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Abstract
We describe a new program-analysis framework, based on CPS
and procedure-string abstractions, that can handle critical analyses
which thek-CFA framework cannot. We present the main theorems
concerning correctness, show an application analysis, and describe
a running implementation.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization

General Terms Languages

Keywords Delta-CFA, program analysis, flow analysis, environ-
ment analysis, functional languages, lambda calculus, super-beta,
inlining, CPS, continuations
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1. Introduction
Control-flow analysis is not enough. The difficulty of analysing and
optimising functional languages based on theλ-calculus is the tri-
facetted nature ofλ: it represents, in one construct, the fundamental
data, control, and environment structure of these languages. As the
three fundamental structures of a programming language meet and
intertwine inλ, then, analysis ofλmust grapple with all three facets
of the construct.

Where previous work in analysing the dynamic behaviour of
λ-based programming languages has been lacking is in reasoning
about the relationships between the environment structures asso-
ciated with values that flow through the program. If we could do
better, we would enable a group of optimisations that are funda-
mentally beyond the reach ofk-CFA analyses [10]. One such opti-
misation is Super-β inlining, which we focus on here.

The Super-β inlining condition is that aλ term may be inlined at
a call site if (1) all functions applied at the call site are closures over
thatλ expression, and (2) the dynamic environment at the point of
application is always equivalent (up to theλ term’s free variables)
to the environment captured at the point of closure. While any
control-flow analysis addresses the first condition, the second one
requires reasoning about binding environments.

Consider the example code in Figure 1, a generic doubly nested
loop where the inner loop calls a closure over the outer loop’s
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(letrec ((lp1
(λ (i x)
(if (= i 0) x

(letrec ((lp2 (λ (j f y)
(if (= j 0)

(lp1 (- i 1) y)
(lp2 (- j 1) f

[f y])))))
(lp2 10 (λ* (n) (+ n i)) x))))))

(lp1 10 0))

Figure 1. Super-β enables the term labelled * to be inlined at the
bracketed call site.

iteration variable. It is safe to inline theλ term labelled * at the
bracketed call site within the loop body. However,β-reduction
fails to do so due to the loops, andk-CFA fails due to the free
variablei. Thus, two standard inlining techniques fail right where
compiler optimization is at its most crucial—the body of a nested
loop. ∆CFA, the analysis we present, can prove the safety of this
inlining. It does so through an environment analysis which shows
thati always has the same value in the closure and at the bracketed
call site.

One reason Super-β matters is that it directly addresses an im-
portant use ofλ expressions in functional languages: as “carriers”
of data. We make a closure over some values at pointa and ship the
closure to an application at pointb. If the free variables captured at
point a are visible at pointb and have the same bindings, we can
eliminate the overhead of packaging up a closure—perhaps even
permitting the values to be communicated froma to b in registers.
Opportunities for Super-β tend to arise when other inlining steps
moveb into some common scope witha. We have been stumbling
over possible applications of Super-β for years, ranging from op-
timising loops to fusing coroutines. In this paper, we bring these
optimisations into reach.

Our work consists of a concrete semantics, an abstract analysis,
an environment theory, safety conditions, correctness theorems, ef-
ficiency enhancements and an implementation. The principal the-
oretical tool utilized throughout our work is the notion offrame
strings, which we define here. Frame strings allow us to reason
about stack behaviour, which we convert into the ability to reason
about environments.

For reasons of space, we have ruthlessly excised supporting
proofs; only a few proof sketches escaped these cuts. Full proofs
of our claims are provided in a longer report [6].

2. Conventions
Boldfacev, and brackets〈v1, . . . , vn〉 denote vectors. Vectors may
be implicitly promoted to sets with the obvious meaning. We im-
plicitly lift functions element-wise over sets and tuples, and point-
wise over functions.f |D is the functionf restricted to domainD.
S is the set complement of setS. We assume natural definitions



for lattice componentsv, ⊥, >, t andu. For a latticeP(X), we
definex vP(X) y iff ∀x ∈ X : ∃y ∈ Y : x vX y, that isvP(X)

is not ⊆. A large, multi-line curly brace{ or } indicates logical
conjunction.

3. Partitioned CPS
Our analysis operates over a syntactically partitioned continuation-
passing style (CPS) input [13], intended for use as an interme-
diate form generated from programs written in a direct-styleλ-
calculus language, with user-level access to full, first-class contin-
uations, such as Scheme or SML/NJ. By “partitioned,” we mean
that all the forms (variables, call arguments, calls andλ expres-
sions) are statically marked as belonging to either the “user” world,
or the “continuation” world. We adopt the term “user world,” as
continuation forms cannot be expressed directly by the program-
mer in the original, direct-style source. (What Scheme program-
mers think of as continuations, that is, the values created by the
call-with-current-continuation procedure, are, with re-
spect to this partition, still user-world values. They just happen to
be user-world procedures that internally capture a continuation-
world value.) When translating from direct-style code to CPS,
eachλ expression from the source maps to a “user”λ expression,
while return points or evaluation context in the direct-style form
are mapped to continuationλ expressions.

The CPS conversion also provides two static constraints: only
user procedures take continuation arguments, and every user pro-
cedure takes at least one. So continuations are never passed to
continuations. Figure 2 shows the resulting grammar. Code points
are marked by means of unique labels attached toλ expressions
and call sites. We assume two distinct sets of labels, one for user-
world items and one for continuation-world items. This is how we
mark our user/continuation partition. (It also means that we can
treat the two worlds uniformly simply by ignoring labels, which is
convenient at times.) A userλ expression,ulam, is tagged with a
user-world label̀ ; its formal parameters are partitioned into zero
or more user-world parameters,u, and one or more continuation
parameters,k. Having multiple continuation parameters allows us
to encode conditional-control operators as functions and easily en-
code multi-return function calls [11]. A continuationλ expression,
clam, is marked with a continuation-world label,γ, and has only
user-world formals,u. Call sites (ucall andccall ) are marked and
partitioned in a similar way. To improve precision, we also require
the program to be alphatised, that is, no two bound variables have
the same name.

We use the functionfree to denote the free variables of a term.
The functionLpr ∈ LAB → LAM + CALL maps labels to
terms for a programpr . We useBpr ∈ LAB → P(VAR)
to map the label of aλ expression to the variables it binds. For
instance,Bpr (ψ) = {x, y, k} if (λψ (x y k) call) is in pr . For
compactness, letBpr (ψ) mean

⋃
i B(ψi). When the programpr

is clear from context, we omit it from the notation.

4. Procedure strings and stack models
A procedure string, as used by Sharir and Pnueli [9], or Harri-
son [3], is the sequence of call and return actions performed during
some segment of computation.E.g., were we to trace the sequence
of actions involved in the recursive computation of the factorial of
one, it might produce the sequence “callfactorial, call =, re-
turn =, call -, return-, call factorial, call =, return=, return
factorial, call *, return*, returnfactorial.” Notice how the
call/return entries properly nest like brackets. If we have a sim-
ple model of procedures that says a call allocates a stack frame,
and a return pops it, then a procedure string also models the oper-
ations performed on the stack. Thinking in terms of the stack oper-

pr ∈ PR ::= (λ (halt) call)

v ∈ VAR = UVAR + CVAR
u ∈ UVAR = a set of identifiers
k ∈ CVAR = a set of identifiers

lam ∈ LAM = ULAM + CLAM

ulam ∈ ULAM ::= (λ` (u
∗ k+) call)

clam ∈ CLAM ::= (λγ (u
∗) call)

call ∈ CALL = UCALL + CCALL

ucall ∈ UCALL ::= (h e∗ q+)̀
ccall ∈ CCALL ::= (q e∗)γ

f , x ∈ EXP = UEXP + CEXP
h, e ∈ UEXP = UVAR + ULAM

q ∈ CEXP = CVAR + CLAM

ψ, κ ∈ LAB = ULAB + CLAB
` ∈ ULAB = a set of labels
γ ∈ CLAB = a set of labels

Figure 2. Partitioned CPS

ations (push/pop) gives us a “space-like” view of the computation,
as opposed to the “time-like” viewpoint of the control operations
(call/return). A space-like view can be useful when focussing on
environment structure: variable bindings live in frames (or, at least,
that is where they are born).

However, in functional languages, this call/return≡ push/pop
correspondence breaks down somewhat. For example, we imple-
ment iteration in a functional language with tail calls. Such an
iteration performs many calls without growing the stack. It is a
better model, then, to think of such a computation as performing
many calls, but only a single return. When we add more complex
control operators, such as access to full continuations, the simple
call/return model breaks even further. In short, call/return steps no
longer nest with simple “bracket-like” structure.

However, no matter what the call/return behaviour is, it is still
true that the associatedstack operationsnest properly. That is, if
we push framea, then push frameb, the two frames will necessar-
ily be popped in the order “b, thena.” This suggests that perhaps
we could get a more precise model of program behaviour for func-
tional programs if we took models based on procedure strings and
changed to abstractions whose nesting and cancellation properties
were driven by analogues to stack behaviour.

This takes us from the classic, “FORTRAN-like” view to the
view promoted by Steele [13], who summarised the shift in per-
spective with the mantra “argument evaluation pushes stack.” This
is even more explicitly captured by CPS representations, where the
model becomes “continuations are closed on the stack.” Thus, our
key pair of ideas are (1) to use a CPS representation to provide
a unifying model for program control, environment and data flow,
and (2) to adopt an abstraction somewhat like classic procedure
strings, but tuned to the nesting of frame allocation. To emphasize
its origins in this space-like rather than time-like view, we call our
abstraction “frame strings” rather than “procedure strings.”

5. The CPS stack model
It’s a common misunderstanding that language implementations
based on CPS intermediate representations do not employ a run-
time stack. This is not the case; in fact, two of the earliest Scheme
compilers ever written, Rabbit [13] and T’s Orbit [5] were CPS-
based compilers that managed a run-time stack, just as a standard
C or Pascal compiler might.



The key to doing so is noting that the compiler can distin-
guish between continuation and non-continuation values, as we
have made explicit with our CPS grammar. The mechanics of stack
management in a CPS setting are as follows. When a CPS call ex-
pression is executed, it is done in the context of free variables, some
of which may be continuations. In our stack model, a continuation
is a closure whose environment record is allocated on the stack,
rather than the heap. That is, it is a code/environment pair(c, s).
Thec value points to the code to be executed when we invoke the
continuation; thes value points into the stack. When we invoke
the continuation, we reset the stack-pointer register tos and then
jump to c. While the continuation runs, its code may access the
variables over which it is closed by offsets from the stack regis-
ter. Thus, we speak of “calling” user procedures, but “returning”
to continuations. We can simplify this representation one step fur-
ther by storing thec value in the stack frame itself, reducing the
continuation from a(c, s) pair to just the single values.

Assume that we pass the user-world arguments to procedures
(both user procedures and continuations) on the stack. Thus, as we
transfer control to a procedure or back to a return point, we push a
frame to hold the values being passed to the procedure, or returned
to the return point, respectively. The issue we must first settle, then,
is when to pop stack frames. A tail call will pop the current frame
just before the control transfer and frame push, as will a normal
return (encoded as a continuation call). A non-tail call, on the other
hand, will not first pop the current frame.

During execution of a call expression, the key invariant the stack
maintains is that the frame just below the current one is either
the currently executing continuation’s closure frame, if the call
expression is executing within a continuationλ; or a continuation
bound to a variable occurring free in the call expression, if the call
expression is executing within a userλ. This is just another way
of saying this frame is live: the former case implies that the frame
is needed now (by the currently-running continuation); the latter,
that it may be needed in the future (by means of a reference to the
variable bound to it). Maintaining this liveness invariant is what
drives our stack-popping policy when we perform calls.

When a procedure call(h e∗ q+)̀ happens, we must first eval-
uate the procedure (h) and its arguments (thee andq). The contin-
uation arguments,q, are either variable references orλ expressions.
Consider a simple tail call. It is encoded in CPS by a call with a sin-
gle continuation that is a variable. This variable’s value is a stack
closure; that is, it points to a stack frame. The live-frame invari-
ant implies that this frame is the one immediately under the current
frame. So we can (and must, to preserve the invariant) pop the cur-
rent frame off the stack, before doing the control transfer and frame
push.

On the other hand, a simple non-tail call is encoded in CPS as a
call with a single continuation that is aλ expression. Evaluating
this continuationλ expression captures the current frame in the
created closure. Since we are passing this continuation to the target
procedure, it is live and so cannot be popped—just as we expect
from a non-tail call.

In either case, we then allocate a fresh frame to hold the argu-
ments being passed, and jump to the procedure. These two scenar-
ios generalise to the multiple-continuation case: if one or more con-
tinuations areλ expressions, we close them over the current frame,
and do not pop it: a non-tail call. If all are variable references to
older frames, we instead restore the stack so that the outermost such
frame is on top: a tail call.

To execute a continuation return(q e∗)γ , we first evaluate the
continuation form and its arguments. If the continuationq is a
variable, we reset the stack back to the continuation value, then
allocate a new frame for the arguments being passed, then jump to
the continuation’s code.

p, q ∈ F = Φ∗ (Frame string)
φ ∈ Φ ::= 〈ψt | (push)

| |ψt 〉 (pop)
ψ ∈ Ψ = λ term labels
t, i ∈ Time = an infinite set of times

Figure 4. Frame strings

If the return’s continuation is not a variable, but an explicitλ ex-
pression, evaluating theλ expression closes over the current frame;
we then immediately invoke it as above. This is the degenerate case
of a “let continuation.”

Our model is slightly different from the standard model de-
scribed by Steele and used in Rabbit and Orbit in one way: our pro-
tocol passes arguments to both user procedures and continuations
on the stack, rather than in some separate set of registers. We do
this so that all variable bindings show up as stack allocation. Bear
in mind the point of this model. We aren’t actually implementing a
compiler; we are just building an analysis. We are using the nested
sequences of stack operations produced by program execution as
the concrete source of our analysis abstractions.1

As an illustrative example, consider the pair of factorial func-
tions defined in Figure 3. The expression on the left is iterative
factorial. We have extended our core syntax by adding aletrec
form for constructing loops, as opposed to, say, writing out the Y
combinator. (We’ll properly addletrec to the language later, after
exploring the basic, core language.) The%if0 primitive function is
a conditional, taking one user value and two continuations as ar-
guments; it branches to the first continuation if the value is zero,
and to the second continuation, if not. Examining this code with
our stack-management policy in mind will show that the stack is
managed precisely as we’d expect for an iterative factorial. By way
of contrast, the expression on the right is recursive factorial; it, too,
conforms with our expectations for the way it manages the stack.

6. Frame strings
Now that we have an informal understanding of stack management,
we can develop the formal machinery for describing our stack op-
erations. A frame string is a record of the stack-frame allocation
and deallocation operations over the course of some segment of a
computation; it can equally be viewed as a trace of the program’s
control flow. More precisely, a frame string is a sequence of charac-
ters, with each character representing a frame operation (Figure 4).

A single frame character captures three items of information
about the operation: (1) the labelψ of the λ term attached to
that frame; (2) the timet of the frame’s creation; and (3) the
action taken, either a push represented as a “bra”〈··| or a pop
represented as a “ket”|··〉. Thus, the character〈l387| represents a call
to λ expressionl3 at time 87, while|l387〉 represents returning from
it at some later time.

We said just previously that a|··〉 action is a procedure return.
However, here in our modern world that allows tail calls and con-
tinuation invocations, what wereally meant in our example is that
|l387〉 represents poppingl3’s frame. Perhaps this occurred because
l3 was returning, but perhaps it was instead becausel3 was per-
forming a tail call, and so we would never be returning tol3. Note,

1 In fact, we suspect a model that doesn’t pass arguments on the stack
might give greater analytic precision than the one we are using here, but
the cost would be a somewhat more complex set of formal machinery. As
we are currently considering extended models that would giveeven greater
precision, we keep things as simple as possible for now. (Here, we use the
term “simple” loosely.)



(λt (n ktop)
(letrec ((f (λf (m a k)

(%if0 m
(λ1 () [k a])
(λ2 ()
(- m 1 (λ3 (m2)

(* m a (λ4 (a2)
(f m2 a2 k)
)))))))))

(f n 1 ktop)))

(λt (n ktop)
(letrec ((f (λf (m k)

(%if0 m
(λ1 () [k 1])
(λ2 ()
(- m 1 (λ3 (m2)

(f m2 (λ4 (a)
(* m a k)
)))))))))

(f n ktop)))

Figure 3. Labelled CPS factorial functions: iterative and recursive. Continuationλ expressions are labelled with integers; userλ expressions,
with letters. Continuation items have also been distinguished by using square brackets to delimit continuation calls (that is, returns), and
underlining continuationλ’s. Continuation variables are those beginning with the letter “k.”

also, that if our source language provides full continuations, then
it is possible for a frame to be popped and latter re-pushed, when
some saved “upward” continuation is invoked.

Let us return to our two factorial functions to generate some
example frame strings. If we use each procedure to compute the
factorial of 1, we get the frame strings

〈t1|
t
1〉〈

f
2|〈

%if0
3 |%if03 〉〈24|〈

-
5|

-
5〉〈

3
6|〈

*
7|

*
7〉〈

4
8|

4
8〉|

3
6〉|

2
4〉|

f
2〉

〈f9|〈
%if0
10 |%if010 〉〈111|

1
11〉|

f
9〉

and

〈t1|
t
1〉〈

f
2|〈

%if0
3 |%if03 〉〈24|〈

-
5|

-
5〉〈

3
6|

〈f7|〈
%if0
8 |%if08 〉〈19|

1
9〉|

f
7〉〈

4
10|〈

*
11|

*
11〉|

4
10〉|

3
6〉|

2
4〉|

f
2〉

respectively. Perusing the two strings will give a feeling for the con-
nection between stack management operations and control flow in
the execution of CPS programs. Frame strings allow us to precisely
describe the stack operations performed at various points in a pro-
gram execution. For example, if we take the frame string shown
above for the iterative computation, and isolate the segment cor-
responding to the first trip through the loop, we get the following
trace, where the frame string is broken up to make the entries of the
“stack change” column:

Call site Description Stack change Stack
〈t1|

(f n 1 ktop) tail call toλf |t1〉〈
f
2| 〈f2|

(%if0 m ...) call to%if0 〈%if03 | 〈f2|〈
%if0
3 |

%if0 internal return toλ2 |%if03 〉〈24| 〈f2|〈
2
4|

(- m 1 ...) call to- 〈-5 | 〈f2|〈
2
4|〈

-
5 |

- internal return toλ3 |-5 〉〈
3
6| 〈f2|〈

2
4|〈

3
6|

(* m a ...) call to* 〈∗7| 〈f2|〈
2
4|〈

3
6|〈

∗
7|

* internal return toλ4 |∗7〉〈
4
8| 〈f2|〈

2
4|〈

3
6|〈

4
8|

(f m2 a2 k) tail call toλf |48〉|
3
6〉|

2
4〉|

f
2〉〈

f
9| 〈f9|

Note how nested continuations accumulate frames until removed
by the final tail call.

7. Operations on frame strings
There are a couple of basic operations we can perform on frame
strings. The operator+ is the string concatenation operator. The
operatorb·c cancels out opposing, adjacent frame-action pairings
until no more cancellations can be made. That is, if〈ψt | occurs to the
immediate left or right of|ψt 〉 in a frame string, we may delete the
pair; when no further annihilations inp are possible, the remainder
is bpc, e.g.b〈a1 |

a
1〉〈

b
2|c = 〈b2|. This is known as taking thenet of

trS(ε) = ε

trS(〈ψt | + p) = 〈ψt | + trS(p) if ψ ∈ S

trS(|ψt 〉 + p) = |ψt 〉 + trS(p) if ψ ∈ S

trS(〈ψt | + p) = trS(p) if ψ 6∈ S

trS(|ψt 〉 + p) = trS(p) if ψ 6∈ S

dir∆(p) = {re ∈ ∆ : p ∈ L(re)}

p �S q iff trS(bp+ q
−1c) = ε

Figure 5. Analytic tools for frame strings

a frame string.2 It follows that the setΦ∗ modulob·c is a group,
a fact which turns out to be critical to proving theorems about
environments and designing an abstract model of frame strings. The
operationp−1 reverses frame stringp, flips each frame action to its
anti-frame action, and then nets it. This is the inverse ofp modulo
b·c.

To connect these operators back to our stack-management
model, if we have a frame stringp that describes the trace of a
program execution up to some point in time, thenbpc gives us a
picture of the stack at that time. (For example, the stack snapshots
we saw in the previous execution trace can be produced by taking
the net of successive prefixes of the frame string describing the en-
tire trace.) Alternately, ifp represents somecontiguous segmentof
a program’s trace, thenbpc yields a summary of the stack change
that occurred during the execution of that segment. (We will, in
fact, make more frequent use of this second interpretation, which
connects two points in a program’s execution, than we will of the
first one.) If frame stringp describes some sequence of actions on
the stack, thenp−1 produces the frame string that will “undo” these
actions, restoring the stack to its state at the point in the computa-
tion corresponding to the beginning ofp. This is just what we will
need to handle general continuations (as well as the more prosaic
task of handling simple returns).

In Figure 5, we define three tools for selecting, extracting and
testing structure from frame strings. The functiontrS produces the
trace of a frame string with respect to procedure labels inS by
throwing away any frame action whose procedure label is not inS.
The functiondir∆ returns thedirectionof its argument with respect
to a set of regular expressions∆. That is, it returns the subset of∆
whose members match the argument supplied todir∆.3

2 You may be wondering how a push action could possibly wind up on
the right of its matching pop action. The answer involves the use of full
continuations.
3 These regular expressions will be matching net frame strings that describe
thechangein the stack between two points in execution; thus the use of∆.



Depending on the analysis or optimization we’re conducting,
there are a number of sets which make sense for∆. For instance,
∆Ton = {〈··|

∗
, |··〉

∗
, |··〉

∗〈··|
∗} extracts thetonicity of a string, that

is:
p is push-monotonic if〈··|

∗ ∈ dir∆Ton
(p)

p is pop-monotonic if|··〉
∗ ∈ dir∆Ton

(p)
p is pop/push-bitonic if|··〉

∗〈··|
∗ ∈ dir∆Ton

(p)

The nesting property of frame strings entails the following:

Lemma 7.1 (Bitonicity of the Net). The net of any frame-string
change between two points in execution is pop/push-bitonic.

We also add the notion of a string’strace purity, which becomes
useful in reasoning about environments. The following definitions
identify different kinds of string purity:

p is continuation-pure iftrCLAB (p) = p
p is user-pure iftrULAB (p) = p
p is S-pure if trS(p) = p

The relation�S appears somewhat arbitrary at first, but it can
be interpreted as follows: undo the net effect ofq on p; p �S q
then holds if and only if the remaining string consists solely of
frame actions for procedures inS.4 Later on, we show that certain
frame actions—the ones that will go intoS—do not change the
environment in a meaningful way, and the purpose of this relation is
to ignore these frame actions. The choice of the symbol� is meant
to suggest that the right-hand side will be a net of some suffix of
the left-hand side whenever we use it. (The relation has no utility
when this is not the case.)

The following useful properties of frame strings and their oper-
ators follow as a natural consequence of their group-ness:

bp−1 + pc = bp+ p
−1c = ε

bp+ qc = ε =⇒ bqc = p
−1

(p−1)−1 = bpc

8. Frame-string semantics
In the preceding sections, we’ve (1) defined our CPS language,
(2) described how its call behaviour connects to a model of stack
manipulation, and (3) defined a formal tool, frame strings, we can
use to express stack manipulation. Now we have all the pieces we
need to formally describe the CPS/stack connection. That is, we can
make the model of Section 5 precise by defining a non-standard
operational semantics for our CPS language that expresses stack
manipulation, using frame strings. (This semantics is so close to
the standard CPS semantics, and the standard semantics itself so
straightforward, that we have chosen not to bother first developing a
standard semantics, in order to save space. However, we have done
so elsewhere, and formally shown the correspondence between the
two [6].)

For the frame-string (FS) semantics, the domains given in Fig-
ure 6 are nearly identical to standard environment-based CPS se-
mantics domains. The changes are that closures,Clo, now carry
a timestamp marking their creation time, and machine configura-
tions include a frame-string log. The frame-string logδ for a given
configuration is a function that maps some time from the past to
a frame string describing all the actions performed since then. We
should call attention to the particular way we’ve defined the log: it’s
relative, not absolute. We could just as easily have defined the log
to map a timet to the actions performed by the computation from
start tot; the net of this string would tell us what the stack looked
like at timet. Instead, the log tells us what has happened between

4 To help demystify things, when we utilize this relation it will always be
the case thatp = r + s andq = bsc; in this case,bp + q−1c = brc.

ς ∈ State = Eval + Apply

Eval = CALL × BEnv × VEnv × Log × Time

Apply = Proc × D∗ × D∗ × VEnv × Log × Time

β ∈ BEnv = VAR⇀Time

ve ∈ VEnv = VAR × Time⇀D

proc ∈ Proc = Clo + {halt}
clo ∈ Clo = LAM × BEnv × Time

d , c ∈ D = Proc

δ ∈ Log = Time⇀F

Figure 6. FS semantics domains

time t and now; the net of this string tells us the net effect of the
intervening computation on the stack. As we’ll see later, this focus
onchangewill be key to exploiting the non-standard semantics for
optimisation-driven analyses that focus on the relationship between
two points in a computation.

The basic semantic domains for the language are given in Fig-
ure 6. A machine configuration is either an “eval” or an “apply”
state. In anEval state, control is at a call site; it is given by a call
expression, an environment context for that expression, and the cur-
rent log and time. We represent environments with the factoring
taken from Shivers’ CFA work [10]: an environment is split into
a “variable environment,”ve ∈ VEnv , and a “binding environ-
ment,” β ∈ BEnv . A binding environment maps a variable to a
time stamp, the time its binding was made. A variable environment
recordsall bindings that have occurred during the execution of the
program. Thus it maps a variable and a binding time to its value for
that time. In anApply state, control is moving into a user function
or a continuation; it is given by the procedure to apply, a vector of
user-world arguments, one of continuation arguments, the global
variable environment, and the current log and time.

Remembering that our goal is to prove environment equiv-
alence, we can now formally preview what we want to prove.
Given two factored environments, (β1,ve1) and (β2,ve2), we want
to show thatve1(v, β1(v)) = ve2(v, β2(v)). Because the global
variable environment increases monotonically throughout the pro-
gram, eitherve1 v ve2 or ve2 v ve1, and hence, we can show
that v is equal between these two environments just by showing
β1(v) = β2(v). As a result, our forthcoming environment theo-
rems need not mention the global variable environment at all. More
importantly, this factoring lets us determine the equivalence of two
environments for some variable without ever knowing what the
value(s) of that variable may be within them.

The set of denotable values,D , is the same as the set of proce-
dures (for now—we discuss adding basic values later). A member
of Proc is a procedure: either a closure or thehalt continuation. We
represent a closureclo with aλ term plus the contour environment
β giving the bindings of its free variables, plus a third component:
the birth date of the closure, that is, the time theλ expression was
evaluated, producing the closure. A closure(lam, β, t) can repre-
sent either a user closure, iflam ∈ ULAM , or a continuation clo-
sure, iflam ∈ CLAM . ForTime, we assume some ordered, denu-
merable set, and writet0 for the start time at which program execu-
tion begins. We advance time with thetick function; this function
may take additional arguments beyond the current time as an aid
to the analysis we are trying to capture with our semantics,e.g.,
tick ∈ Time × Conf → Time.

Figure 7 contains the auxiliary functions used in our semantics.
The functionA takes an argument and returns its value in some
context given byve, β andt: if the expression is a variable,A looks
it up in the current environment; if the argument is aλ expression,
A uses it to construct a closure. The functionageδ produces the



A β ve t lam = (lam, β, t)
A β ve t v = ve(v, β(v))

ageδ(halt) = δ(t0)
ageδ(lam, β, t) = δ(t)

youngestδ 〈proc1, . . .〉 = Shortest {ageδ(proc1), . . . }

I(pr) = ((pr , [], t0), 〈〉, 〈halt〉, [], [t0 7→ ε], t0)

V(pr) = {ς : I(pr)⇒∗
ς}

Figure 7. Auxiliary definitions for FS semantics

“life history” of a continuation: it takes the birth-date of the closure,
t, and uses it to index the log. The halt continuation is handled by
defining its birth as the beginning of time. The functionyoungest
takes a vector of continuations, and returns the shortest such “life
history”—that is, the frame string representing the life-span of the
youngest continuation in the vector.

The functionI maps a program into the machine’s initial state.
Final states are apply states where the procedure to be applied is
thehalt continuation, but that is not important for our non-standard
analysis. Instead, we define a collecting semantics with the function
V, which maps a program to the entire set of states through which
its execution evolves; we writeς⇒ ς ′ to say that stateς steps to
stateς ′ under the machine’s small-step transition relation⇒.

The heart of the semantics is given by the two rules of Figure 8
defining the transition relation: one axiom each forEval andApply
machine configurations. The call rule evaluates the elements of
the call, and transitions to an apply state, where the procedure
will be applied to the argument values. The apply rule binds the
variables of the procedure’sλ expression, then transitions to a call
state, where theλ expression’s body will be evaluated in the new
environment. What’s of interest in this simple, otherwise standard
system is the extra machinery to manage the stack, in the form of
the log. Most of the work happens in the call rule, in the calculation
of the stack change∇ς. It is managed just as described in Section 5.
The expressionf in the procedure position of the call is evaluated to
the valueproc. If f is a continuation (f ∈ EXPC ), then this call
will reset the stack toproc’s stack frame. The functionage tells
us everything that has happened to the stack sinceproc was born
(that is, since its frame was allocated on the stack). Inverting this
frame string provides the series of actions that must be performed
on the stack to revert it back to that state. Remember: continuation
invocation restores stack; this is where the restoration happens. In
the standard case of a simple return, all of this machinery amounts
to a single pop action. But if we were invoking a continuation to
“throw” outwards in an exception-like manner, we might return
over multiple frames, and thus our∇ς action might consist of
multiple pop actions. More exotic still, if we were invoking a
“downwards” continuation, the action could include push actions to
restore previously-popped frames. Finally, if the continuation is a
“let continuation,” that is, iff is aλ expression that we are invoking
at its point of appearance, the frame action is the empty string: the
continuation will run in the current stack context.

On the other hand, the formf might be a user expression, rather
than a continuation. If so, it won’t evaluate to a stack pointer as
a continuation would, and so doesn’t require any action on the
part of our stack-management policy. However, user proceduresare
passed continuations asarguments: these are theqj arguments in
the call form.Theseexpressions evaluate to the continuationscj .
If we think of these continuationscj as stack pointers, we want
to reset the stack back to the outermost such pointer, the high-
water mark that will preserve all of these continuations. Again, the

functionyoungest computes this for us. It’s worth considering, for
a moment, how this is done, as it relates to our relative (as opposed
to absolute) view of the stack, as well as the relation between our
time-like and space-like view of the computation.

The mechanism we are using to track the stack is the logδ,
which tells us, for timet, everything that has happened to the stack
since t. Now, given a set of continuations or live stack frames,
the outermostone (a space criterion) must be theyoungestone
(a time criterion): the stack is a LIFO mechanism. The function
youngest could choose this frame based on its birth-date. How-
ever, we plan to abstract this semantics, and our abstraction will
destroy the orderedness of time, so this tactic is too fragile for our
purposes. Instead, we switch back to space-like criteria. The func-
tion youngest equivalently makes its choice by returning the short-
est frame string: the frame with the shortest “life story” is clearly
the youngest frame.

Consider what happens when a non-tail call is performed. A
non-tail call is one in which a continuation argumentq is aλ term
(as opposed to a variable reference). If this case, evaluatingq with
A will capture the current timet in the(lam, β, t) tuple. Since this
newborn value is as young as it is possible to be, the∇ς frame-
string change will be the empty string. So the call will not first pop
the current frame off the stack, as a tail-call would.

In contrast, a tail call is one where all theq are variable refer-
ences. Evaluating these variables withA will produce older con-
tinuations that were born at previous times. This will cause the
(youngestδ c)

−1 expression to produce a frame string whose op-
erations will specify some stack adjustment, in the form of|ψ

t′
〉 pop

characters. Thus we will pop frames off the stack as we perform the
call: this is a tail call.

Once we’ve computed the stack change needed, we update the
log so that any future fetch from it will produce an answer with this
new segment of actions appended.

The log maintenance for the apply rule is much simpler. When
a procedure is applied, we push a frame for its arguments:〈ψ

t′
|.

The net effect of this stack-maintenance machinery is to obey
Steele’s protocol for functional languages with proper tail calls and
even full continuations. A simple call pushes a frame; a simple
return pops a frame. A tail call first pops a frame, then pushes one.
Exotic uses of continuations do what it is needed to be consistent
with the contract. Once again, it’s worth emphasizing that these two
rules give us a mechanism that enormously generalises “function
call,” allowing us to handle every form of control that occurs in a
program, from basic-block sequencing to coroutines.

9. Abstract frame strings
The first step in creating a computable abstract analysis out of our
concrete semantics is the development of abstract frame strings.
Any such abstraction must provide:

1. F̂ , a set of abstract frame strings;

2. | · | : F → F̂ , an abstraction operation for frame strings;

3. ⊕ : F̂ × F̂ → F̂ , an operator for “concatenating” abstract
frame strings;

4. ·−1, an abstract “inverse” operation; and

5. %S⊆ F̂ × F̂ , an abstract comparison relation, parameterized
over a set of procedure labelsS.

Coupled with the constraints we present shortly, we have a rich
space of designs for abstract frame strings; here, we limit ourselves
to one such (rather simple) design.

To pack an infinite set of frame strings into a finite setF̂ , we
have to choose where to lose precision. Our abstract frame strings



(
[[(f e∗ q∗)κ]], β, ve, δ, t

)
⇒ (proc,d, c, ve, δ′, t)

where





proc = Aβ ve t f
di = Aβ ve t ei
cj = Aβ ve t qj

∇ς =

{
(ageδ proc)−1

f ∈ CEXP

(youngestδ c)
−1 otherwise

δ
′ = δ + (λt.∇ς)

length(d) = length(u) length(c) = length(k)

(([[(λψ (u
∗
k
∗
) call)]], β, tb),d, c, ve, δ, t) ⇒ (call , β′

, ve
′
, δ

′
, t

′)

where





t
′ = tick(t)
β
′ = β[ui 7→ t

′
, kj 7→ t

′]
ve

′ = ve[(ui, t
′) 7→ di, (kj , t

′) 7→ cj ]

∇ς = 〈ψ
t′
|

δ
′ = (δ + (λt.∇ς))[t′ 7→ ε]

Figure 8. The transition relationς⇒ ς ′

do so in four places: (1) we discard actions which are not in the net
of the frame string,e.g., |〈a1 |〈

b
2|
b
2〉| = |〈a1 ||; (2) we discard all time

information,e.g., |〈a1 |〈
b
2|| = |〈a3 |〈

b
4||; (3) we discard the ordering

of actions betweendifferent procedures,e.g., |〈a1 |〈
b
2|| = |〈b2|〈

a
1 ||;

and (4) we remember at most one action precisely for a given
procedure,e.g., |〈a1 |〈

a
2 || = |〈a1 |〈

a
2 |〈

a
3 |〈

a
4 || but |〈a1 || 6= |〈a1 |〈

a
2 ||.

As a service to future designers of frame-string abstractions, of
these choices, (1) reduces space requirements, and it allows us to
assume a pop/push bitonic structure, yet it causes absolutely no
loss in analytic power; (2) is an extreme time abstraction, wors-
ening precision but reducing space requirements; (3) seems to be
necessary for finiteness, but it costs us no analytic power; (4) is the
most subjective, as the “right” amount of information to remember
about a procedure is highly dependent on purpose.

We abstract a frame stringp to a function mapping the label for
any givenλ expression to a description of the net stack motion inp
for just thatλ expression. Thus our set of abstract frame strings is

F̂ = Ψ → P(∆),

where∆ is a set of regular expressions describing the net motion
for a given procedure; here, we use

∆ = {ε, 〈··|, |
·
·〉, 〈

·
·|〈

·
·|

+
, |··〉|

·
·〉

+
, |··〉

+
〈··|

+
}.

For example,|〈a1 |〈
a
2 |〈

b
3|| = (λψ.{ε})[a 7→

{
〈··|〈

·
·|

+
}
, b 7→ {〈··|}].

Note that there is no regular expression in∆ for 〈··|
+|··〉

+, or any
other exotic combination for that matter. By Lemma 7.1, any frame
string generated by the FS semantics is covered by∆, even if we
allow for full user continuations.

It might seem that allowing an abstract string to returnsetsof
regular expressions is unnecessary, as|p| for any concrete frame
string will always match only one member of∆ for each procedure.
However, we require sets when concatenating two abstract frame
strings, which degrades precision.

We define our abstraction operator with

|p| = λψ.dir∆(tr{ψ}bpc).

For brevity, we use the notation|〈ψ· || in place of
⊔
t |〈

ψ
t ||.

We induce a definition for⊕ with the following constraint:

|p| v p̂ and|q| v q̂ =⇒ |p+ q| v p̂ ⊕ q̂ .

We define⊕ to be the most precise operator which satisfies the
constraint, which is

p̂ ⊕ q̂ = λψ.{â ∈ cat(â1, â2) : â1 ∈ p̂(ψ) andâ2 ∈ q̂(ψ)},

wherecat is defined in Table 1. Similarly, we define·−1 to be the
most precise operator satisfying

|p| v p̂ =⇒ |p−1| v (p̂),−1

which is:

p̂
−1 = λψ.map




ε 7→ ε, 〈··| ↔ |··〉,
〈··|〈

·
·|

+ ↔ |··〉|
·
·〉

+
,

|··〉
+〈··|

+ ↔ |··〉
+〈··|

+


 (p̂(ψ)).

Several abstract comparison relations are induced by the constraint

|p| v p̂ and|q| v q̂ andp̂ %S
q̂ =⇒ bpc �S bqc.

We choose the following for our work here:

p̂ %S
q̂ ⇐⇒ ∀ψ ∈ S : (p̂ ⊕ q̂

−1)(ψ) = {ε}.

10. ∆CFA
With our frame-string abstraction in place, the rest of our abstract
non-standard semantics (which we call∆CFA) follows straight-
forwardly. At the top level, there are three key components to the
analysis:

1. Ŝtate, a finite set of abstract states.

2. Î ∈ PR → Ŝtate, a function mapping programs to initial
states.

3. ; ⊂ Ŝtate × Ŝtate, a transition relation.

Using these, we define the set of all visited abstract states for a
programpr :

V̂(pr) =
{
ς̂ : Î(pr) ;

∗
ς̂
}

.

We defineŜtate and its associated component domains in Figure 9.
For the most part, these domains correspond closely to their con-
crete counterparts. The notable exceptions arêTime, which is now
a finite set,5 andD̂ , which is now the power set of abstract proce-
dures. By convention, we usêd for user-world values of̂D , and
ĉ for continuation-world values. Observe that the state space of
∆CFA is finite, which makes it trivial to show that̂V is computable.

The functionI abstracts to

Î(pr) = ((pr , [], t̂0), 〈〉, 〈{halt}〉, [], [̂t0 7→ |ε|], t̂0).

In Figure 10, we define the transition relation for∆CFA. The
auxiliary function t̂ick : T̂ime → T̂ime need only obey the
following constraint:

|t| v t̂ =⇒ |tick(t)| v t̂ick (̂t).

The functionA abstracts directly:

Â β̂ v̂e t̂ f =

{
{(f, β̂, t̂)} f ∈ LAM

v̂e(f, β̂(f)) f ∈ VAR.

5 Correctness is independent of the choice of̂Time, but precision is not.
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Table 1. Thecat function

ς̂ ∈ Ŝtate = Êval + Âpply

Êval = ĈALL × B̂Env × V̂Env × L̂og × T̂ime

Âpply = P̂roc × D̂∗ × D̂∗ × V̂Env × L̂og × T̂ime

β̂ ∈ B̂Env = V̂AR → T̂ime

v̂e ∈ V̂Env = V̂AR × T̂ime → D̂

ĉ, d̂ ∈ D̂ = P(P̂roc)

p̂roc ∈ P̂roc = Ĉlo +
{
ĥalt

}

ĉlo ∈ Ĉlo = L̂AM × B̂Env × T̂ime

δ̂ ∈ L̂og = T̂ime → F̂

t̂ ∈ T̂ime = a finite set of abstract times

Figure 9. ∆CFA domains

The easiest way to abstract the functionyoungest would be to have
it always return>F̂ . We opt for a mildly optimized version. Later
on, with state gradients, we show how we can do better if we are
willing to invest in an initial walk over the syntax tree. For now,
however, we just join over all continuation arguments:

̂youngest
δ̂
〈ĉ1, . . . , ĉn〉 = âge

δ̂
(ĉ1)t · · · t âge

δ̂
(ĉn),

where the function̂age returns the abstract age (measured as an
abstract frame string) of a value:

âge
δ̂
{p̂roc1, . . . , p̂rocn} = âge

δ̂∗(p̂roc1)t · · · t âge
δ̂∗(p̂rocn)

âge
δ̂∗(halt) = δ̂

(
t̂0

)

âge
δ̂∗

(
lam, β̂, t̂

)
= δ̂

(
t̂
)

11. Correctness of ∆CFA
Before we use our analysis, we must first show that∆CFA is a
proper simulation of our concrete frame-string semantics. Specif-
ically, we must show that for every state visited by the concrete
semantics, it has a suitable counterpart in the set of states visited
by the abstract semantics. Thus, the first task is to define what we
mean by a “suitable counterpart.” To do this, we liftv over the
∆CFA domains (in the natural way), and we lift the abstraction op-
erator| · | to the rest of the concrete semantic domains (Figure 11).
Next, we define the simulation relation inC × Ĉ; we say that̂ς
representsς if |ς| v ς̂.

Theorem 11.1 (∆CFA simulates the concrete analysis).
If ς ∈ V(pr), then there existŝς ∈ V̂(pr) such that|ς| v ς̂.

Sketch of Proof.The proof is by induction over the transitions. The
obligations are:

1. |I(pr)| v Î(pr); that is, both machines begin in sync.
2. If |ς| v ς̂ andς⇒ ς ′, then∃ς̂ ′ : ς̂; ς̂ ′ and|ς ′| v ς̂ ′. That is, if

a concrete state is represented, the state to which it transitions

|(call , β, ve, δ, t)|Eval = (call , |β|, |ve|, |δ|, |t|)

|(proc,d, c, ve, δ, t)|Apply = (|proc|, |d|, |c|, |ve|, |δ|, |t|)

|〈d1, . . . , dn〉|D∗ = 〈|d1|, . . . , |dn|〉

|d|D = {|d|Proc}

|halt |Proc = halt

|clo|Proc = |clo|Clo

|(lam, β, t)|Clo = (lam, |β|, |t|)

|β|BEnv = λv.|β(v)|

|ve|VEnv = λ(v, t̂).
⊔

|t|=t̂

|ve(v, t)|D

|δ|Log = λt̂ .
⊔

|t|=t̂

|δ(t)|

Figure 11. Extending abstraction across the concrete domains

(if any) is also represented; diagrammatically:

ς

⇒

|·|
|ς|

v
ς̂

;

ς ′
|·|

|ς ′|
v

ς̂ ′

The first obligation follows easily from definitions. The second
obligation follows by cases onς ∈ Eval andς ∈ Apply .

12. An environment theory
We have invested much machinery in reasoning about stack be-
haviour. Now, we translate this into the ability to reason about envi-
ronments. During this development, we omit trivial or minor lem-
mas. We’ll need to refer to the various components of states that
arise during execution, so for a given programpr , we define sev-
eral families indexed byTime:

β
pr
t = β such that(call , β, ve, δ, t) ∈ V(pr)
δ
pr
t = δ such that(call , β, ve, δ, t) ∈ V(pr)

proc
pr
t = proc such that(proc,d, c, ve, δ, t) ∈ V(pr)

Typically, pr is clear from context, and we omit it.
Much of our logic now plays off the fact that binding environ-

ments return times, and that we can use time for more than simply
looking up a value. For instance, given the timet′ = βt(v):

• t′ is the time at whichv was bound.

• vet(v, t
′) is the value ofv in this binding.

• βt′ is the binding environment where the binding appeared.

• bδt(t
′)c summarizes stack change since the binding was made.



([[(f e∗ q∗)κ]], β̂, v̂e, δ̂, t̂) ; (p̂roc, d̂, ĉ, v̂e, δ̂′, t̂)

where





p̂roc ∈ Â β̂ v̂e t̂ f

d̂i = Â β̂ v̂e t̂ ei

ĉi = Â β̂ v̂e t̂ qi

∆p̂ =

{(
âge

δ̂
{p̂roc}

)−1
f ∈ CEXP(

̂youngest
δ̂
ĉ
)−1

otherwise

δ̂
′ = δ̂ ⊕ (λt̂ .∆p̂)

length
(
d̂
)

= length(u) length(ĉ) = length(k)((
[[(λψ (u

∗
k
∗
) call)]], β̂, t̂b

)
, d̂, ĉ, v̂e, δ̂, t̂

)
;

(
call , β̂

′
, v̂e

′
, δ̂

′
, t̂

′)

where





t̂
′ = t̂ick (̂t)

β̂
′ = β̂[ui 7→ t̂

′
, kj 7→ t̂

′]

v̂e
′ = v̂e t

[
(ui, t̂

′) 7→ d̂i, (kj , t̂
′) 7→ ĉj

]

∆p̂ =
⊔

|t|=t̂′

|〈ψ
t′
||

δ̂
′ =

(
δ̂ ⊕ (λt̂ .∆p̂)

)
t

[
t̂
′ 7→ |ε|

]

Figure 10. The abstract transition relation̂ς; ς̂ ′

Our first lemma relates a binding in some environment to the en-
vironment where that binding first appeared, which turns out to be
anancestor.6 A key strategy for determining equivalence between
two environments involves inferring their common ancestry.

Lemma 12.1 (Ancestor). βt(v) = ββt(v)(v).

Next, we define an interval notation fromTime to intermediate
frame strings:

[t1, t2]
pr = δ

pr
t2

(t1).

In other words,[t1, t2]pr is the frame-string change between time
t1 and timet2. By induction, we get intuitive properties such as:

Lemma 12.2. If t1 ≤ t2 ≤ t3, then[t1, t2] + [t2, t3] = [t1, t3].

The next lemma holds for the following reasoning: the apply-
state schema for the concrete transition relation⇒ always adds a
fresh (and therefore uncancellable) push action,〈ψ

t′
|, to the end of

every interval. Thus, when we prove that a net interval must be pop-
monotonic,7 no apply state (and hence nothing at all) has occurred
within this interval, thereby forcing the times to be identical.

Lemma 12.3 (Pinch). If b[t1, t2]c is pop-monotonic, thent1 = t2.

From this, we immediately get the following, the fundamental
frame-string environment theorem.

Theorem 12.4. b[β(v), β′(v)]c = ε iff β(v) = β′(v).

This sets up a strategy for proving equivalence: if we can infer
that no net stack change happened between two bindings of the
same variable, then the bindings are identical.

Looking ahead, in∆CFA, if we find that some abstract interval
has change|ε|, then all of the concrete intervals it represents have
changeε. This implies that the abstract times defining the interval
in question actually represent the same concrete time.Discerning
when abstract equality implies concrete equality is in fact the key
goal of any environment analysis.

The next few theorems present sufficient (but not necessary)
conditions to demonstrate environment equality in specific (yet sur-
prisingly common) cases. It’s natural to question why we even need
such conditions when we just stated a sufficientandnecessary con-
dition. The answer has to do with the imprecise nature of decidable
program analyses: the abstract analogs (developed later) to these
new conditions are satisfied more easily than the abstract analog of
the fundamental theorem. In fact, we believe that there are more
conditions than we give here, that is, conditions covering special
cases whose abstract analogs are more tolerant of imprecision.

6 An environmentβ is an ancestor ofβ′ if β′ = β[vi 7→ ti] for somevi
not in the domain ofβ.
7 As a common special case, note that proving an interval isemptyproves
that it is pop-monotonic.

Before we develop these theorems, it is instructive to review
the lifetime of a binding. When a variable is bound, one of two
things will happen: (1) there will be continuation-pure net motion
to the use of the variable, or (2) there will be continuation-pure net
motion to the creation of a closure capturing the variable. When a
closure from (2) is eventually applied, again, one of two things will
happen: (1) there will be continuation-pure net motion to the use of
the variable, or (2) there will be continuation-pure net motion to the
creation of yet another closure which captures the variable, and thus
we recur. Note how continuation-pure sequences chain together
equivalent environments. The following DFA is a description of
the net stack motion between the binding of a variablex and
its eventual use. The solid lines represent continuation-pure net
motion, and the dotted line represents arbitrary net motion.

bindx

|γ
·
〉∗〈γ

·
|∗

|γ
·
〉∗〈γ

·
|∗

closeλ overx
Φ∗

invokeλ

|γ
·
〉∗〈γ

·
|∗|γ

·
〉∗〈γ

·
|∗

usex

From this diagram, we see that continuations, which in our seman-
tics restore an environment and then push a frame to hold a return
value, are the connective glue between equivalent environments.

The following theorem states that if the net frame-string change
between two times is solely a continuation push action, then the
environment from the later time is an extension of—by exactly the
variables bound by that continuation’sλ expression—the environ-
ment from the earlier time.

Theorem 12.5 (Atomic deepening). If b[t1, t2]c = 〈γi |, thenβt1 =

βt2 |B(γ).

The next theorem extends the previous theorem across an arbi-
trary number of continuations.

Theorem 12.6 (Push-monotonic deepening).
If b[t0, tn]c = 〈γ1i1 | · · · 〈

γn

in
|, thenβt0 = βtn |B(γ).

So far, we’ve been restricted to reasoning about strings that
are either empty or push-monotonic and continuation-pure, which
seems constricting. Fortunately, we can use group theory toin-
fer continuation-purity for some past intervals using frame strings
which have no restrictions on their content. The following corol-
lary relates the equivalence of two environments from the past,
which are inferred to be separated by a continuation-pure and push-
monotonic net stack change.

Corollary 12.7 (Push-monotonic ancestry).
If b[t0, t2] + [t1, t2]

−1c = 〈γ1i1 | · · · 〈
γn

in
|, thenβt0 = βt1 |B(γ).

That is, using only the frame-string logδt2 from time t2, we
were able to infer the equivalence of environments from past times
t0 andt1.



Not surprisingly, there are pop-monotonic analogs and pop/push-
bitonic generalizations for each of these theorems. Skipping the
pop-monotonic versions, we have:

Theorem 12.8. If b[t0, t1]c = |γ1i1 〉 · · · |
γn

in
〉〈
γ′1
t1
| · · · 〈

γ′n
tm

|, then

βt1 |B(γ′) = βt0 |B(γ).

and the inferred variant:

Theorem 12.9. If b[t0, t2]+[t1, t2]
−1c = |γ1i1 〉 · · · |

γn

in
〉〈
γ′1
t1
| · · · 〈

γ′m
tm

|,

thenβt1 |B(γ′) = βt0 |B(γ).

13. Generalized super-β inlining
Here, we describe the generalized Super-β inlining condition,
Inlinable:

Inlinable((κ′
, ψ

′), pr) ⇐⇒

∀([[(f e∗ q∗)κ]], β, ve, δ, t) ∈ V(pr) :
if κ = κ′ and(Lpr (ψ

′), βb, tb) = Aβ ve t f then{
ψ = ψ′

βb|free(Lpr (ψ
′)) = β|free(Lpr (ψ

′)).

If Inlinable((κ′, ψ′), pr) holds, then it is legal to inline theλ term
labelledψ′ at the call site labelledκ′. Inlinable checks that (1) all
closures invoked at the call site are from the sameλ term, and (2)
the environment at the call site is equivalent, up to the free variables
of theλ term, to the environment within the closure.

To show the correctness of this condition, we must formally
define an inlining operation and the meaning of a program. We must
then show that the meaning of the program is unchanged under the
inlining operation. We define the meaningM of a programpr to
be:

M(pr) = {` : (halt , 〈(Lpr (`), βb, tb)〉, 〈〉, ve, δ, t) ∈ V(pr)}.

That is, the meaning of a program is a set containing the label of
the closure passed tohalt .

We define the inlining transformation,Replacer((κ′, ψ′), pr) =
S such that:

S v = v

S[[(λψ (v
∗
) call)]] = [[(λψ (v

∗
) Scall)]]

S[[(f x∗)κ]] =

{
[[(Sf Sx1 . . . )κ]] κ 6= κ′

[[(Lpr (ψ
′) x∗)κ′ ]] κ = κ′

The correctness theorem thus becomes:

Theorem 13.1 (Super-β inlining is safe).
If Inlinable((κ′, ψ′), pr) holds, thenM(pr) = M(S pr).

Sketch of Proof.Choose any inline-candidatez = ((κ′, ψ′), pr),
such thatInlinable((κ′, ψ′), pr). The proof proceeds by bisimula-
tion between the execution states of the original program and those
of the transformed program. In order to define our bisimulation re-
lation, we first need some auxiliary definitions.

First, we extend the transformation over the semantic domains:

S (call , β, ve, δ, t) = (S call , β, S ve, δ, t)
S (proc,d, c, ve, δ, t) = (S proc, S d, S c, S ve, δ, t)
S 〈d1, . . . , dn〉 = 〈S d1, . . . , S dn〉
S halt = halt
S (lam, β, t) = (S lam, β, t)
S ve = λ(v, t).(S (ve(v, t)))

Define inverse transformationReplacer−1((κ′, ψ′), pr) = S−1,
where

S−1v = v

S−1[[(λψ (v∗) call)]] = [[(λψ (v∗) S−1call)]]

S−1[[(f x∗)κ]] =





[[(S−1f S−1x1 . . . )κ]] κ 6= κ′

[[(f ′ x∗)κ′ ]]

whereLpr (κ
′) = [[(f ′ . . . )κ′ ]]

κ = κ′

S−1(call , β, ve, δ, t) = (S−1call , β, S−1ve, δ, t)

S−1(proc,d, c, ve, δ, t) =

(S−1proc, S−1
d, S−1

c, S−1ve, δ, t)

S−1〈d1, . . . , dn〉 = 〈S−1 d1, . . . , S
−1 dn〉

S−1halt = halt

S−1(lam, β, t) = (S−1 lam, β, t)

S−1ve = λ(v, t).(S−1 (ve(v, t)))

We define thenormof a stateς, written ||ς||, with

||(call , β, ve, δ, t)||Eval = (call , β|free(call), ||ve||, t)

||(proc,d, c, ve, δ, t)||Apply = (||proc||, ||d||D∗ , ||c||D∗ , ||ve||, t)

||〈d1, . . . , dn〉||D∗ = 〈||d1||D , . . . , ||dn||D〉

||d||D = ||d||Proc

||clo||Proc = ||clo||Clo

||halt ||Proc = halt

||(lam, β, t)||Clo = (lam, β|free(lam))

||ve||VEnv = λ(v, t).||ve(v, t)||D

Let S = Replacer z andS−1 = Replacer−1 z. We define a bisi-
mulation relationR ⊆ State × State:

R(ς, ςS) ⇐⇒ ||ς|| = ||S−1
ςS || and||Sς|| = ||ςS ||.

Diagrammatically,R looks like:

ς
||·||

S

||ς|| S−1ςS
||·||

Sς
||·||

||ςS || ςS
||·||

S

We must we show that:

1. R(I(pr), I(Replacer ((κ′, ψ′), pr) pr)); that is, the original
program and its transform start in sync with respect toR.

2. If R(ς, ςS) then ς⇒ ς ′ ⇐⇒ ςS⇒ ς ′S ; that is, either both
states transition, or neither transitions.

3. If R(ς, ςS) andς⇒ ς ′ andςS ⇒ ς ′S , thenR(ς ′, ς ′S); that is, the
relationshipR is maintained under transition.

The first two obligations follow straightforwardly from the defi-
nitions. Establishing the third condition (R preservation), however,
is what requires the use of the inverse transform and the norm.
Again, diagrammatically, the third condition looks like:

ς
R

⇒

ςS

⇒

ς ′
R

ς ′S

Here, we show why some “intuitive” relations lacking these fea-
tures fail, building up the rationale for our bisimulation relationR.



At first glance, theR relation as defined probably looks stronger
than necessary. It is tempting at first to useR(ς, ςS) ⇐⇒ Sς =
ςS instead. To understand why this approach breaks down, consider
the case where execution is about to transition from call siteκ′,
the inlined call site. Assume some variablev is invoked in the
original program andlam is invoked in the transformed version.
When applyingA to each of these, we get(lam, βb, tb) for v and
(lam, β, t) for lam, whereβ is the environment from the current
state, andβb is the environment from the closure’s creation. In the
subsequent apply state, these two (superficially) different closures
now occupy the procedure position, and hence, we cannot preserve
the bisimulation. (The additional fact thatt 6= tb would be a less
significant, easier to handle issue were it the only problem.)

But even thoughβ and βb may not beequal, they will be
equal over the free variables oflam, and this is all that really
matters. This notion of equivalence leads us to define the norm
of a state. The norm of a state removes useless bindings from its
closures’ environments. With this, we might strengthenR(ς, ςS) to
||Sς|| = ||ςS ||. At first glance, this seems to solve the previous
problem, for||(lam, β, t)|| = ||(lam, βb, tb)||.

Unfortunately, when we added the state normalization require-
ment, we lost so much information aboutς andςS that we cannot
adequately describe its next state. By augmenting the relationR to
||ς|| = ||S−1ςS || and||Sς|| = ||ςS ||, we have locked the internal
structures ofς andςS into a tight correspondence. Critically,ς and
ςS are forced to step either together (toς ′ andς ′S respectively) or
not at all, and more importantly, we have sufficient information to
reason adequately aboutς ′ from ς ′S andvice versa.

14. Concrete super-β inlining
Having built a rich environment theory, we now develop three
Super-β conditions for the safety of inlining based on the results
of the concrete analysis. Naturally, this is entirely in preparation
for defining another such condition for∆CFA. We define the first
condition,Local -Inlinable as:

Local -Inlinable((κ′
, ψ

′), pr) ⇐⇒

∀([[(f e∗ q∗)κ]], β, ve, δ, t) ∈ V(pr) :
if κ = κ′ and(Lpr (ψ), βb, tb) = Aβ ve t f

then




ψ = ψ′

∃γ :

{
b[tb, t]c �

γ ε

free(Lpr (ψ
′)) ⊆ B(γ).

It is primarily meant to inline closures which are created and
quickly used within the same environment. That is, it covers cases
where no user-level closure is made over the variable between
binding and use.

We define a second condition,Escaping-Inlinable as:

Escaping-Inlinable((κ′, ψ′), pr) ⇐⇒
∀([[(f e∗ q∗)κ]], β, ve, δ, t) ∈ V(pr) :

if κ = κ′ and(Lpr (ψ), βb, tb) = Aβ ve t f

then




ψ = ψ′

∀v ∈ free(Lpr (ψ)) : ∃γ :

{
b[β(v), t]c �γ b[tb, t]c
v 6∈ B(γ).

This second condition is meant to inline a closure that escapes its
creation environment, but flows back into and becomes invoked
within its creation environment, which now could be inside another
closure that also escaped. It covers the special case where at most
one user-level closure is created over the free variables between
binding and use. It turns out that the local condition is a special
case of the escaping condition; that is,Local -Inlinable implies
Escaping-Inlinable.

The correctness of these conditions follows from the correct-
ness of the generalized Super-β condition in conjunction with the
environment theorems.

The third, and most general, condition uses Theorem 12.4 to test
each free variable for equality individually.

General -Inlinable((κ′, ψ′), pr) ⇐⇒
∀([[(f e∗ q∗)κ]], β, ve, δ, t) ∈ V(pr) :

if κ = κ′ and(Lpr (ψ), βb, tb) = Aβ ve t f

then

{
ψ = ψ′

∀v ∈ free(Lpr (ψ)) : b[β(v), t]c = b[βb(v), t]c.

This condition is in fact equivalent toInlinable.

15. Abstract super-β inlining
As expected, each concrete Super-β condition has a counterpart
abstract condition which implies it. We define the abstract Super-β

condition ̂Local -Inlinable to be:

̂Local -Inlinable((κ′
, ψ

′), pr) ⇐⇒

∀([[(f e∗ q∗)κ]], β̂, v̂e, δ̂, t̂) ∈ V̂(pr) :

if κ = κ′ and(Lpr (ψ), β̂b, t̂b) = Â β̂ v̂e t̂ f

then





ψ = ψ′

∃γ :

{
δ̂(̂tb) %γ |ε|

free(Lpr (ψ
′)) ⊆ B(γ).

Likewise, for ̂Escaping-Inlinable:

̂Escaping-Inlinable((κ′
, ψ

′), pr) ⇐⇒

∀([[(f e∗ q∗)κ]], β̂, v̂e, δ̂, t̂) ∈ V̂(pr) :

if κ = κ′ and(Lpr (ψ), β̂b, t̂b) = Â β̂ v̂e t̂ f

then




ψ = ψ′

∀v ∈ free(Lpr (ψ)) : ∃γ :

{
δ̂(β̂(v)) %γ δ̂(̂tb)
v 6∈ B(γ).

Similarly, we can abstract theGeneral -Inlinable condition:

̂General -Inlinable((κ′
, ψ

′), pr) ⇐⇒

∀([[(f e∗ q∗)κ]], β̂, v̂e, δ̂, t̂) ∈ V̂(pr) :

if κ = κ′ and(Lpr (ψ), β̂b, t̂b) = Â β̂ v̂e t̂ f

then

{
ψ = ψ′

∀v ∈ free(Lpr (ψ)) : δ̂(β̂(v)) = δ̂(β̂b(v)).

Correctness of these conditions follows from Corollary 11.1 and
their concrete counterparts.

It may appear redundant to define three different inlining condi-
tions, when, for example, theEscaping-Inlinable test is more gen-
eral thanLocal -Inlinable. However, what matters pragmatically
are the abstract conditions. They are what we actually compute,
and they arenot related so neatly. In practice, ̂Local -Inlinable fre-
quently spots cases that ̂Escaping-Inlinable misses, so our “re-
dundant” condition actually pays for itself.

The following diagram summarizes the logical relationships
between the various conditions:

Ĝeneral Escaping ̂Escaping

Inlinable

General Local L̂ocal



16. State gradients
Until now, our concern has been correctness. We now turn to im-
proving precision and speed. In our experience, we have found that
improvements to precision paradoxically tend to improve speed as
well. Examination of the results reveals that when the precision of
the analysis is enhanced, less time is spent in “impossible” regions
of the abstract state space, that is, regions not corresponding to pos-
sible concrete states.

The first enhancement that we explore we callstate gradients.
The gradient of a concrete stateς, written ∇ς, is the simply the
change to the global frame string caused by moving through that
state. Looking back at the definition of⇒, we find∇ς given as
sub-definition.

An abstract state gradient is a function∇̂ ∈ Ŝtate → F̂ which
bounds the potential frame string change during a given transition.
That is,∇̂ is a valid state gradient if:

|ς| v ς̂ =⇒ |∇(ς)| v ∇̂(ς̂).

When this condition holds, we may safely integrate∇̂ with ∆CFA
as follows: when making a transition from̂ς, compute∆p̂′ as
∆p̂ u ∇̂(ς̂), and then use∆p̂′ in place of∆p̂.8 While there are
many valid abstract state gradients, the aforementioned validity
constraint induces an optimal (most precise) state gradient,∇̂ω:

∇̂ω(ς̂) =
⊔

|ς|vς̂

|∇ς|.

As expected, computinĝ∇ω is, in general, undecidable. In prac-
tice, however, wecancompute the optimal (or near-optimal) state
gradient for a broad class of programs.

The state gradient’s utility lies in the fact that during∆CFA, a
finite set of times forces abstract values to merge. Consequently,
when ̂youngest computes a youngest abstract age, impossible con-
tinuations9 mix into the result, which degrades the precision of a
frame-string analysis. Hence, the gradient can be viewed as a sieve
which discards impossible state space.

We distinguish three classes of abstract state gradient with re-
gard to the complexity of its computation. A class-0 gradient may
utilize only the information contained in the state which it is ana-
lyzing. A simple yet effective class-0 gradient,∇̂0, is:

∇̂0([[(h e
∗
q
+
)̀ ]], . . . ) =

{
|ε| ∃i : qi ∈ CLAM

>F̂ otherwise

∇̂0([[(q e
∗
)γ ]], . . . ) =

{
|ε| q ∈ CLAM

>F̂ otherwise

Low on both implementation complexity and run-time cost, this
simple gradient still covers many call forms in CPS.

We define a class-1 state gradient as one which has access to
a pass over the syntax tree. A very simple class-1 gradient can
check to see if any continuation variables can escape through a
user closure, such as whencall/cc has been used. If no such
case is found, all continuation behaviour is pop-monotonic. How-
ever, if even one continuation could escape, then the∇̂> must
be used. With mildly more effort, we can degrade gracefully in
the presence ofcall/cc-like behavior while producing tighter
bounds. Figure 12 defines the functiongr which walks over the
syntax tree to help build a class-1 gradient.gr accepts a “static
log” ∂ ∈ VAR → F̂ , and a piece of syntax; it returns a mapping

8 Implicitly, we have been using the most conservative state gradient,∇̂> =
λς̂.>

F̂
.

9 Impossiblemeans that the abstract continuation does not represent any
concrete continuation.

gr ∂ v = >

gr ∂ [[(λ` (u
∗
k) call)]] = gr

(
∂
[
k 7→ |ε|

]
⊕ (λv.|〈`· ||)

)
call

gr ∂ [[(λγ (u
∗
) call)]] = gr

(
∂ ⊕ (λv.|〈γ· ||)

)
call

gr ∂ [[(λ` (u
∗
k

+
) call)]] = gr > call

gr ∂ [[(h e∗ k)̀ ]] = >
[
` 7→ (∂(k))−1

]

u ui
(
gr > ei

)

u gr
(
∂ ⊕ (λv.(∂(k))−1)

)
h

gr ∂ [[(h e∗ q+)̀ ]] = >[` 7→ ∆p̂]
u ui

(
gr > ei

)

u ui
(
gr (∂ ⊕ (λv.∆p̂)) qi

)

u gr
(
∂ ⊕ (λv.∆p̂)

)
h

where∆p̂ =

{
|ε| ∃qi ∈ LAM

> otherwise

gr ∂ [[(q e∗)γ ]] = >[γ 7→ ∆p̂]
u ui

(
gr > ei

)

u gr
(
∂ ⊕ (λv.∆p̂)

)
q

where∆p̂ =

{
|ε| q ∈ LAM

∂(q)−1 otherwise

Figure 12. A class-1 state gradient generator

from call-site labels to potential frame-string changes when calling
at that call site. Withgr , we define a class-1 gradient∇̂1 as:

∇̂1([[(f e
∗
q
∗
)κ]], . . . ) = (gr > pr)κ.

We define a class-2 gradient to be one which utilizes control-
flow knowledge in formulating its bounds. Clearly, such a gradient
is going to be more expensive with respect to both run time and
implementation cost, but it may yield even tighter bounds.

17. Abstract garbage collection
Hudak’s abstract garbage collection via reference counting [4] can
be adapted to and extended within our framework, and it offers
noticeable improvements to the precision of environment analysis.
Like state gradients, the mechanism we describe here is optional,
as it is not required for the∆CFA to be correct.

Our analysis has a finite resource from which it must make
allocations:T̂ime. In the concrete semantics,Time is infinite, and
hence, no time stamp is ever reallocated. However, a finite analysis
such as∆CFA may at some point have to reallocate a time stamp;
in the case of the variable environment, this merges (throught)
the new bindings10 with the bindings previously allocated to that
time.11

In some cases, this merging is simply an unavoidable conse-
quence of the fact that a single abstract state may have to represent
multiple concrete states. It may, however, be the case that during
the act of merging, an old value which had become dead,i.e., un-
reachable, suddenly becomes reachable again when the time stamp
to which it was bound is reallocated. A value isdeadin some state
if that value would never again be encountered if all subsequent
time stamps allocated were fresh time stamps. Dead values in the

10Recall that abinding is an entry in the global variable environment, and
has the formVAR × Time.
11A common example of this in Shivers’ 0CFA is the merging of return
points for a function. For instance, 0CFA spuriously reports that any call to
foo can return to any other call tofoo, rather than to just the function that
called it.
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(
p̂roc, d̂, ĉ, v̂e, δ̂, t̂
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(
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=
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=

⋃

v∈free(lam)

L
(
v̂e

(
v, β̂(v)

)
, v̂e

)

∪
{
β̂(v)

}
∪ {(v, β̂(v))} ∪ {t̂}
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{
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}

Figure 13. Live binding and time finder:L

abstract correspond to values that would be garbage collected in the
concrete. A dead value becomes azombiewhen the reallocation of
the time stamp to which it was bound causes it to merge with live
values.

Hudak’s work utilizes abstract reference counting to allow the
compiler to insert destructive update code for an object when its
abstract reference count is one. In much the same fashion, we can
apply garbage collection in the abstract to times and to bindings.
We may optionally also keep an abstract count of how many times
a particular binding has been allocated, resetting its count to|0|
whenever it gets garbage collected. This approach offers two ad-
vantages: (1) it kills zombies, and (2) if two abstract bindings are
equal and their allocation count is exactly one, thenthey represent
the same concrete time or binding. Note that (2) now offers a sec-
ond mechanism for testing environmental equivalence!

We define a functionL ∈ α → Time ∪ (VAR × Time)
in Figure 13 which recursively finds all of the live (reachable)
bindings and times from a given state or value. With this, we define
a collecting abstract transition relation for∆CFA, ς̂;C ς̂

′:
(
p̂roc, d̂, ĉ, v̂e|L(ς̂), δ̂|L(ς̂), t̂

)
; ς̂

′

(
p̂roc, d̂, ĉ, v̂e, δ̂, t̂

)
;C ς̂

′
.

Note that we need to define the transition only for apply states, as
there is no risk of creating a zombie in an eval state. We have left
out the abstract allocation counter from this transition relation; the
associated machinery and its inclusion is straightforward.

Whenever∆CFA deems a collection appropriate, it may per-
form a transition with;C . Note that∆CFA does not have to make
every transition with;C : collection only has an effect when cre-
ation of a zombie value is imminent. For the examples we have
tested, such as the doubly nested loop at the start of the paper, this
collect-as-necessary policy results in a collection for roughly a fifth
of all states visited.

18. letrec, et al.
Given the tight correspondence between our work and Shivers’k-
CFA [10], features such asletrec, primops, conditionals, basic
values and a store can be handled in exactly the same way, once
we account for frame-string change. Briefly, a primop labelledψ

causes〈ψt |
ψ
t 〉 motion—net empty—and no newtick . Conditionals

are handled as multi-continuation primops.letrec’s frame-string
effect is identical to that of a “let continuation.” (Note that we don’t
actually needletrec for loops and recursion: applications of the
Y combinator can be written in our core representation easily.)
Basic values, such as integers, strings,etc., have no effect on frame
strings. Adding Shivers’ store abstraction requires the addition of
a store object to every state; primops handle interactions with it.

While we have focussed on the essentialλ core of the semantics,
all the extras that make a real language can be added to the analysis
and pushed through the correctness proofs with no trouble. For a
fuller treatment of these additions, refer to our longer report [6].

19. Implementation
We have an implementation of∆CFA in Haskell, with a front-
end supporting a simple, direct-style Scheme. The implementation
is identical to our work here, with the addition of basic values,
letrec, primops, conditionals and a store. We support both∇̂0

and∇̂1 for state gradients, as well as abstract garbage collection.
The user may also select either the Steele stack model or one which
is not properly tail recursive (that is, tail calls don’t pre-pop the
caller’s frame; they are handled like any other call). We utilize a
set of abstract times equivalent to Shivers’ 1CFA contour set. Af-
ter the analysis has run, the implementation additionally performs
useless-variable elimination,β/η-reduction, dead-code elimination,
constant folding/propagation and Super-β inlining. As our policy
dictating the order of optimizations and heuristics for inlining ma-
tures, we have been experiencing success in automatically fusing
increasingly complicated loops and co-routines. Below, we discuss
a few illustrative examples run through∆CFA.

Conservativeβ-reduction fails to inline(λ (x) x) at the
bracketed call site in the following direct-style example:

((λ (f) [(f f) 0]) (λ (x) x))

or, its CPS equivalent:

(λff (f k) (f f (λ (g) [g 0 k])))
(λid (x k) (k x)) halt)

Inlining fails becausef appearing twice risks code explosion.
∆CFA, however, can inline the functionwithout causing the code
explosion. Of course, this example is trivial due to the lack of free
variables, and hence,k-CFA also recognizes this as inlinable. By
simply adding free variable, however,k-CFA fails, while ∆CFA
still reports inlinability:

(λ (z) ((λ (f) ([f f] 0))
(λ (x) (λ (y) z))))

The bracketed call in the following CPS snippet is not inlinable by
even the most aggressiveβ-reduction-based inliner:

(λz (z)
(letrec ((loop (λlp (f s)

[f s (λfs (fs) (loop f fs))])))
(loop (λo (x k) (k z)) 0)))

k-CFA fails here as well, due to the presence of the free variablez,
yet∆CFA still reports inlinability. As a bonus,∆CFA garbage col-
lects the halt continuation in the prior example, implicitly proving
that it never halts.

20. Related work
Our work draws from three main sources: previous work with
analyses based on procedure strings, previous work on CPS-based
program representations, and the general body of work on program
analysis based on theλ-calculus.

Using procedure strings to capture or constrain flow informa-
tion has been treated extensively. Sharir and Pnueli [9] provide a
good introduction to the call-string paradigm, using call strings to
provide the polyvariance needed to specialise function context in
interprocedural data-flow analysis. Sestoft [8] has used definition-
use path strings to globalize function parameters. Much of our work
draws on Harrison’s dissertation [3], which used call-down/return-
up procedure strings for detecting read-write dependencies in a par-
allelising compiler. In particular, we have taken three key items
from Harrison’s work. First, we extended Harrison’s procedure



strings to the “frame strings” we employ. Second, our basic string
abstraction (functions mapping code points to regular expressions
over stack actions) is Harrison’s. Third, the extremely clever “rel-
ative” view of program operations is also Harrison’s insight. We
have generalised Harrison’s procedure strings by adding contours,
which enriches its structure from a monoid to a group; we exploit
this extra structure to more precisely model environmental change,
particularly with respect to continuations. (Readers familiar with
the details of Harrison’s work may note this shows up in our defi-
nition of the functioncat .)

Another distinction in our work is our exploitation of CPS. Pre-
vious work based on procedure strings has treated procedures as
“large grain” blocks of program structure, with alternate mecha-
nisms employed to handle “intra-procedural” control flow, such as
sequencing, loops and conditional branches. These other treatments
even need distinct mechanisms for handling calls and returns. As a
result, the semantic treatments are much more complex. (True, we
do distinguish call and return to the degree that we separate values
with our user/continuation partition, but this single discrimination
is all we need, and much of our analysis is insensitive even to this
distinction.) By moving to CPS, we pick up three advantages. First,
economy of mechanism: we simplify our semantics. Second, uni-
versality: we gain a universal representation with two constructs,
both of which areλ. Third, power: we gain a more precise seman-
tics. With regard to universality and power, while Harrison’s more
complex semantics attempted to handle full continuations, it did not
do so properly. Harrison was aware of CPS, and discusses it briefly
in his work as a means of handlingcall/cc. Unfortunately, he
missed the fact that CPS terms can be partitioned, deciding that, in
CPS, all stack motion is “downward.” That is, a program execution
in CPS is all calls, no returns, which destroys the analysis. Our con-
tribution is the shift to Steele’s stack-management paradigm with
its consequent focus on stack-allocation operations as opposed to
control operations. This is what liberates the analysis to general
control applicability. To drum on the point, this universality is criti-
cal in functional languages, as opposed to languages such as Pascal
or C: function call is a wide-spectrum tool in the hands of a func-
tional programmer.

The second body of work we have used is the line of research
developing the CPS-as-intermediate-representation thesis. We have
already outlined what CPS offers as a medium for analysis by
way of contrast with non-CPS work. The seminal work here is by
Steele [13], who also first articulated the style of function-call pro-
tocol we have exploited. One of us (Shivers) has previously used
CPS as a basis for program analysis. Shivers’ dissertation [10] de-
scribed the “k-CFA” framework of abstractions. Mossin’s work [7]
also contains an excellent treatment of issues involved in flow
analysing CPS representations. However, the entirek-CFA frame-
work has limits: there are some analyses that cannot be solved for
anyk. The Super-β analysis is one such example. Shivers identified
the barrier as the “environment problem,” and presented “reflow
analysis” as a solution. Reflow analysis, however, has two serious
drawbacks. First, it lacks a solid formal underpinning establishing
its correctness. Second, it is quite expensive, enough so that its gen-
erality has never been subsequently explored.

∆CFA represents our second attack on this problem: it is not
only a more general solution to the “environment flow” problem,
it is also on firmer mathematical foundations,e.g., our proof of
correctness for the Super-β analysis and transform.

In the area of formal proof of semantics-based analyses and
transforms, we have based our work primarily on the line of re-
search carried out by Wand and his students [15, 12, 14]. Adding
to this battery of correctness-proving techniques, we have devel-
oped the concept of “state norms” and inverse transforms for use
here. Globally, our entire body of work is an instantiation of the

Cousots’ “non-standard abstract semantics” framework of program
analysis [1, 2].
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