(bι1), . . . , bμ(bιn)}

bμ{cval1, . . . , cvaln} =

8><>:
0 n = 0bμ(cval1) n = 1

∞ n ≥ 2.

With the ability to count abstractly, a tighter connection between
abstract and concrete knowledge becomes possible:

Lemma 3.1 (Counting). If |ς| bς , then dsize(Conc ς bι) = bμ
bς(bι).

3.1 Abstract garbage collection

With abstract garbage collection, unreachable bindings and store
locations are re-allocated as fresh. This prevents merging in the ab-
stract, and it boosts both the precision and the speed of the analysis
simultaneously. The correctness of this technique is addressed else-
where [11].

The abstract semantics for LFA feature a built-in lazy collector,
which waits until precision loss is otherwise imminent before trying
to garbage collect a resource. Naturally, this collector requires a
definition of what it means for an abstract identity to be reachable
from some abstract state; reachability, in turn, requires the concept
of touching:

Definition 3.4. An abstract identity bι1 touches another abstract
identity bι2 in an abstract state bς iff bι2 ∈ bT

bς(bι1), where:bT
bς(cbas) = ∅bT

bς(bb) = bV
bς(bb)

bT
bς(b�) =

∞[
i=0

bV
bς [[(aget b� |i|)]]

bT
bς(lam, bβ) = {(v, bβ(v)) : v ∈ free(lam)}bT

bς [[(prim bι1 · · ·bιn)]] = {bι1, . . . ,bιn} ∪ bV
bς [[(prim bι1 · · ·bιn)]]bT

bς{cval1, . . . , cvaln} = bT
bς(cval1) ∪ · · · ∪ bT

bς(cvaln).

Touching extends naturally to an abstract state bς:bT
bς(call , bβ, bve, bσ, bμ,bt) = {(v, bβ(v)) : v ∈ free(call)}bT
bς(dproc,bι, bve, bσ, bμ,bt) = bT

bς(dproc) ∪
[
k

bT
bς(bV

bς(bιk)).

An abstract identity is reachable from a state if there is a chain of
touching from the state to the identity:

Definition 3.5. The identities reachable from an abstract state bς ,
written bR(bς), is the set {bι : bιroot ∈ bT

bς(bς) and bιroot �∗
bς bι}, wherebι1 �

bς bι2 iff bι2 ∈ bT
bς(bι1).

4. A logic for concrete states
This section builds a restricted, first-order logic for propositions
that describe a concrete state. Apart from the lack of an existential
quantifier, the inclusion of a ranged universal quantifier, and the
requirement that all propositions be in prenex normal form, this
logic is a standard first-order logic [5]. Three factors led to these
restrictions: (1) the safety proofs of concern require only universal
quantification; (2) the theorem prover’s behavior becomes more
predictable when restricted; and (3) abstract garbage collection
might destroy the witness for an existential quantification, which
forces existentially quantified propositions to be discarded.

Controlling the state-space explosion Within CPS, abstract
garbage collection plays a role in controlling statespace explo-
sion. Continuations, or rather, the abstract bindings and loca-
tions which become associated with them, are candidates for
garbage collection. Consequently, before invoking a function,
it is frequently possible to sharpen its continuation argument
via a GC step. Once collected, continuations do not merge
in the abstract. Hence, the abstract interpretation returns di-
rectly to its proper return point, instead of forking to the return
points of all previous callers of that function. More precisely,
abstract garbage collection of continuations leads to polyvari-
ant control-flow behavior.

Consider a call site (f ... q) with continuation q. Sup-
pose that when the abstract interpretation reaches this point, f
is bound to a closure with λ term (λ (... k) ...). Under
what circumstances can the analysis collect the binding for k?

If this call is a self tail-call, so that q = k, then there is no
need to collect as the “merging” will not harm precision. If
this call is recursive but not tail recursive, then k will merge
with the internal continuation, q. Consequently, it will look as
though an internal, recursive call to f could return to an exter-
nal call to f and vice versa. Fortunately, this is only a minor
detriment to precision. Moreover, even this internal/external
merging disappears when moving from a 0CFA contour set
to a 1CFA contour set. Lastly, if this call is an external (non-
recursive) call to the function f , then unless the binding to k
was previously captured by a call/cc-level continuation, the
binding to k will be eligible for garbage collection, and this
holds even in a 0CFA-level flow analysis.

As a result, in all but the pathological case of unrestricted us-
age of call/cc, control-flow polyvariance is achieved. (Sev-
eral constrained usage patterns for call/cc still achieve poly-
variance.) It is this polyvariance that is responsible for chop-
ping off the spurious branches of the interpretation that lead to
statespace explosion and blurred precision.

4.1 Syntax for propositions

The state logic includes basic propositions (φ), quantified proposi-
tions (ψ) and assumption bases (Π):

φ ∈ Φ ::= (= ι1 ι2)
| (not φ)
| (or φ1 φ2)

ψ ∈ Ψ ::= φ
| (forall x : bι ψ)

Π ∈ Assms ⊆ Ψ.

Universally quantified logical variables are restricted to the con-
crete values of some abstract identity. At first glance, it seems that
there is no relation in this logic other than equality; this is because
additional relations are encoded as functions mapping to truth val-
ues. A shorthand (desugared below) lets us use the more familiar
notation for relations in logic.

For later convenience, the expression cids(ψ) represents the set
of abstract identities used within a proposition.

4.2 Structure and interpretation

The terms in this logic are identities Id from the concrete seman-
tics. Now we’ll finally make use of the logical variables included
earlier. States themselves define the structure of the logic. The in-
terpretation of a term ι in structure ς is the value Vς(ι). Conse-
quently, the interpretation of a primitive operator Oς(prim) is its

189

conventional meaning; e.g., Oς [[+]] = λ(a, b).a+b. Note that inter-
pretations of a term are denotable values, which makes the domain
D the universe of discourse.

Given a state ς , an interpretation, I, is a pair (ς, ρ) where
ρ : LogVar → D maps from free logic variables to values.
The notation Iς is shorthand for the interpretation (ς,⊥); and the
notation I[x
→ d] is shorthand for (ς, ρ[x
→ d]) where I = (ς, ρ).
Lastly, when I = (ς, ρ):

I(ι) =

(
ρ(ι) ι ∈ LogVar

Vς(ι) otherwise.

Definition 4.1. An interpretation I justifies a proposition ψ iff
I |= ψ, where:

• I |= (= ι1 ι2) iff I(ι1) = I(ι2).
• I |= (not φ) iff it is not the case that I |= φ.
• I |= (or φ1 φ2) iff I |= φ1 or I |= φ2.
• I |= (forall x : bι ψ) iff

for each ι ∈ Conc ς bι, it is the case that I[x
→ I(ι)] |= ψ.

Justification then extends naturally across sets of states and sets
of propositions:

• For a set of states Σ, Σ |= ψ iff for each state ς ∈ Σ, Iς |= ψ.

• For an assumption base Π, I |= Π iff for each proposition
ψ ∈ Π, I |= ψ.

For proving the correctness of interacting with a theorem prover,
we’ll need the notion of entailment:

Definition 4.2. An assumption base Π entails a proposition ψ,
written Π |= ψ, iff I |= Π implies I |= ψ.

In other words, an assumption base entails a proposition if all
valid interpretations of the assumption base justify the proposition.
The correctness of the analysis also needs the notion of correspon-
dence—a relationship between a concrete state, an abstract state
and an assumption base:

Definition 4.3. A triple (ς, bς,Π) constitutes a correspondence,
denoted Cor(ς, bς,Π), iff |ς| bς and Iς |= Π.

Using correspondence, we can select the set of concrete states
that map to a given abstract state and satisfy some assumptions:

Definition 4.4. The filtered concretization of an abstract state bς
under assumption base Π, written bς/Π, is the set {ς : Cor(ς, bς,Π)}.

This leads to another convenient extension of justification:
(bς,Π) |= ψ iff bς/Π |= ψ.

4.3 Syntactic sugar

When used where a proposition is expected, the following desugar:

(= ι1 ι2) → (not (= ι1 ι2))

(rel ι) → (= #f (rel ι))

(implies φ1 φ2) → (or (not φ1) φ2)

(and φ1 φ2) → (not (or (not φ1) (not φ2))).

Vector notation quantifies over multiple variables and identities:

(forall 〈x1, . . . , xn〉 : 〈bι1, . . . ,bιn〉 ψ)
→ (forall x1 : bι1

(forall x2 : bι2 . . .
(forall xn : bιn ψ) . . .)).

It is often convenient to use an abstract identity where only a
concrete identity is syntactically allowed. The convention is that
if C[bι] is a proposition, where C is a Felleisen-style [6] one-hole

context of the identity, then this desugars to:

(forall x : bι C[x]),

where x is fresh. When multiple instances of the same abstract
identity occur within a proposition, each has its own outer-level
universal quantification.

4.4 Syntactic inference rules: Theorem prover as oracle

Rules for syntax-directed reasoning enable interaction with a theo-
rem prover through the concept of a derivation:

Definition 4.5. An assumption base Π derives a proposition ψ iff
there exists a proof of Π � ψ.

Table 1 gives the core syntactic inference rules for this logic.
These rules are complete for combinatorial logic, but due to the
restrictions on the logic, they are incomplete in general. Of course,
the soundness of the analysis requires the soundness of these rules:

Theorem 4.1 (Syntactic soundness). If Π � ψ, then Π |= ψ.

Proof. Proofs for rules other than (Int) are standard, following
the development found in basic texts [5]. For (Int), assume Π �
(forall x : bι φ) and {φ} � φ′. Choose any I = (ς,M) such
that I |= Π. Then we know I |= (forall x : bι φ). Now choose
any vector ι such that ιk ∈ Conc ς bιk. Let I′ = I[xk
→ ιk].
We know I′ |= φ. Thus, I′ |= φ′. Hence, I′ |= (and φ φ′) and
therefore, we have that I |= (forall x : bι (and φ φ′)).

Having established soundness, a prover can (if desired) emit a
verifiable proof tree when it claims that Π � ψ holds.

4.5 Semantic inference rules: Flow analysis as oracle

Semantic derivation rules, of the form (bς,Π) � ψ, obey a tighter
soundness theorem:

Theorem 4.2 (Semantic soundness). If (bς,Π) � ψ, then bς/Π |= ψ.

The proof of this theorem is provided with each nontrivial rule.
Semantic derivation rules have access to knowledge gathered from
the flow analysis, as codified within a state bς. As a result, they are
strictly more powerful than syntactic rules.

With these rules, the flow analysis acts as an oracle to the prover:

Rule 4.1 (Absence).

|d|D 	 bV
bς(bι)

(bς,Π) � (forall x : bι (= d x))

Proof. By the definition of and | · |.

Rule 4.2 (Universal introduction).bμ
bς(bι) = 1

(bς,Π) � (forall 〈x1, x2〉 : 〈bι,bι〉 (= x1 x2))

Proof. By the Counting Lemma.

Rule 4.3 (Range swap).

(bς,Π) � (= bι1 bι2) (bς,Π) � (forall x : bι1 ψ)
(bς,Π) � (forall x : bι2 ψ)

With the Oracle Rule (below), the flow analysis may consult the
prover as an oracle, and vice versa. By including this rule, LFA
can alternate between the flow analysis and the prover in justifying
goals:

Rule 4.4 (Oracle).

(bς,Π) � ψ1 · · · (bς,Π) � ψn Π ∪ {ψ1, . . . , ψn} � ψ′

(bς,Π) � ψ′

Proof. By syntactic soundness.

190

(Assm)
ψ ∈ Π
Π � ψ (∨Ant)

Π ∪ {φ1} � φ3 Π ∪ {φ2} � φ3

Π ∪ {(or φ1 φ2)} � φ3
(Subst)

Π � (= ι ι′) Π � ψ[ι/x]
Π � ψ[ι′/x]

(Ant)
Π � φ
Π ⊆ Π′

Π′ � φ
(Cases)

Π ∪ {φ1} � φ2

Π ∪ {(not φ1)} � φ2

Π � φ2

(Contr)
Π ∪ {(not φ1)} � φ2

Π ∪ {(not φ1)} � (not φ2)
Π � φ1

(Eq) Π � (= ι ι) (∨Cons)
Π � φ1

Π � (or φ1 φ2), (or φ2 φ1)
(Int)

Π � (forall x : bι φ) {φ} � φ′

Π � (forall x : bι (and φ φ′))

(∀Intro)
Π � ψ x 	∈ free(ψ)
Π � (forall x : bι ψ) (∀Swap)

Π � (forall 〈x1, x2〉 : 〈bι1,bι2〉 ψ)
Π � (forall 〈x2, x1〉 : 〈bι2,bι1〉 ψ)

Table 1. Syntactic inference rules.

5. Abstract semantics: LFA
This section defines the analysis LFA as the reduced product of
two abstract interpretations. While either interpretation is sound by
itself, each serves to enhance the precision of the other when com-
bined. The first interpretation is a straightforward state-machine-
based flow analysis plus abstract counting. The second interpreta-
tion abstracts each state to a set of propositions holding on that
state.

The transition relation |=> in (Ŝtate × Assms) × (Ŝtate ×
Assms) defines the combined interpretation. Running the analysis
on a program call consists of exploring this relation when starting
from the initial abstract state:

((call ,⊥,⊥,⊥,⊥,bt0), {}).

The correctness of LFA is a matter of proving that a correspon-
dence is maintained under transition. The key inductive step for this
proof is the following:

Theorem 5.1 (|=> simulates ⇒). If Cor(ς, bς,Π) and ς ⇒ ς ′, there
exists a (bς ′,Π′) such that: (bς,Π) |=> (bς ′,Π′) and Cor(ς ′, bς ′,Π′).

Proof Outline. The proof for the flow-analysis half is largely
straightforward [11]. Except for the few places where this half
differs from a straightforward proof, we’ll skip discussion of cor-
rectness. The other half of the proof, a proof of correctness for the
Π′-update rules, is novel and supplied for each nontrivial rule.

Defining the relation |=> There are many correct ways to de-
fine the relation |=>. The shortest sound definition is, for instance,
(bς,Π) |=> (�, ∅).

The concern in this work will be engineering the transition
relation so that (1) it fully exploits the information available in the
state bς and the assumption base Π; and (2) it explicitly accounts for
common programming idioms.

The subsections ahead constitute a case-by-case definition and
discussion of the abstract transition, (bς,Π) |=> (bς ′,Π′). Each
subsection contains a pattern describing an abstract state, bς, and
a form for subsequent states, bς ′, matching that pattern, like so:bς = · · ·bς ′ = · · ·

Each subsection may contain multiple cases, and each case
contains rules for computing the new assumption base Π′ from the
old assumption base Π and the old state bς . A guard on the state bς
and the assumption base Π for each case determines when that case
applies. When guards on cases overlap, the first case has priority.

5.1 Argument evaluation

A state bς is an argument-evaluation state if it is preparing to apply a
function expression f to some arguments e1, . . . , en. The purpose

of this transition is to look up the set of abstract procedures for the
expression f, and to fork the analysis to each one. In the process,
each argument ei is evaluated into an abstract identity:bς = ([[(f e1 · · · en)]], bβ, bve, bσ, bμ,bt)bς ′ = (dproc, 〈bι1, . . . ,bιn〉, bve , bσ, bμ,bt ′)

where

8<: dproc ∈ bV
bς(bI(f, bβ))bιk = bI(ek, bβ)bt ′ = dsucc(bt)

The function dsucc returns an abstract time, and it satisfies following
correctness constraint:

|t| bt =⇒ |t+ 1| dsucc(bt).

For instance, for 0CFA precision, only one abstract time exists, so
the function dsucc always returns the same time; for 1CFA, the func-
tion dsucc returns some label for the current call site [[(f e1 · · · en)]]
itself.2

The subsequent assumption base Π′ loses nothing, due to the
following rule:

Rule 5.1 (Complete preservation).

∀ς ∈ bς/Π :
`
(ς ⇒ ς ′) implies σς = σς′ and veς = veς′

´
Π′ ⊇ Π

Proof. Choose any state ς such that Cor(ς, bς,Π). Suppose ς ⇒ ς ′.
Choose any proposition ψ in Π′. We know that Iς |= ψ. Because
the relation |= depends only upon the variable environment ve and
the store σ, which are identical between states ς and ς ′, we have
that Iς′ |= ψ.

Several cases below will also achieve a complete preservation of
knowledge by avoiding modifications to the variable environment
and the store.

5.2 Procedure application: More than zero arguments

The apply transition is the heart of LFA. This is where much of
the weaving with the prover happens. It is in this stage that LFA
can garbage collect, fork the analysis and expand or contract the
assumption base.

The apply transition proceeds through the composition of sev-
eral smaller transitions—one for each argument passed.3 Each sub-

2 Since the choice of contour set is not our focus, we use a simplified
ŝucc : ̂Time → ̂Time function. For contour sets beyond 0CFA, the ŝucc
operation takes the current state bς in addition to the current time.
3 In the full proof of correctness for the flow analysis, we need to factor
the concrete apply transition similarly and then prove this equivalent to the
original definition by induction on the length of the argument vector ι.

191

transition examines the first identity passed; updates the state and
assumption base; and moves to the remaining arguments:

bς = (([[(λ (v1 · · · vn) call)]], bβ), 〈bι1, . . . ,bιn〉, bve, bσ, bμ,bt)bς ′ = (([[(λ (v2 · · · vn) call)]], bβ′), 〈bι2 . . . ,bιn〉, bve ′, bσ, bμ′,bt)
where

8>><>>:
bb1 = (v1,bt)bβ′ = bβ[v1
→ bt]bve ′ = · · ·bμ′ = · · ·

Case 5.2.1 (bι1 = bb1). In this case, the interpretation is rebinding a
variable to itself. Consider this case in the concrete. This situation
corresponds to having the argument ι1 = (v, t1) and the binding
b1 = (v, t2), such that |t1| = |t2| = bt . Instead of setting ve ′ =
ve[(v, t2)
→ ve(v, t1)], the concrete execution could extend only
the lexical environment β′ = β[v
→ t1] by mapping this variable
v to the older time.

The abstraction of this concrete transition avoids bumping the
allocation counter in the abstract, i.e.:bve ′ = bvebμ′ = bμ.

Note that the abstract lexical environment bβ′ remains the same,
because bβ[v
→ bt] = bβ[v
→ |t1|] = bβ[v
→ |t2|]. Since ve = ve ′

and σ = σ′ in the concrete, the Complete Preservation Rule for Π′

applies.
This case catches a common higher-order recursion idiom,

where a variable is explicitly rebound to itself while recurring,
such as the variable f in:

(define (map f lst)
(if (pair? lst)

(cons (f (car lst)) (map f (cdr lst)))
’()))

In fact, by detecting f’s invariance, we can turn this into:

(define (map f lst)
(letrec ((mp (λ (lst)

(if (pair? lst)
(cons (f (car lst))

(mp (cdr lst)))
’()))))

(mp lst)))

which allows the argument f to be inlined when map is inlined.

Case 5.2.2 ((bς,Π) � (= bι1 bb1)). Even if the argument bι1 is
not identical to the binding bb1, it may still be the case that the
values they represent are equal. Unlike the previous case, there
is no clear analog to this in the concrete. It’s nonsensical to have
a fresh binding be equal to the value it’s going to be assigned: a
fresh binding cannot possibly already have a value. In the abstract,
however, bindings are a finite resource, and the analysis may be
forced into allocating a stale binding—one which is already in
use. Hence, it’s conceivable (and not uncommon) that the abstract
value bV

bς(bι1) may already be sitting at index bb1 within the global
environment bve . In this case, the analysis can still update the state
components as before: bve ′ = bvebμ′ = bμ.

To prove this behavior correct, we have to modify the concrete
semantics so that before binding (v , t), the concrete execution first
searches through the domain of the global environment ve for a

binding (v, t′) such that |t′| = |t| and Vς(v, t) = Vς(v, t
′).

If such a time t′ exists, the concrete would instead modify the
lexical environment β′ so that β′ = β[v
→ t′] instead of having
the variable v map to the current time. Once more, the Complete
Preservation Rule applies.

Lastly, note that this case doesn’t drive a specific optimization
or account for a specific programming idiom so much as it corrects
a common source of precision loss for a flow analysis.

Case 5.2.3 (bι1 = C[bb1], C is invertible, bμ(bι1) = 1 and bb1 	∈ bR(bς)).
In this case, the interpretation is rebinding a variable to an invertible
context of itself.4 Before proceeding, we need to define what an
invertible context is.

Definition 5.1. A context C is invertible with respect to some term
equivalence relation ≡ if for all terms t, there exists a context C−1

such that C−1[C[t]] ≡ t.

In this context, the equivalence relationship bι ≡ bι′ is:

(bς,Π) � (forall 〈x, y〉 : 〈bι,bι′〉 (= x y)).

In general, an inverse context may not exist, but for most loop-
ing idioms, hard-coding rules like the following is sufficient:bμ(bι) = 1 and C = [[(+ [] bι)]] =⇒ C−1 = [[(- [] bι)]]

C = [[(cons x [])]] =⇒ C−1 = [[(cdr [])]]

The first rule covers the i++ idiom. After the i++ happens, what
the old assumption base Π knew about the binding to i has become
knowledge of the value i-1 in the new assumption base Π′. If
desired, an algebraic solver can find inverses for other contexts.

To handle invertible rebinding, instances of the binding bb1 in
the old assumption base Π become the identity C−1[bb1] in the new
assumption base Π′:

Rule 5.2.3.1 (Inverse propagation).bι1 = C[bb1] C−1 exists bμ(bι1) = 1 bb1 	∈ bR(bς)
Π′ = Π[C−1[bb1]/bb1]

Note that this also acts as the preservation rule for this case. Af-
ter updating the assumption base Π′, the analysis garbage collects
the old binding bb1 by assigning its new value with a strong update:bve ′ = bve[bb1
→ bV

bς(bι1)]bμ′ = bμ[bb1
→ 1].

Case 5.2.4 (bμ(bb1) ≥ 1 and bb1 	∈ bR(bς)). In this case, the abstract
interpretation is about to allocate a stale abstract binding that has
become unreachable. As before, the analysis can garbage collect:bve ′ = bve[bb1
→ bV

bς(bι1)]bμ′ = bμ[bb1
→ 1].

Again, garbage collection consists of a strong-update overwriting
of the abstract value living at index bb1 within the variable environ-
ment bve ′. At the same time, the counter bμ′ now reflects that the
abstract binding bb1 corresponds to a single concrete binding. (It is
a theorem [11] that if an abstract binding is unreachable, then all of
its concrete counterparts are also unreachable.)

Making the collection, however, means that the new assumption
base Π′ can’t preserve propositions that necessarily depend on the
binding bb1:

Rule 5.2.4.1 (Partial preservation).

(bς,Π) � ψ bb1 	∈ cids(ψ)
ψ ∈ Π′

4 The context C is Felleisen’s [6] one-hole context for the grammar of bId .

192

Why would the assumption base contract? Without a full
understanding of the analysis, one might wonder why proposi-
tions would ever be discarded. Suppose that the proposition:

(forall x : ([[x]],bt1) ψ)
is in the current assumption base. This proposition makes a
claim about all of the concrete counterparts to the abstract
binding ([[x]],bt1). More specifically, it is making a claim that
holds for all values of the variable x when it was bound at times
that abstract to bt1.

During the abstract interpretation, it may arrive at a point
where it’s going to bind x again at time bt1. As a result, the
set of concrete bindings to which the abstract binding ([[x]],bt1)
corresponds has expanded. In order to preserve this proposi-
tion, the analysis must show that the proposition ψ holds for
the new additions to this set. If the assumption base doesn’t
have enough information to show this, then the analysis cannot
preserve the universally quantified proposition.

Case 5.2.5 (bμ(bι1) = 1 and bμ(bb1) = 0). In this case, the abstract
binding is fresh, and the identity to which it will be bound has only
one concrete counterpart, yielding:bve ′ = bve[bb1
→ bV

bς(bι1)]bμ′ = bμ[bb1
→ 1].

After this step, both identities bb1 and bι1 have a single concrete
counterpart, so any concrete counterpart of one will be equal to any
concrete counterpart of the other in Π′:

Rule 5.2.5.1 (Fresh binding).bμ(bι1) = 1 bμ(bb1) = 0

(forall 〈x1, x2〉 : 〈bι1,bb1〉 (= x1 x2)) ∈ Π′

In this case, there is also a partial preservation of the assumption
base Π, in that the analysis must discard any propositions necessar-
ily involving the binding bb1 while constructing the new assump-
tion base Π′. In reality, this costs no precision, as any universally
quantified proposition ranging over the empty set would have been
both vacuously true and useless. Thus, the Partial Preservation Rule
(5.2.4.1) applies.

Case 5.2.6 (Otherwise). If the analysis resorts to this case, it could
not handle the binding in a precision-enhancing or -preserving
manner. Thus, the analysis must use the weak, merging conserva-
tive update: bve ′ = bve � [bb1
→ bV

bς(bι1)]bμ′ = bμ⊕ (λ .0)[bb1
→ 1].

As before, the analysis can preserve assumptions that don’t nec-
essarily involve the binding bb1. In this case, the reason is that we
would otherwise be expanding the range of a universally quanti-
fied variable. And, from Small ⊂ Big and ∀x ∈ Small : ϕ(x),
we cannot infer ∀x ∈ Big : ϕ(x). Hence, the Partial Preservation
Rule (5.2.4.1) applies.

5.3 Procedure application: Zero arguments

Eventually, the apply transition runs out of arguments, and the
analysis transitions with the following:bς = (([[(λ () call)]], bβ), 〈〉, bve, bσ, bμ,bt)bς ′ = (call , bβ, bve , bσ, bμ,bt)

In this case, the Complete Preservation Rule (5.1) applies.

5.4 Recursive procedure evaluation

In LFA, the construct letrec behaves much like a specific instance
of procedure application. To simplify the presentation, this subsec-
tion covers the letrec of a single λ term. However, it is not dif-
ficult to handle a mutually recursive letrec by decomposing the
transition as was done in procedure application.bς = ([[(letrec ((v lam)) call)]], bβ, bve, bσ, bμ,bt)bς ′ = (call , bβ′, bve ′, bσ, bμ′,bt ′)

where

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

bt ′ = dsucc(bt)bb = (v,bt ′)bβ′ = bβ[v
→ bt ′]bι = (lam, bβ′)bμ′ = bμ[bb
→ bn]

strong? = bb 	∈ bR(bς) or bμ(bb) = 0

bve ′ =

(bve[bb
→ bV
bς(bι)] strong?bve � [bb
→ bV

bς(bι)] otherwise

bn =

(
1 strong?

∞ otherwise.

By replacing the terms bι1 with bι and bb1 with bb, this case imports the
Fresh Binding Rule (5.2.5.1) and has its own complete preservation
rule:

Rule 5.2 (Qualified complete preservation).

(bς,Π) � (= bι bb)
Π′ ⊇ Π

If the analysis can’t preserve all propositions for the new as-
sumption base Π′, the Partial Preservation Rule (5.2.4.1) applies
for propositions not necessarily involving the binding bb.

5.5 Side-effecting primitive call

The abstract interpretation handles side-effecting primitive-call
states identically to argument-evaluation states, except that there
is no need to look up the procedure.

5.6 Conditionals

The handling of conditional transitions depends on how much in-
formation is known about the condition:bς = ([[if]], 〈bιc,bιt,bιf 〉, bve, bσ, bμ,bt)bς ′ = (dproc, 〈〉, bve, bσ, bμ,bt)
Case 5.6.1 ((bς,Π) � (= bιc #f) or (bς,Π) � (= bιc #f)). If there
is enough information to prove that the condition either must be
true or must be false, as in this case, then the abstract interpretation
takes only the appropriate branch:

dproc ∈
(bV

bς(bιt) (bς,Π) � (= bιc #f)bV
bς(bιf) (bς,Π) � (= bιc #f).

Clearly, the Complete Preservation Rule applies here.

Case 5.6.2 (bμ(bιc) = 1). If the analysis can’t precisely evaluate the
condition, yet its count is 1, then the interpretation forks in both
directions. Meanwhile, the true branch asserts the condition in the
new assumption base Π′, and the false branch asserts its negation.

Thus, the analysis preserves all knowledge, and it adds the
following to the true branches’ assumption base:

(= bιc #f) ∈ Π′,

193

while for the false branches, it adds:

(= bιc #f) ∈ Π′.

The abstract continuation is the join of both continuations:dproc ∈ bV
bς(bιt) � bV

bς(bιf).

But, how could the condition have a count of one, and have
an unknown truth value? In practice, if the analysis were run on a
single function, a condition might evaluate to � if it depends on
data outside the scope of the function.

Case 5.6.3 (bμ(bιc) > 1). In this case, the abstract identity of the
condition corresponds to multiple concrete identities. This case is
handled identically to the previous one, except that the assumption
bases do not expand, i.e., Π′ = Π.

Merging forked branches In handling conditionals, the interpre-
tation sometimes had to fork. Left unchecked, this forking could
lead to explosion. Once more, abstract garbage collection comes to
our rescue. Using the non-lazy abstract garbage collector from pre-
vious work on ΓCFA [11], it is possible to merge forked branches.
By garbage collecting when each fork hits the joining continuation,
it is often the case that their garbage-collected states collapse back
into the same state, or into states such that one is more precise than
the other. Whenever this is the case, merging happens automati-
cally, and it costs no precision.

5.7 Array creation

For array creation, the analysis attempts to garbage collect the
abstract location it’s about to allocate. If the abstract location is
stale but unreachable, a merging is prevented.bς = ([[anew]], 〈bιlength ,bιc〉, bve, bσ, bμ,bt)bς ′ = (dproc, 〈b�〉, bve, bσ′, bμ′,bt)

where

8>>>>>>>>>>>><>>>>>>>>>>>>:

dproc ∈ bV
bς(bιc)b� = âlloc(bσ)bσ′ = bσ[b�
→ darr � [#len
→ bV

bς(bιlength)]]

darr =

(
⊥ b� 	∈ bR(bς) or bμ(b�) = 0bσ(b�) otherwisebμ′ = bμ[b�
→ bn]

bn =

(
1 b� 	∈ bR(bς) or bμ(b�) = 0

∞ otherwise.

Like the function dsucc, the function âlloc is constrained so that:

|σ| bσ =⇒ |alloc(σ)| âlloc(bσ).

When allocating an array, a partial preservation rule applies:

Rule 5.3 (Partial preservation, array).

(bς,Π) � ψ b� 	∈ cids(ψ)
ψ ∈ Π′

If the identity bιlength has a single counterpart, and the location b�
is fresh, then the new assumption base Π′ can chain them together:

Rule 5.4 (Array length chaining).bμ(bιlength) = 1 (b� 	∈ bR(bς) or bμ(b�) = 0)

(= bιlength (aget b� #len)) ∈ Π′

5.8 Array modification

In handling array modification, there are several issues to consider:

1. Arrays are updated one element at a time.

2. Not all elements may satisfy a given property all the time.

3. The properties an array satisfies can change over time.

The analysis can only reason about a finite number of concrete ob-
jects with perfect precision at any one moment. An array, however,
may contain arbitrarily many elements. This necessitates a mech-
anism for handling abstract intervals of the array, and a way to
merge these abstract intervals. For a traditional flow analysis, this
task is difficult. For a theorem prover, this task is much simpler
once the flow analysis has peeled away the aliasing and the higher-
orderness.

The rules in this subsection are concerned primarily with i++-
style array updates. As a result, the prover will be dealing with
closed intervals such as [i, j] and half-open intervals such as [i, j).
For steadily expanding or shrinking the interval, the prover can take
advantage of lemmas like [i, j − 1] = [i, j). In LFA, the endpoints
of these intervals are constrained to be the concrete counterparts to
abstract identities.

The transition in this case is:bς = ([[aset!]], 〈bιloc ,bιindex ,bιval ,bιc〉, bve , bσ, bμ,bt)bς ′ = (dproc, 〈〉, bve, bσ′, bμ,bt)

where

8>>>>><>>>>>:

dproc ∈ bV
bς(bιc)b� ∈ bV
bς(bιloc)bi ∈ bV
bς(bιindex)bd = bV
bς(bιval)bσ′ = bσ[b�
→ (bσ(b�)) � [bi
→ bd]].

The outline for the update of the new assumption base Π′ is:

1. Check for a property φprop holding on the value for bιval .
2. Check for intervals adjacent to the index bιindex where the prop-

erty φprop holds.

3. When found, update the assumption base Π′ to reflect the newly
expanded abstract interval.

More formally, the prover looks for a property φprop where

(bς,Π) � (forall 〈x, y1, . . . , yn〉 : 〈bιval ,bι1, . . . ,bιn〉 φprop)

holds.

Finding φprop There are a number of ways to find propo-
sitions that qualify for the property φprop . Finding them all
is clearly incomputable. A few heuristics, however, focus the
search. The easiest approach is to look through the current as-
sumption base Π for occurrences of the identity bιval in a propo-
sition. Of these propositions, those containing relational primi-
tives (REL) and those generated by a conditional transition are
good candidates. If no candidates emerge, the search expands
to propositions that use identities equivalent to bιval . If still no
candidates emerge, the search is abandoned.

Then, the prover checks to see if the property φprop holds for all
elements of an interval:

(bς,Π) �

(forall i : bN
(forall a : bιloc
(forall j : bιindex

(forall 〈y1, . . . , yn〉 : 〈bι1, . . . ,bιn〉
(implies φinterval φprop [(aget a i)/x])))))

where the guard φinterval checks whether j is adjacent to a known
interval. For catching a start-at-zero-i++-style iteration, the interval
is:

φinterval = (<= 0 i (- j 1)).

194

Putting this all together yields a rule for handling incremental
array update:

Rule 5.5 (Incremental array update).

(bς,Π) � (forall 〈x, y1, . . . , yn〉 : 〈bιval ,bι1, . . . ,bιn〉 φprop)

(bς,Π) �

(forall i : bN
(forall a : bιloc
(forall j : bιindex

(forall 〈y1, . . . , yn〉 : 〈bι1, . . . ,bιn〉
(implies (<= 0 i (- j 1))

φprop [(aget a i)/x])))))

(forall i : bN
(forall a : bιloc
(forall j : bιindex

(forall 〈y1, . . . , yn〉 : 〈bι1, . . . ,bιn〉
(implies (<= 0 i j)

φprop [(aget a i)/x])))))

∈ Π′

The Partial Preservation Rule for arrays (5.3) also applies.
The incremental rule also serves as a starting point for more

general rules. The next rule up the ladder of engineering complexity
would be one that looks for abstract intervals not starting at index 0.
However, the frequency of the idiom for (i = 0; i < length;
i++) and its equivalents makes the simple rule widely applicable.

5.9 Termination

A branch of LFA terminates in stuck states; when the halt prim-
itive is applied; or when the current state is more precise than
(via) a state already visited while the current assumption base
is stronger than (via |=) the assumption base associated with the
visited state. Formally, a branch terminates if its current state-
assumption base pairing is (bς,Π) and for some state-assumption
base pairing (bςv,Πv) already visited:bς bςv and (bς,Π) |= Πv .

Of course, the prover � is the approximation for entailment (|=).
As defined, termination of the analysis is not guaranteed be-

cause (1) the prover, as an external entity, may not halt, and (2) our
abstract domains are not finite in one place: the height of the syntax
tree for bId is unbounded.

A time limit on the prover removes the termination concern.
Even if the prover fails or times out, LFA will still continue, al-
though its precision degrades toward ΓCFA as the assumption
bases shrink.

But, what if the prover always fails or times out during the
termination check? If this is a concern, the always-terminating
approximation to (bς,Π) |= Πv:

Π ⊇ Πv =⇒ (bς,Π) |= Πv,

eventually leads to termination. Smarter terminating approxima-
tions exist, but this is sufficient.

The identity-height concern applies solely to the assumption
base, since the identities produced within an abstract state bς are
bounded in height by the syntactic expression from which they
came. For the assumption base, this concern is removed by bound-
ing the height of an abstract identity’s syntax tree at some fixed
height h, and pruning identities that break this height with a widen-
ing operation [4], Hh : bId → bId :

H0 bι = bV
bς(bι)

Hh+1 bι =

(
[[(prim Hh(bι1) · · ·Hh(bιn))]] bι = [[(prim bι)]]bι otherwise.

Care must be taken, however, as the pruned identity may be less
precise. When the range of a universal quantifier loses precision,
the conservative action is to discard the entire proposition.

The alternative to this widening is simplification, wherein the
prover symbolically manipulates an identity with the goal of reduc-
ing it to a smaller identity. The analysis utilizes this tactic explic-
itly when dealing with abstract intervals by, for instance, converting
[i, j − 1] into [i, j) and [i+ 1, j] into (i, j].

5.10 Using imperfect provers

In practice, of course, the analysis uses an imperfect prover, rep-
resented by �∗, which obeys the following partial completeness
properties:

(ς,Π) �∗ ψ =⇒ (ς,Π) � ψ (1)

Π �∗ ψ =⇒ Π � ψ. (2)

This prover may not be monotonic, i.e., the following may not hold:

If Π ⊂ Π′, then Π �∗ ψ =⇒ Π′ �∗ ψ.

Fortunately, the definition of the relation |=> has soundness in the
face of partial completeness and non-monotonicity built-in. The
cases in each subsection are ordered by decreasing precision, with
latter cases subsuming previous ones. If (bς ′,Π′) would have been
the subsequent state-assumptions pairing with a perfect prover, then
there is at least one subsequent state-assumptions pairing (bς ′∗,Π′

∗)
from the prover �∗ such that bς ′ bς ′∗ and (bς ′,Π′) |= Π′

∗.

6. Worked example: Vertex arrays
To build a better understanding of how LFA works, we’ll trace
the analysis for the CPS-translated version of the vertex array
code (Figure 4). This example in particular helps to illustrate the
inductive interplay between the Inverse Propagation Rule and the
Incremental Array Update Rule. Briefly, the code works as follows:

1. Read in a vertex array from disk.

2. Read in the indices (into the vertex array) for a mesh, checking
the safety of each index as it is read.

3. Emit the mesh, one vertex at a time.

LFA proves that when the function read-array exits, all of the
entries within the array mesh are valid indices into the array
vertices. This proves the array access at the call to emitv is
safe. As we trace, we’ll highlight the relevant components of the
state bς and the key additions to the assumption base Π.

For this example, (alen e) desugars to (aget e #len). In
addition, we’re using a 1CFA contour set, not because it’s required
to prove safety, but because it allows us to avoid visiting only
special (and perhaps misleading) cases of the rules presented for
the analysis. With a 1CFA contour set, the dsucc function returns the
current call site. Note that we’ve labeled each relevant call site in
the example. We jump into the interpretation once LFA has reached
the read-array3 call site. This puts LFA into the following state:bς1 = ([[(read-array3 mesh · · ·)]], bβ1, bve1, bσ1, bμ1,bt), where:bve1 = [. . . , ([[verts]],bt0)
→ {b�0}, ([[mesh]],bt1)
→ {b�1}]bσ1 = [b�0
→ [. . . , #len
→ {pos}], b�1
→ [. . . , #len
→ {pos}]]bμ1 = [..., b�0
→ 1, b�1
→ 1, ([[verts]],bt0)
→ 1, ([[mesh]],bt1)
→ 1]

Next, we’re in an apply state, applying the closure for read-array.bς2 = (([[(λ (a i lo hi k) · · ·)]], bβ),bι2, . . .)bι2 = 〈([[mesh]],bt1), 0, 0, [[(alen ([[verts]],bt0))]], cclo〉
And, now, we’re in an eval state, preparing to check whether we’ve
read in the entire mesh:

195

(letrec ((read-verts (λ (a k) ...)) ; Read vertices into A.
...
; Reads vertex indices into A.
(read-array (λ (a i lo hi k)

(if (>=5 i (alen a))
k6

(λ () (read-int7 (λ (n)
(if (<=:<8 lo n hi)

(λ () (aset!9 a i n (λ ()
(read-array11 a (+ i 1) lo hi k))))))
error12)))))

; Emit each vertex in a mesh.
(emit-mesh (λ (vrt msh i k)

(if (>=13 i (alen msh))
k14

(λ () (emitv15 (aget vrt (aget msh i)) (λ ()
(emit-mesh17 vrt msh (+ i 1) k))))))))

(anew0 n (λ (verts)
(anew1 m (λ (mesh)
(read-verts2 verts (λ ()
(read-array3 mesh 0 0 (alen verts) (λ ()
(emit-mesh4 verts mesh 0 halt))))))))))

Figure 4. A CPS translation of the vertex array code for rendering
a 3D mesh.

bς3 = ([[(if (>=5 i (alen a)) . . .)]], . . .)

After passing through the previous apply state, we picked up infor-
mation for Π3:
(= ([[mesh]],bt1) ([[a]],bt3)) ∈ Π3

(= 0 ([[i]],bt3)) ∈ Π3

(= 0 ([[lo]],bt3)) ∈ Π3

(= (alen ([[verts]],bt0)) ([[hi]],bt3)) ∈ Π3 .

Now we’re in a conditional apply state:bς4 = ([[if]], 〈[[(>= ([[i]],bt3) (alen ([[a]],bt3)))]]〉, . . .)
Because (bς4,Π4) � (= 0 ([[i]],bt3)) and because there is more than
one point in the mesh:

(bς4,Π4) � (= #f (>= ([[i]],bt3) (alen ([[a]],bt3)))).

Hence, we don’t have to fork.

This brings us to the apply state:bς5 = (([[(λ () (read-int7 · · ·))]], bβ), . . .) .

Now we’re in an eval state:bς6 = ([[(read-int7 (λ (n) ...))]], . . .) .

And, this leads to the following apply state:bς7 = ([[read-int7]], 〈cclo〉, . . .) .

In the abstract, read-int returns {neg , 0, 1, pos}, which leads us
to the following apply state:bς8 = (([[(λ (n) ...)]], bβ), 〈{neg , 0, 1, pos}〉, . . . ,bt7) .

Next, we’re in in the eval state, preparing to check whether the
index we just read in is within the bounds of verts:bς9 = ([[(if (<=:<8 lo n hi) · · ·)]], . . .), wherebve9 = [. . . , ([[n]],bt7)
→ {neg , 0, 1, pos}]bμ9 = [. . . , ([[n]],bt7)
→ 1].
It helps to recall that:
(bς9,Π9) � (= ([[lo]],bt3) 0)
(bς9,Π9) � (= ([[hi]],bt3) (alen ([[verts]],bt0))).

Now, we’re in the conditional apply state:bς10 = ([[if]], 〈[[(<=:< ([[lo]],bt3) ([[n]],bt7) ([[hi]],bt3))]]〉, . . .)
The prover doesn’t have enough information to determine whether
or not this condition holds, so the analysis must fork. However,
because

μ[[(<=:< ([[lo]],bt3) ([[n]],bt7) ([[hi]],bt3))]] = 1,

we can assume the condition holds on the true fork, and that it does
not on the false fork.
The false fork terminates quickly without touching verts, so we
follow only the true fork.

By this state, we have:
(<=:< ([[lo]],bt3) ([[n]],bt7) ([[hi]],bt3)) ∈ Π11.
And, we’re applying the true continuation:bς11 = ([[(λ () (aset!9 · · ·))]], 〈〉, . . .).

And, then, we enter the eval state for the array update:bς12 = ([[(aset!9 a i n · · ·)]], . . .).

Finally, we’ve reached the point where we update the array:bς13 = ([[aset!]], 〈([[a]],bt3), ([[i]],bt3), ([[n]],bt7), cclo〉, . . .)
When we transition from this state, LFA invokes the Incremental
Array Update Rule. First, it looks for a fact ψ involving the binding
([[n]],bt7) such that (bς,Π13) � ψ. Specifically, it looks for a property
φ such that:
(bς13,Π13) � (forall 〈x, y1, . . . , yn〉 : 〈([[n]],bt7),bι1, . . . ,bιn〉 φ).

Searching through Π13 for ([[n]],bt7), the prover finds:

(<=:< ([[lo]],bt3) ([[n]],bt7) ([[hi]],bt3)),
from Π11, which, importantly, is equivalent to the safety condition:
(forall x : ([[n]],bt7) (<=:< 0 x (alen ([[verts]],bt0)))).

Next, the prover tests for an interval starting at index 0 and adjacent
to the index ([[i]],bt3) in the array ([[a]],bt3) where the property φ
holds by testing:

(forall k : bN
(forall a : ([[a]],bt3)
(forall i : ([[i]],bt3)
(implies (<= 0 k (- i 1)) φ[(aget a k)/x]))))

Right now, this interval is [0,-1] (empty), so this property holds triv-
ially. Once found, the prover updates adjacent intervals to include
this index. In this case, in Π13+1, the interval will become:

(<= 0 k i).

Looking forward, we’ll eventually hit an application of the Inverse
Propagation Rule in a recursive call to read-array, where we
increment the index into mesh. When the Inverse Propagation Rule
is applied, the interval will be transformed back into:

(<= 0 k (- i 1)).

This is exactly the precondition required for the next expansion of
the range to succeed.
The prover doesn’t have to do induction explicitly, and yet induc-
tion’s trademark signs are apparent in this step. What’s actually
happening is that the flow analysis is gradually breaking the in-
ductive proof into more manageable, flow-specific, context-specific
proofs.

Next, we’re in an apply state for the continuation to aset!:bς14 = (([[(λ () (read-array11 · · ·))]], bβ), 〈〉, . . .)
Now, we’re in an eval state for the recursive call to read-array:bς15 = ([[(read-array11 a (+ i 1) lo hi k)]], . . .)

196

Next, we’re in the corresponding apply state:bς16 = (([[(λ (a i lo hi k) · · ·)]], bβ),bι16, . . .), wherebι16 = 〈([[a]],bt3),bιi++, ([[lo]],bt3), ([[hi]],bt3), ([[k]],bt3)〉, andbιi++ = [[(+ ([[i]],bt3) 1)]]

We have the following new bindings:bb16 = 〈([[a]],bt11), ([[i]],bt11), ([[lo]],bt11), ([[hi]],bt11), ([[k]],bt11)〉
Previously, the bindings to these variables were made at time bt3, so
we suffer no precision loss from merging in bve yet.5

At this point, we’re again in an eval state, preparing to check
whether we’ve filled the array:bς17 = ([[(if (>=5 i (alen a)) . . .)]], . . .)

As before, we have relevant updates in Π17:
(= ([[a]],bt3) ([[a]],bt11)) ∈ Π17

(= ([[i]],bt11) (+ ([[i]],bt3) 1)) ∈ Π17

(= ([[lo]],bt3) ([[lo]],bt11)) ∈ Π17

(= (alen ([[hi]],bt3)) ([[hi]],bt11)) ∈ Π17

From this, we see that the action of binding serves to chain the
equality of identities formed within different environments.

Now we’re a conditional apply state:bς18 = ([[if]], 〈[[(>= ([[i]],bt11) (alen ([[a]],bt11)))]]〉, . . .)
This time, we cannot determine the truth of the condition, so fork-
ing is inevitable. However, because the count of the condition is
one, we can assert its truth or falsity on each branch.
Next, we’ll delve one state into the branch where the condition
holds (that is, where we are done with read-array). After that,
we’ll switch back to the branch where the condition does not hold.

In the case where the condition holds, we added to Π19:
(= #f (>= ([[i]],bt11) (alen ([[a]],bt11)))) ∈ Π19.
Note that at this point, we can derive the following from (bς,Π19):

(forall k : bN
(forall a : ([[mesh]],bt1)
(implies (<=:< 0 k (alen a))

(<=:< 0 (aget a k) (alen ([[verts]],bt0)))))).
That is, we have proved that every index in mesh contains a
valid index within verts. As this branch is about to return from
read-array and enter emit-mesh, we’ll switch back the false
branch from the prior state.

Having switched back to the false branch, we’re in an eval state:bς20 = ([[(read-int7 (λ (n) ...))]], . . .).
To avoid tedious repetition, we’ll skip straight ahead to the next
apply state for aset!.

...

Jumping forward, we’re in an apply state:bς22 = ([[aset!]], 〈([[a]],bt11), ([[i]],bt11), ([[n]],bt11), cclo〉, . . .)
Just as we did the last time execution reached aset!, we’ll at-
tempt a generalization over the array. This time, the prerequi-
site to perform the generalization is not vacuously true: the range
[0,(- ([[i]],bt11) 1)] is non-empty. The prerequisite, however, for
the array update rule is still derivable from (bς22,Π22). Conse-

5 If we were running with a 0CFA contour set, we would garbage collect all
of these bindings to prevent merging, since all of them are unreachable.

quently, the prover adds the following to the next assumption base:

(forall k : bN
(forall a : ([[a]],bt11)
(forall i : ([[i]],bt11)
(implies
(<= 0 k i)
(<=:< 0 (aget a k) (alen ([[verts]],bt0)))))))

Now, we’ll jump ahead to the recursive application of read-array.

...

After jumping forward, we’re in an apply state:bς24 = (([[(λ (a i lo hi k) · · ·)]], bβ),bι24, . . .), wherebι24 = 〈([[a]],bt11),bιi++, ([[lo]],bt11), ([[hi]],bt11), ([[k]],bt11)〉, andbιi++ = [[(+ ([[i]],bt11) 1)]].
We have the following “new” bindings:bb24 = 〈([[a]],bt11), ([[i]],bt11), ([[lo]],bt11), ([[hi]],bt11), ([[k]],bt11)〉.
The variables a, lo, hi and k are being rebound to themselves, so
their bindings lose no precision. The new binding for i, however,
is not to itself—the binding is to itself plus one. If we don’t com-
pensate for this, we’ll have to throw out assumptions involving the
binding ([[i]],bt11)—including those about which indices in mesh

are safe. Fortunately, the binding ([[i]],bt11) is eligible for abstract
garbage collection, i.e., ([[i]],bt11) 	∈ bR(bς24). Hence, the Inverse
Propagation Rule applies.
Now, LFA is going to perform the following:

1. Replace ([[i]],bt11) with inverse [[(- ([[i]],bt11) 1)]] in Π24.

2. Garbage collect ([[i]],bt11) in bς24.

3. Add the new binding for ([[i]],bt11) in bς24.

What’s important to us in this process is that it shifts the in-
terval in mesh whose entries are safe from [0,([[i]],bt11)] back
to [0,(- ([[i]],bt11) 1)]. The causes the analysis to visit a state-
assumption base pairing that it’s already seen, and hence, it termi-
nate on this branch. Consequently, every path out of read-array
leaves mesh satisfying the requisite safety condition.

7. Related work
This work is embedded in the framework of abstract interpretation
laid out by Cousot and Cousot [3]. In addition, the pruning op-
eration H used to move up the lattice of approximation for con-
vergence is an instance of widening [4]. There are also relation-
ships between LFA’s propositions and Miné’s work in relational
abstract domains [12, 13]. The counting component bμ is similar to
the abstract reference counting by Hudak [7] in his static analysis
of sharing, except that where his work counts “references to,” LFA
counts “concrete counterparts to,” as in ΓCFA [11]. The proposi-
tional abstract interpretation has connections to Ball, et al.’s work
on predicate abstraction [2].

The flow analysis portion of this work descends directly from
Shivers’ original work [17] and from earlier work on ΓCFA and
ΔCFA [11, 10]. LFA has also been influenced by efforts in im-
proving speed and precision, such as work by Rehof, et al. [15]
and Agesen [1]. Recently, Meunier, Felleisen and Findler [9] used a
theorem prover in their work on a modular set-based analysis with
contracts. In that work, the prover is used to determine whether
obligations have been met across boundaries. LFA differs in that it
requires no contracts or user annotations. Given this, it would be
interesting to explore a hybrid modularized, contract-based logic-
flow analysis framework.

197

The logic in this work draws on Ebbinghaus, et al.’s introduc-
tory text [5]. The method for the correctness of interacting with the
theorem prover is inspired by the approach taken in Nanevski, Mor-
risett and Birkedal’s recent work [14], where they used the sound-
ness of an assertion logic to safely employ a theorem prover in type
checking.

The notion of a syntactic context descends from Felleisen’s
work [6]. The notion of an inverse context appears to be novel.

Static analysis for the safety of array-bounds accesses is an old
idea, and much progress has been made in the field as of late. Re-
cent work by Jia and Walker [8] has even begun working directly
on pointers (as opposed to arrays) through the use of an “Intuition-
istic Linear logic with Constraints.” However, much of the work in
the realm of verifying the safety of array-bounds accesses focuses
purely on type systems, logics and theorem proving. LFA’s mes-
sage is that these approaches pick up more power when woven into
an abstract interpretation.

8. Future work
Given LFA’s connections to relational abstract domains, fusing
Miné’s work on weakly relational abstract domains [12] and oc-
tagon domains [13] with the LFA framework presents a promising
avenue for research. Future versions of LFA should also generalize
the basic value domain to an infinite lattice, and introduce the ap-
propriate widening and narrowing operations. Given that the choice
of the set T̂ime is also left open, it’s easy to imagine making it an
infinite domain, and once again, applying widening and narrowing
to achieve the “appropriate” degree of polyvariance for the input
program. Lastly, there is a wealth of work on shape analysis, which
could be brought to bear on improving the precision of handling
abstract arrays.

Acknowledgments
I owe Olin Shivers a great deal of thanks for his original formula-
tion of higher-order flow analysis, which I draw upon, and for his
insights during our many discussions of the topic. The anonymous
reviewers demonstrated a complete mastery of the material with
their exceptionally detailed comments, critiques and questions of
the submitted paper. Much of their insight has made its way into
this paper in the form of improvements to the framework and in-
creased discussion. Those suggestions that I could not fit into this
paper will certainly be reflected in future work.

References
[1] AGESEN, O. The cartesian product algorithm: Simple and precise

type inference of parametric polymorphism. In Proceedings of
ECOOP 1995 (1995), pp. 2–26.

[2] BALL, T., MILLSTEIN, T., AND RAJAMANI, S. K. Polymorphic
predicate abstraction. ACM Trans. Program. Lang. Syst. 27, 2 (2005),
314–343.

[3] COUSOT, P., AND COUSOT, R. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In ACM SIGPLAN Symposium on
Principles of Programming Languages (Los Angeles, California,
Jan. 1977), vol. 4, pp. 238–252.

[4] COUSOT, P., AND COUSOT, R. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation, invited
paper. In Proceedings of the International Workshop Programming
Language Implementation and Logic Programming, PLILP ’92,
(1992), M. Bruynooghe and M. Wirsing, Eds., Leuven, Belgium, 13–
17 August 1992, Lecture Notes in Computer Science 631, Springer-
Verlag, Berlin, Germany, pp. 269–295.

[5] EBBINGHAUS, H.-D., FLUM, J., AND THOMAS, W. Mathematical
Logic, 2nd ed. Springer-Verlag, New York, 1994.

[6] FELLEISEN, M., AND HIEB, R. A Revised Report on the Syntactic
Theories of Sequential Control and State. Theoretical Computer
Science 103, 2 (1992), 235–271.

[7] HUDAK, P. A semantic model of reference counting and its
abstraction (detailed summary). In Proceedings of the 1986 ACM
Conference on LISP and Functional Programming (Cambridge,
Massachusetts, Aug. 1986), pp. 351–363.

[8] JIA, L., AND WALKER, D. ILC: A Foundation for Automated
Reasoning About Pointer Programs. In European Symposium on
Programming Languages (March 2006), pp. 131–145.

[9] MEUNIER, P., FINDLER, R. B., AND FELLEISEN, M. Modular Set-
Based Analysis From Contracts. In ACM SIGPLAN Symposium on
Principles of Programming Languages (Charleston, South Carolina,
January 2006), pp. 218–231.

[10] MIGHT, M., AND SHIVERS, O. Environment Analysis via ΔCFA.
In ACM SIGPLAN Symposium on Principles of Programming
Languages (Charleston, South Carolina, January 2006), pp. 127–
140.

[11] MIGHT, M., AND SHIVERS, O. Improving Flow Analysis via
ΓCFA: Abstract Garbage Collection and Counting. In Proceedings
of the 11th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2006) (Portland, Oregon, September 2006).

[12] MINÉ, A. Relational abstract domains for the detection of floating-
point run-time errors. In ESOP’04 (2004), vol. 2986 of LNCS,
Springer, pp. 3–17.

[13] MINÉ, A. The octagon abstract domain. Higher-Order and Symbolic
Computation 19 (2006), 31–100.

[14] NANEVSKI, A., MORRISETT, G., AND BIRKEDAL, L. Polymor-
phism and Separation in Hoare Type Theory. In ACM SIGPLAN
International Conference on Functional Programming (Portland,
Oregon, September 2006).

[15] REHOF, J., AND FÄHNDRICH, M. Type-based Flow Analysis: From
Polymorphic Subtyping to CFL-reachability. In Proceedings of the
28th Annual ACM Symposium on the Principles of Programming
Languages (2001).

[16] SHIVERS, O. Control-flow analysis in Scheme. In Proceedings of the
SIGPLAN ’88 Conference on Programming Language Design and
Implementation (PLDI) (Atlanta, Georgia, June 1988), pp. 164–174.

[17] SHIVERS, O. Control-Flow Analysis of Higher-Order Languages.
PhD thesis, School of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
CS-91-145.

A. Conventions
For all domains, we assume the “natural” meaning for the lattice
operators � and � as well as the relation ; that is, a point-
wise lifting (for functions), or an index-wise lifting (for vectors
and tuples). We assume implicit top � and bottom ⊥ element for
domains lacking them. When a function is applied to an element
outside of its domain, it yields ⊥; thus, we get dom(f) = {x :
f(x) 	= ⊥}. The “absolute value” notation |x| should be read and
interpreted as “the abstraction of x.”

We use boldface to denote vectors, i.e., d = 〈d1, . . . , dn〉. The
function f [x1
→ y1, . . . , xn
→ yn] is the function f except that
when applied to xk, it yields yk. Operators are implicitly lifted
point-wise over ranges for functions; that is: if ⊕ : Y × Y → Y
and f, g : X → Y , then f ⊕ g = λx.f(x) ⊕ g(x). For a tuple
t = (a, b, . . .), we have t = (ta, tb, . . .).

The function free returns the set of free variables for a given
piece of syntax. For syntactic entities with lexically scoped bind-
ings (such as λ-calculus terms or logical formulae with quantifiers),
the notation s[t′/t] denotes the capture-avoiding substitution of t
with t′ in form s.

198

