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We describe a new program-analysis framework, based on CPS
and procedure-string abstractions, that can handle critical analyses
which thek-CFA framework cannot. We present the main theorems
concerning correctness, show an application analysis, and describe
a running implementation.
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iteration variable. It is safe to inline the term labelled * at the
bracketed call site within the loop body. Howevékreduction
fails to do so due to the loops, akdCFA fails due to the free
variablei. Thus, two standard inlining techniques fail right where
compiler optimization is at its most crucial—the body of a nested

1. Introduction loop. ACFA, the analysis we present, can prove the safety of this
Control-flow analysis is not enough. The difficulty of analysing and inlining. It does so through an environment analysis which shows
optimising functional languages based on Mealculus is the tri- thati always has the same value in the closure and at the bracketed

facetted nature of: it represents, in one construct, the fundamental call site. ) o )
data, control, and environment structure of these languages. As the ~One reason Supgi-matters is that it directly addresses an im-
three fundamental structures of a programming language meet andPortant use ol expressions in functional languages: as “carriers”
intertwine in, then, analysis ok must grapple with all three facets ~ Of data. We make a closure over some values at poémtd ship the
of the construct. closure to an application at poitit|f the free variables captured at
Where previous work in analysing the dynamic behaviour of POiNta are visible at poinb and have the same bindingse can
\-based programming languages has been lacking is in reasoninggliminate the overhead of packaging up a closure—perhaps even
about the relationships between the environment structures assoPermitting the values to be communicated frarto b in registers.
ciated with values that flow through the program. If we could do OPportunities for Supef-tend to arise when other inlining steps
better, we would enable a group of optimisations that are funda- MOveb into some common scope with We have been stumbling
mentally beyond the reach &CFA analyses [10]. One such opti-  OVer possible applications of Supgrfor years, ranging from op-
misation is Supep inlining, which we focus on here. timising Ipops_ to fusing coroutines. In this paper, we bring these
The Supers inlining condition is that & term may be inlined at ~ OPtimisations into reach. _ _
acall site if (1) all functions applied at the call site are closures over ~ Our work consists of a concrete semantics, an abstract analysis,
that A expression, and (2) the dynamic environment at the point of an environment theory, safety cc_)ndmons, correctness th_eo_rems, ef
application is always equivalent (up to theerm’s free variables)  ficiency enhancements and an implementation. The principal the-
to the environment captured at the point of closure. While any oretical tool utilized throughout our work is the notion foéme
control-flow analysis addresses the first condition, the second oneStrings which we define here. Frame strings allow us to reason
requires reasoning about binding environments. about stack behaviour, which we convert into the ability to reason
Consider the example code in Figure 1, a generic doubly nested@Pout environments.

loop where the inner loop calls a closure over the outer loop’s ~ FOr reasons of space, we have ruthlessly excised supporting
proofs; only a few proof sketches escaped these cuts. Full proofs

of our claims are provided in a longer report [6].
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for lattice components, L, T, U andr. For a latticeP(X), we pr € PR s= () (halt) call)
definex Epx) ¥ iff Ve € X :dyeY :zCx vy, that iSEp(X)

is not C. A large, multi-line curly brace or } indicates logical v e VAR = UVAR + CVAR

conjunction. v € UVAR = asetofidentifiers
ke CVAR = asetofidentifiers

3. Partitioned CPS lam € LAM = ULAM + CLAM

Our analysis operates over a syntactically partitioned continuation- ulam € ULAM = Q¢ (Ui k*) call)

passing style (CPS) input [13], intended for use as an interme- clam € CLAM == Q, (u") call)

diate form generated_ from programs written in a direct-style _ call € CALL = UCALL + CCALL

calculus language, with user-level access to full, first-class contin- wcall € UCALL = (he* ¢b)

uations, such as Scheme or SML/NJ. By “partitioned,” we mean ccall € CCALL o ( e*)q ¢

that all the forms (variables, call arguments, calls anexpres- HT M e

sions) are statically marked as belonging to either the “user” world, f,xz € EXP = UEXP + CEXP

or the “continuation” world. We adopt the term “user world,” as h,e € UEXP = UVAR + ULAM

continuation forms cannot be expressed directly by the program- g€ CEXP = CVAR + CLAM

mer in the original, direct-style source. (What Scheme program-

mers think of as continuations, that is, the values created by the Y,k € LAB = ULAB + CLAB
call-with-current-continuation procedure, are, with re- t e ULAB = asetoflabels
v€ CLAB = asetoflabels

spect to this partition, still user-world values. They just happen to

be user-world procedures that internally capture a continuation- - —

world value.) When translating from direct-style code to CPS, Figure2. Partitioned CPS

each) expression from the source maps to a “usexpression,

while return points or evaluation context in the direct-style form

are mapped to continuationexpressions. ations (push/pop) gives us a “space-like” view of the computation,
The CPS conversion also provides two static constraints: only s opposed to the “time-like” viewpoint of the control operations

user procedures take continuation arguments, and every user pro{call/return). A space-like view can be useful when focussing on

cedure takes at least one. So continuations are never passed t@nvironment structure: variable bindings live in frames (or, at least,

continuations. Figure 2 shows the resulting grammar. Code points that is where they are born).

are marked by means of unique labels attachedl &xpressions However, in functional languages, this call/retusnpush/pop

and call sites. We assume two distinct sets of labels, one for user-correspondence breaks down somewhat. For example, we imple-

world items and one for continuation-world items. This is how we Mment iteration in a functional language with tail calls. Such an

mark our user/continuation partition. (It also means that we can iteration performs many calls without growing the stack. It is a

treat the two worlds uniformly simply by ignoring labels, which is  better model, then, to think of such a computation as performing

convenient at times.) A user expressionglam, is tagged with a ~ many calls, but only a single return. When we add more complex

user-world labeV; its formal parameters are partitioned into zero ~control operators, such as access to full continuations, the simple

or more user-world parameters, and one or more continuation ~ call/return model breaks even further. In short, call/return steps no

parametersk. Having multiple continuation parameters allows us longer nest with simple “bracket-like” structure.

to encode conditional-control operators as functions and easily en- However, no matter what the call/return behaviour is, it is still

code multi-return function calls [11]. A continuationexpression,  true that the associatesfack operationsiest properly. That is, if
clam, is marked with a continuation-world label, and has only ~ We push frame., then push framé, the two frames will necessar-
user-world formalsy. Call sites ¢call and ccall) are marked and ~ ily be popped in the orderb; thena.” This suggests that perhaps

partitioned in a similar way. To improve precision, we also require We could get a more precise model of program behaviour for func-
the program to be alphatised, that is, no two bound variables havetional programs if we took models based on procedure strings and

the same name. changed to abstractions whose nesting and cancellation properties
We use the functiorfree to denote the free variables of a term.  were driven by analogues to stack behaviour.

The functionL,. € LAB — LAM + CALL maps labels to This takes us from the classic, &YRTRAN-like” view to the
terms for a progranpr. We useB,, € LAB — P(VAR) view promoted by Steele [13], who summarised the shift in per-
to map the label of & expression to the variables it binds. For SPEC'[IVG with the m_antra “argument evaluation push.es stack.” This
instance B, () = {x,y,k} if (\y (x y k) call) isin pr. For is even more explicitly captured by CPS representations, where the
compactness, leB, (1) meanlJ, B(+:). When the programpr model becomes “continuations are closed on the stack.” Thus, our
is clear from context, we omit it from the notation. key pair of ideas are (1) to use a CPS representation to provide

a unifying model for program control, environment and data flow,

. and (2) to adopt an abstraction somewhat like classic procedure
4. Procedurestringsand stack models strings, but tuned to the nesting of frame allocation. To emphasize
A procedure string, as used by Sharir and Pnueli [9], or Harri- its origins in this space-like rather than time-like view, we call our
son [3], is the sequence of call and return actions performed during abstraction “frame strings” rather than “procedure strings.”
some segment of computatida.g, were we to trace the sequence
of actions involved in the recursive computation of the factorial of
one, it might produce the sequence “cadictorial, call =, re- 5. The CPS stack model
turn =, call -, return-, call factorial, call =, return=, return I's a common misunderstanding that language implementations
factorial, call *, return*, returnfactorial.” Notice how the based on CPS intermediate representations do not employ a run-
call/return entries properly nest like brackets. If we have a sim- time stack. This is not the case; in fact, two of the earliest Scheme
ple model of procedures that says a call allocates a stack frame,compilers ever written, Rabbit [13] and T's Orbit [5] were CPS-
and a return pops it, then a procedure string also models the operbased compilers that managed a run-time stack, just as a standard
ations performed on the stack. Thinking in terms of the stack oper- C or Pascal compiler might.



The key to doing so is noting that the compiler can distin-

guish between continuation and non-continuation values, as we pqg € F = (I; (Frame string)
have made explicit with our CPS grammar. The mechanics of stack o€ = (¢ (push)
management in a CPS setting are as follows. When a CPS call ex- | |§b> (pop)
pression is executed, it is done in the context of free variables, some ¢ € ¥ = Atermlabels

of which may be continuations. In our stack model, a continuation t,i € Time = aninfinite setof times

is a closure whose environment record is allocated on the stack,

rather than the heap. That is, it is a code/environment (aif). Figure4. Frame strings

The ¢ value points to the code to be executed when we invoke the

continuation; thes value points into the stack. When we invoke

the continuation, we reset the stack-pointer register &amd then If the return’s continuation is not a variable, but an explicéx-

jump to c. While the continuation runs, its code may access the pression, evaluating theexpression closes over the current frame;
variables over which it is closed by offsets from the stack regis- we then immediately invoke it as above. This is the degenerate case
ter. Thus, we speak of “calling” user procedures, but “returning” of a “let continuation.”

to continuations. We can simplify this representation one step fur-  Our model is slightly different from the standard model de-
ther by storing thec value in the stack frame itself, reducing the scribed by Steele and used in Rabbit and Orbit in one way: our pro-
continuation from gc, s) pair to just the single value. tocol passes arguments to both user procedures and continuations

Assume that we pass the user-world arguments to procedureson the stack, rather than in some separate set of registers. We do
(both user procedures and continuations) on the stack. Thus, as wehis so that all variable bindings show up as stack allocation. Bear
transfer control to a procedure or back to a return point, we push ain mind the point of this model. We aren’t actually implementing a
frame to hold the values being passed to the procedure, or returneccompiler; we are just building an analysis. We are using the nested
to the return point, respectively. The issue we must first settle, then, sequences of stack operations produced by program execution as
is when to pop stack frames. A tail call will pop the current frame the concrete source of our analysis abstractions.
just before the control transfer and frame push, as will a normal  As an illustrative example, consider the pair of factorial func-
return (encoded as a continuation call). A non-tail call, on the other tions defined in Figure 3. The expression on the left is iterative
hand, will not first pop the current frame. factorial. We have extended our core syntax by addingtarec

During execution of a call expression, the key invariant the stack form for constructing loops, as opposed to, say, writing out the Y
maintains is that the frame just below the current one is either combinator. (We'll properly addletrec to the language later, after
the currently executing continuation’s closure frame, if the call exploring the basic, core language.) Thigf0 primitive function is
expression is executing within a continuatidnor a continuation a conditional, taking one user value and two continuations as ar-
bound to a variable occurring free in the call expression, if the call guments; it branches to the first continuation if the value is zero,
expression is executing within a usgr This is just another way and to the second continuation, if not. Examining this code with
of saying this frame is live: the former case implies that the frame our stack-management policy in mind will show that the stack is
is needed now (by the currently-running continuation); the latter, managed precisely as we'd expect for an iterative factorial. By way
that it may be needed in the future (by means of a reference to theof contrast, the expression on the right is recursive factorial; it, too,
variable bound to it). Maintaining this liveness invariant is what conforms with our expectations for the way it manages the stack.
drives our stack-popping policy when we perform calls.

When a procedure callh e” q 1), happens, we must first eval- 6. Framestrings
uate the proceduréj and its arguments (theandgq). The contin-
uation arguments;, are either variable references)oexpressions.  Now that we have an informal understanding of stack management,
Consider a simple tail call. It is encoded in CPS by a call with a sin- We can develop the formal machinery for describing our stack op-
gle continuation that is a variable. This variable’s value is a stack erations. A frame string is a record of the stack-frame allocation
closure; that is, it points to a stack frame. The live-frame invari- and deallocation operations over the course of some segment of a
ant implies that this frame is the one immediately under the current computation; it can equally be viewed as a trace of the program’s
frame. So we can (and must, to preserve the invariant) pop the cur-control flow. More precisely, a frame string is a sequence of charac-
rent frame off the stack, before doing the control transfer anddram ters, with each character representing a frame operation (Figure 4).
push. A single frame character captures three items of information

On the other hand, a simple non-tail call is encoded in CPS as aabout the operation: (1) the labél of the A term attached to
call with a single continuation that is & expression. Evaluating ~ that frame; (2) the time of the frame’s creation; and (3) the
this continuation\ expression captures the current frame in the action taken, either a push represented as a “rabr a pop
created closure. Since we are passing this continuation to the targetepresented as a “ket’). Thus, the charactdf? | represents a call
procedure, it is live and so cannot be popped—just as we expectto \ expressioni3 at time 87, whilg?) represents returning from
from a non-tail call. it at some later time.

In either case, we then allocate a fresh frame to hold the argu-  We said just previously that &) action is a procedure return.
ments being passed, and jump to the procedure. These two scenaHowever, here in our modern world that allows tail calls and con-
ios generalise to the multiple-continuation case: if one or more con- tinuation invocations, what weeally meant in our example is that
tinuations are\ expressions, we close them over the current frame, |5%) represents poppinkp’s frame. Perhaps this occurred because
and do not pop it: a non-tail call. If all are variable references to [3 was returning, but perhaps it was instead becd8seas per-
older frames, we instead restore the stack so that the outermost sucliorming a tail call, and so we would never be returningtoNote,
frame is on top: a tail call.

To execute a continuation retufg e*),, we first evaluate the  1in fact, we suspect a model that doesn’t pass arguments on abk st
continuation form and its arguments. If the continuatipiis a might give greater analytic precision than the one we areguisare, but
variable, we reset the stack back to the continuation value, thenthe cost would be a somewhat more complex set of formal machinery. A

allocate a new frame for the arguments being passed, then jump towe are currently considering extended models that wouldges greater
the continuation’s code. precision, we keep things as simple as possible for now. (Hezaise the

term “simple” loosely.)
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Figure3. Labelled CPS factorial functions: iterative and recursive. Continuatiexpressions are labelled with integers; usexpressions,
with letters. Continuation items have also been distinguished by using squatets to delimit continuation calls (that is, returns), and
underlining continuation\’s. Continuation variables are those beginning with the letter “k.”

also, that if our source language provides full continuations, then trs(e) = e

it is possible for a frame to be popped and latter re-pushed, when W o :

some saved “upward” continuation is invoked. trs((ﬁ,‘ +7) _ <fp |+ trs(p) II ve g
Let us return to our two factorial functions to generate some trs('g} +p) = [¢) + trs(p) ity e

example frame strings. If we use each procedure to compute the trs(({ | +p) = trs(p) !f Y ESs

factorial of 1, we get the frame strings trs(|7) +p) = trs(p) if &S
I GIER ) GIGIR) GIGE G E)E) dira(p) = {re € A:p € L{re)}
I Qalin15) p =" qiff trg(lp+q ")) =e

and Figure5. Analytic tools for frame strings
(1D GIEE) GIGE @
(EICE0 50 (518015 (ol (ali1) 1o} [B)12)15) a frame strind. It follows that the setb* modulo |- | is a group,

. . . o . a fact which turns out to be critical to proving theorems about
respectively. Perusing the two strings will give a feeling for the con- gnyironments and designing an abstract model of frame strings. The
nection between stack management operations and control flow iNoperationp™! reverses frame string flips each frame action to its
the execution of CPS programs. Frame strings allow us to precisely anti.frame action, and then nets it. This is the inversg ofodulo
describe the stack operations performed at various points in a pro-| .|
gram execution. For example, |f_ we take_the frame string shown ™~ 14 connect these operators back to our stack-management
above for the iterative computation, and isolate the segment cor- nadel. if we have a frame string that describes the trace of a
responding to the first trip through the loop, we get the following rogram execution up to some point in time, therj gives us a
trace, where the frame string is broken up to make the entries of thepicture of the stack at that time. (For example, the stack snapshots

stack change” column: we saw in the previous execution trace can be produced by taking
the net of successive prefixes of the frame string describing the en-

Call site Description Stack change  Stack . X :

P 9 - tire trace.) Alternately, ip represents sommntiguous segmeof

. e <§‘ a program’s trace, thefp| yields a summary of the stack change
(f n 1 ktop) tailcalltors [7)(5] | that occurred during the execution of that segment. (We will, in
(%if0m ...) callto%ifo (4 I fact, make more frequent use of this second interpretation, which
%i£0 internal return to), hif0y 2| G143 connects two points in a program’s execution, than we will of the
(-m1 ) call to - Gl GI1CI1G] first one.) If frame string describes some sequence of actions on
) e 3 21 the stack, thep~* produces the frame string that will “undo” these
- internal return to). Y E1GI1E ; ; : it
23 5/\6 f ;1 g actions, restoring the stack to its state at the point in the computa-

(*ma ...) calltox (7 G617 ] tion corresponding to the beginning f This is just what we will
* internal return to)\, ) (3 E1GIEI1E need to handle general continuations (as well as the more prosaic
(f m2 a2 k) tailcallto s |DDEE (& task of handling simple returns).

In Figure 5, we define three tools for selecting, extracting and
Note how nested continuations accumulate frames until removed testing structure from frame strings. The functier produces the
by the final tail call. trace of a frame string with respect to procedure labelsSirby
throwing away any frame action whose procedure label is nStin
. . The functiondir A returns thalirectionof its argument with respect
7. Operationson frame strings to a set of regular expressiofs That is, it returns the subset &f
There are a couple of basic operations we can perform on framewhose members match the argument suppliedia 3
strings. The operato# is the string concatenation operator. The
opgratoru cancels °9t opposing, adjacent frgme-actlon parngs 2yq, may be wondering how a push action could possibly wind up on
until no more cancellations can be made. That i§; ffoccurs to the the right of its matching pop action. The answer involves the use of full
immediate left or right of?’) in a frame string, we may delete the  continuations.
pair; when no further annihilations jnare possible, the remainder  3These regular expressions will be matching net frame strirjiescribe
is [p], e.g[(¢19)|] = (. This is known as taking theet of thechangein the stack between two points in execution; thus the usk.of




Depending on the analysis or optimization we're conducting,
there are a number of sets which make sense&\foFor instance,
Aron = {{]% 197, 17|} extracts thetonicity of a string, that
is:

p is push-monotonic
pis pop-monotonic  if)* € dira,, (p)
p is pop/push-bitonic  if)*(:|" € dira,,, (p)

The nesting property of frame strings entails the following:

if.|" € dirar,,(p)

Lemma 7.1 (Bitonicity of the Net) The net of any frame-string
change between two points in execution is pop/push-bitonic.

We also add the notion of a stringt®ce purity, which becomes
useful in reasoning about environments. The following definitions
identify different kinds of string purity:

p is continuation-pure
p is user-pure
pis S-pure

itroLan(p) =p
itruras(p) =p
iftrs(p) =p

The relation-° appears somewhat arbitrary at first, but it can
be interpreted as follows: undo the net effectgobn p; p =5 ¢
then holds if and only if the remaining string consists solely of
frame actions for procedures f* Later on, we show that certain
frame actions—the ones that will go int6—do not change the
environment in a meaningful way, and the purpose of this relation is
to ignore these frame actions. The choice of the symbisi meant
to suggest that the right-hand side will be a net of some suffix of
the left-hand side whenever we use it. (The relation has no utility
when this is not the case.)

The following useful properties of frame strings and their oper-
ators follow as a natural consequence of their group-ness:

' +pl=lp+p ' =¢
lp+ql =€ = lg)=p"
' =pl

8. Frame-string semantics

In the preceding sections, we've (1) defined our CPS language,

¢ € State = Fwval + Apply
Eval = CALL x BEnv x VEnv x Log x Time
Apply = Proc x D* x D* x VEnv x Log x Time
B € BEnv = VAR — Time
ve € VEnv = VAR x Time— D
proc € Proc = Clo+ {halt}
clo € Clo = LAM x BEnv x Time
d,c € D = Proc
6 € Log = Time—F

Figure 6. FS semantics domains

time ¢t and now; the net of this string tells us the net effect of the
intervening computation on the stack. As we’'ll see later, this focus
on changewill be key to exploiting the non-standard semantics for
optimisation-driven analyses that focus on the relationship between
two points in a computation.

The basic semantic domains for the language are given in Fig-
ure 6. A machine configuration is either an “eval” or an “apply”
state. In anFwval state, control is at a call site; it is given by a call
expression, an environment context for that expression, and the cu
rent log and time. We represent environments with the factoring
taken from Shivers’ CFA work [10]: an environment is split into
a “variable environment,ve € VEnv, and a “binding environ-
ment,” 3 € BEnv. A binding environment maps a variable to a
time stamp, the time its binding was made. A variable environment
recordsall bindings that have occurred during the execution of the
program. Thus it maps a variable and a binding time to its value for
that time. In anA pply state, control is moving into a user function
or a continuation; it is given by the procedure to apply, a vector of
user-world arguments, one of continuation arguments, the global
variable environment, and the current log and time.

Remembering that our goal is to prove environment equiv-
alence, we can now formally preview what we want to prove.
Given two factored environments3i(,ve;) and (B2,ve2), we want
to show thatves (v, 51(v)) = wea(v, B2(v)). Because the global

(2) described how its call behaviour connects to a model of stack variable environment increases monotonically throughout the pro-

manipulation, and (3) defined a formal tool, frame strings, we can gram, eithere; T wvez or vez T wvei, and hence, we can show

use to express stack manipulation. Now we have all the pieces wethatv is equal between these two environments just by showing

need to formally describe the CPS/stack connection. That is, we canf81(v) = B2(v). As a result, our forthcoming environment theo-

make the model of Section 5 precise by defining a non-standard rems need not mention the global variable environment at all. More

operational semantics for our CPS language that expresses stacknportantly, this factoring lets us determine the equivalence of two

manipulation, using frame strings. (This semantics is so close to environments for some variable without ever knowing what the

the standard CPS semantics, and the standard semantics itself sgalue(s) of that variable may be within them.

straightforward, that we have chosen not to bother first developinga  The set of denotable valueB, is the same as the set of proce-

standard semantics, in order to save space. However, we have dongures (for now—we discuss adding basic values later). A member

so elsewhere, and formally shown the correspondence between th&f Proc is a procedure: either a closure or thet continuation. We

two [6].) represent a closur€o with a A term plus the contour environment
For the frame-string (FS) semantics, the domains given in Fig- 8 giving the bindings of its free variables, plus a third component:

ure 6 are nearly identical to standard environment-based CPS sethe birth date of the closure, that is, the time thexpression was

mantics domains. The changes are that closufés, now carry evaluated, producing the closure. A clositem, 3,t) can repre-

a timestamp marking their creation time, and machine configura- Sent either a user closure lifm € ULAM, or a continuation clo-

tions include a frame-string log. The frame-string tofpr a given sure, iflam € CLAM . For Time, we assume some ordered, denu-

configuration is a function that maps some time from the past to merable set, and writky for the start time at which program execu-

a frame string describing all the actions performed since then. We tion begins. We advance time with tit&k function; this function

should call attention to the particular way we've defined the log: it's may take additional arguments beyond the current time as an aid

relative, not absolute. We could just as easily have defined the log to the analysis we are trying to capture with our semangas,

to map a timet to the actions performed by the computation from  tick € Time x Conf — Time.

start tot; the net of this string would tell us what the stack looked Figure 7 contains the auxiliary functions used in our semantics.

like at timet. Instead, the log tells us what has happened between The function.A takes an argument and returns its value in some

context given bye, 8 andt: if the expression is a variablg| looks

it up in the current environment; if the argument i& axpression,

A uses it to construct a closure. The functiege; produces the

4To help demystify things, when we utilize this relation it Malways be
the case that = r + s andq = |s]; inthiscase|p +q¢~ 1| = |r].



A B ve t lam = (lam, B, t) functionyoungest computes this for us. It's worth considering, for

ABvetv =wve(v,Bv)) amoment, how this is done, as it relates to our relative (as opposed
to absolute) view of the stack, as well as the relation between our
ages(halt) = 4(to) time-like and space-like view of the computation.
ages(lam, B,t) = 6(t) The mechanism we are using to track the stack is thejlog
which tells us, for time, everything that has happened to the stack
youngests (proc,,...) = Shortest {age;(proc,), ... } sincet. Now, given a set of continuations or live stack frames,
Z(pr) = ((pr, [], to), (), (hait), [], [to — €], to) the outermostone (a space criterion) must be theungestone
(a time criterion): the stack is a LIFO mechanism. The function
V(pr) ={s: Z(pr)="<} youngest could choose this frame based on its birth-date. How-
ever, we plan to abstract this semantics, and our abstraction will
Figure7. Auxiliary definitions for FS semantics destroy the orderedness of time, so this tactic is too fragile for our

purposes. Instead, we switch back to space-like criteria. The func-
tion youngest equivalently makes its choice by returning the short-
est frame string: the frame with the shortest “life story” is clearly
the youngest frame.

Consider what happens when a non-tail call is performed. A
non-tail call is one in which a continuation argumeris a A term
(as opposed to a variable reference). If this case, evaluativith
A will capture the current timein the (lam, 3, t) tuple. Since this
newborn value is as young as it is possible to be,V¥heframe-
string change will be the empty string. So the call will not first pop
$he current frame off the stack, as a tail-call would.

In contrast, a tail call is one where all theare variable refer-
ences. Evaluating these variables withwill produce older con-
tinuations that were born at previous times. This will cause the
(youngest; c)~* expression to produce a frame string whose op-
erations will specify some stack adjustment, in the forrq‘fofpop
characters. Thus we will pop frames off the stack as we perform the
call: this is a tail call.

Once we've computed the stack change needed, we update the
log so that any future fetch from it will produce an answer with this
new segment of actions appended.

The log maintenance for the apply rule is much simpler. When
a procedure is applied, we push a frame for its arguméfﬂs:

The net effect of this stack-maintenance machinery is to obey
Steele’s protocol for functional languages with proper tail calls and
even full continuations. A simple call pushes a frame; a simple
return pops a frame. A tail call first pops a frame, then pushes one.
Exotic uses of continuations do what it is needed to be consistent
with the contract. Once again, it's worth emphasizing that these two
rules give us a mechanism that enormously generalises “function
call,” allowing us to handle every form of control that occurs in a
program, from basic-block sequencing to coroutines.

“life history” of a continuation: it takes the birth-date of the closure,
t, and uses it to index the log. The halt continuation is handled by
defining its birth as the beginning of time. The functigmungest
takes a vector of continuations, and returns the shortest such “life
history"—that is, the frame string representing the life-span of the
youngest continuation in the vector.

The functionZ maps a program into the machine’s initial state.
Final states are apply states where the procedure to be applied i
the halt continuation, but that is not important for our non-standard
analysis. Instead, we define a collecting semantics with the function
V, which maps a program to the entire set of states through which
its execution evolves; we write=-¢’ to say that state steps to
states’ under the machine’s small-step transition relation

The heart of the semantics is given by the two rules of Figure 8
defining the transition relation: one axiom eachfaul and Apply
machine configurations. The call rule evaluates the elements of
the call, and transitions to an apply state, where the procedure
will be applied to the argument values. The apply rule binds the
variables of the procedure’s expression, then transitions to a call
state, where the expression’s body will be evaluated in the new
environment. What's of interest in this simple, otherwise standard
system is the extra machinery to manage the stack, in the form of
the log. Most of the work happens in the call rule, in the calculation
of the stack chang¥s. It is managed just as described in Section 5.
The expressioif in the procedure position of the call is evaluated to
the valueproc. If f is a continuation f € EXPC), then this call
will reset the stack tgroc's stack frame. The functionge tells
us everything that has happened to the stack simoe was born
(that is, since its frame was allocated on the stack). Inverting this
frame string provides the series of actions that must be performed
on the stack to revert it back to that state. Remember: continuation
invocation restores stack; this is where the restoration happens. InQ.  Abstract frame strings
the standard case of a simple return, all of this machinery amounts
to a single pop action. But if we were invoking a continuation to
“throw” outwards in an exception-like manner, we might return
over multiple frames, and thus oW¢ action might consist of
multiple pop actions. More exotic still, if we were invoking a 1 7 g set of abstract frame strings;

“downwards” continuation, the action could include push actions to ~ ) ) )

restore previously-popped frames. Finally, if the continuation is a 2. | -|: F* — F', an abstraction operation for frame strings;

“Ie_t continuation,” thatis, iff isa\ express_ion _thatwe areinvo_king 3.0 : FxF — F, an operator for “concatenating” abstract
at its point of appearance, the frame action is the empty string: the  f3me strings:

continuation will run in the current stack context. . ' ., )

On the other hand, the forghmight be a user expression, rather 4. .77, an abstract “inverse” operation; and
than a continuation. If so, it won't ev?lluate to a stack pointer as 5 ~Sc F x ', an abstract comparison relation, parameterized
a continuation would, and so doesn't require any action on the  gyer a set of procedure labess
part of our stack-management policy. However, user proceauees
passed continuations asgumentsthese are the; arguments in Coupled with the constraints we present shortly, we have a rich
the call form.Theseexpressions evaluate to the continuations ~ space of designs for abstract frame strings; here, we limit ourselves
If we think of these continuations; as stack pointers, we want  to one such (rather simple) design. R
to reset the stack back to the outermost such pointer, the high-  To pack an infinite set of frame strings into a finite $gtwe
water mark that will preserve all of these continuations. Again, the have to choose where to lose precision. Our abstract frame strings

The first step in creating a computable abstract analysis out of our
concrete semantics is the development of abstract frame strings.
Any such abstraction must provide:



length(d) = length(u) length(c) = length(k)

([[(f 6* q*)m]]aﬂa ’UG,(S, t) = (proc,d,c,ve,(;',t)

proc = ABvet f
di = ABvete;
=ApBvetq;
where Ve — (ages proc) ™" f € CEXP
¢ (youngestsc)~ " otherwise
§ =64+ (M\.Vs)

((Had) (u* k*) call)]]?ﬁatb)adacaveaé-?t)

where

= (call, B, ve', &', t")
t' = tick(t)
B=plui stk )
ve' = vel(u;, ') — di, (k;, ') — ¢
Ve = (4]
§ = (5 4+ (MYt +— ¢

Figure 8. The transition relatiog = ¢’

do so in four places: (1) we discard actions which are not in the net which is:

of the frame stringeg [(41515)] = \( [I: (2) we discard all time
information,e.g, |(¢|3]] = [(%]&
of actions betweenllfferentprocedurese.g, 141Gl = 1B

and (4) we remember at most one action precisely for a given
proceduree.g, [(T[(3 || = [(T](31(3 (4[] but| (T[] # [T [(3]]-

As a service to future designers of frame-string abstractions, of
these choices, (1) reduces space requirements, and it allows us to

ere, (| =),
pl=Xmap | CICIT < DD | BW).
DT = T

Several abstract comparison relations are induced by the constraint

lp| Cpandlg| CGandp =° G = [p] ~° |l

assume a pop/push bitonic structure, yet it causes absolutely nowe choose the following for our work here:

loss in analytic power; (2) is an extreme time abstraction, wors-

ening precision but reducing space requirements; (3) seems to be
necessary for finiteness, but it costs us no analytic power; (4) is the

most subjective, as the “right” amount of information to remember
about a procedure is highly dependent on purpose.

We abstract a frame stringto a function mapping the label for
any given\ expression to a description of the net stack motiop in
for just that\ expression. Thus our set of abstract frame strings is

F=U—7P),

whereA is a set of regular expressions describing the net motion
for a given procedure; here, we use

A={e, CLEY, CIC I DT

For example|($|(| (31| = (A {e})la — {(1C1*}, b — {1}
Note that there is no regular expressiondrfor (|*]:)*, or any
other exotic combination for that matter. By Lemma 7.1, any frame
string generated by the FS semantics is covered\pgven if we
allow for full user continuations.

It might seem that allowing an abstract string to retsetsof
regular expressions is unnecessary|gador any concrete frame
string will always match only one member Affor each procedure.

PG = WeS: a7 W) = {e

10. ACFA

With our frame-string abstraction in place, the rest of our abstract
non-standard semantics (which we cAICFA) follows straight-
forwardly. At the top level, there are three key components to the
analysis:

1. State, a finite set of abstract states.

2.7 € PR — %, a function mapping programs to initial
states.
3. ~» C State x State, a transition relation.

Using these, we define the set of all visited abstract states for a
programpr:

V(pr) = {6: Z(pr)~" 6}.
We defineState and its associated component domains in Figure 9.
For the most part, these domains correspond closely to their con-

crete counterparts. The notable exceptionsZree, which is now
afinite set® and D, which is now the power set of abstract proce-

However, we require sets when concatenating two abstract framedures. By convention, we use for user-world values of), and

strings, which degrades precision.
We define our abstraction operator with

|p| = Mp.dira(trigy |p])-

For brevity, we use the notatig || in place of_|, |(}'||.
We induce a definition fo® with the following constraint:

[plEpandl¢ C7 = |p+q/CDBT.

We define® to be the most precise operator which satisfies the
constraint, which is

@ € p(v)anda € G(v)},
to be the

PBG=Mo{a € cat(ar, as) :

wherecat is defined in Table 1. Similarly, we define?
most precise operator satisfying

PIEP = I |E®)

¢ for continuation-world values. Observe thatA the state space of
ACFA is finite, which makes it trivial to show th&tis computable.

The functionZ abstracts to

Z(pr) = ((pr, 1, %0), (), ({halt}), 1, [fo = lel), o
In Figure 10, we d deflne the transmon relation fAICFA. The

auxiliary function tick : Time — Time need only obey the
following constraint:

[t| T T = |tick(t)| C tick(?).
The functionA abstracts directly:

BN ):
erf= {wf,ﬂ(f))

f€LAM

ABve f € VAR,

5Correctness is independent of the choicg/mﬁe, but precision is not.
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Table 1. The cat function
6 S m = W-ﬁ-m |(Call757 Ue767t)|Eval = (call, |ﬁ‘7 |’U€‘,|5‘,|t|)
Bval = CALL x BEnv x VEnv x Log x Time |(proc, d, ¢, ve,5,t)| appy = (|proc|, |d], [c], |vel, 8], [¢])
Apply = Proc x D* x D* x VEnv x Log x Time da, ... dn)|pe = (|da],- .., |dn])
3 € BEnv = VAR — Time \d|p = {|d] proc}
e € VEnv = VAR x Time — D |halt|proc = halt
¢,d € D = 7j(\Proc)/\ |clo| proc = |clo|cio
proe € Proc = Clo+ { halt} \(tam, B, )| cto = (lam, |5, |t])
o € Clo = LAM x BEnv x Time 8| 5En0 = Mv.|B(v)]
8 €log = Time—F . velven = A(v,1). | | |ve(v,t)|p
t € Time = afinite set of abstract times tI=t
Figure9. ACFA domains 101209 = AL |—|A|6(t)|

The easiest way to abstract the functigrungest would be to have
it always returnT z. We opt for a mildly optimized version. Later

on, with state gradients, we show how we can do better if we are

willing to invest in an initial walk over the syntax tree. For now,
however, we just join over all continuation arguments:

y(ﬂng\estS (¢1y...

,Cn) = ages(Cr) U- - - Lages(Cn),

where the functioruge returns the abstract age (measured as an
abstract frame string) of a value:

ages {procy, . ..
ages, (halt) = 3 (to)

ages, (1am. .7) = 3(1)

11. Correctness of ACFA

Before we use our analysis, we must first show thA&FA is a

proper simulation of our concrete frame-string semantics. Specif- haviour. Now, we translate this into the ability to reason about envi-
ically, we must show that for every state visited by the concrete ronments. During this development, we omit trivial or minor lem-
semantics, it has a suitable counterpart in the set of states visitedmas. We'll need to refer to the various components of states that
by the abstract semantics. Thus, the first task is to define what we grise during execution, so for a given program we define sev-
mean by a “suitable counterpart.” To do this, we [iftover the

ACFA domains (in the natural way), and we lift the abstraction op-

, proc, } = ages, (proe,) U+ - U ages, (proc, )

erator| - | to the rest of the concrete semantic domains (Figure 11).
Next, we define the simulation relation ¢ x C; we say that

represents if || C <.

Theorem 11.1 (ACFA simulates the concrete analysis)
If ¢ € V(pr), then there exists € V(pr) such thats| C <.

Sketch of ProofThe proof is by induction over the transitions. The

obligations are:

1. |Z(pr)| T Z(pr); that is, both machines begin in sync.
2. If |s] E<ands = ¢’, thenI’ : T~ and|¢’| CE <. That s, if
a concrete state is represented, the state to which it transitions e |§,(t') | summarizes stack change since the binding was made.

Figure 11. Extending abstraction across the concrete domains

(if any) is also represented; diagrammatically:

The first obligation follows easily from definitions. The second
obligation follows by cases one Ewval ands € Apply. O

12.  An environment theory
We have invested much machinery in reasoning about stack be-

eral families indexed bylime:
0 such that( call, 8, ve, d,t) € V(pr)

60 such that(call, 3, ve, d,t) € V(pr)
proc such that(proc, d, c, ve, 6,t) € V(pr)

T
br
i

pr
proc,

Typically, pr is clear from context, and we omit it.

Much of our logic now plays off the fact that binding environ-
ments return times, and that we can use time for more than simply
looking up a value. For instance, given the tithe= 3;(v):

e ¢ is the time at which) was bound.
e ve(v,t') is the value ofv in this binding.
¢ 3,/ is the binding environment where the binding appeared.



length(a) = length(u) length(c) = length(k)

([¢f € q")), B, ve,8,1) ~ (proc,d, e, ve, 8, 7) (([[(Aw W k) cald], B, %), d, ¢, 58,0, t) ~ (call, B, 58,8 7)
e AT 1S 7 =k
&= ﬁgg?; i :,ﬁifﬁ(i’ ’%f; %- (k,7) = 3]
where A {(@/@ﬁ)_l fe CEXP where Aj— |_| ICP/ZH’ @5\ 3
- (youngest;c) otherwise =
8 =0 @ (\L.AD) § = (0 ®(\.AD)) U1~ le]]

Figure 10. The abstract transition relatian. ¢’

Our first lemma relates a binding in some environment to the en-  Before we develop these theorems, it is instructive to review
vironment where that binding first appeared, which turns out to be the lifetime of a binding. When a variable is bound, one of two
anancestof A key strategy for determining equivalence between things will happen: (1) there will be continuation-pure net motion
two environments involves inferring their common ancestry. to the use of the variable, or (2) there will be continuation-pure net
motion to the creation of a closure capturing the variable. When a
Lemma 12.1 (Ancestor) [(:(v) = B, ) (v)- closure from (2) is eventually applied, again, one of two things will
Next, we define an interval notation froffime to intermediate ~ happen: (1) there will be continuation-pure net motion to the use of
frame strings: the vqriable, or (2) there will be continuation-pure net motion tothe
[tr, 2] = 677 (1) creation of yet another closure which captures the variable, and thus
12 t2 \"1) we recur. Note how continuation-pure sequences chain together
In other words|[t1, t2]?" is the frame-string change between time equivalent environments. The following DFA is a description of
t1 and timet,. By induction, we get intuitive properties such as: the net stack motion between the binding of a variabland
its eventual use. The solid lines represent continuation-pure net
Lemmal122. Ity <> < t3, then(ts, 2] + [t2, ta] = [t1, ta]. motion, and the dotted line represenfs arbitrary net motion?
The next lemma holds for the following reasoning: the apply-

state schema for the concrete transition relatipralways adds a RSl

fresh (and therefore uncancellable) push act(@fn, to the end of ®*

every interval. Thus, when we prove that a net interval must be pop- ‘ bind z [ ‘ close) overzx ] T invokeul@[
monotonic’ no apply state (and hence nothing at all) has occurred W ST ey

within this interval, thereby forcing the times to be identical.

Lemma 12.3 (Pinch) If |[t1, ¢2]] is pop-monotonic, thef = t5. Erom this diagram,. we see that continuations, which in our seman-
tics restore an environment and then push a frame to hold a return
From this, we immediately get the following, the fundamental value, are the connective glue between equivalent environments.
frame-string environment theorem. The following theorem states that if the net frame-string change
, : / between two times is solely a continuation push action, then the
Theorem 12.4. [[3(v), B'(v)]] = €iff B(v) = 5'(v). environment from the later t}i/me is an extensign of—by exactly the
This sets up a strategy for proving equivalence: if we can infer variables bound by that continuatiorisexpression—the environ-
that no net stack change happened between two bindings of thement from the earlier time.
same variable, then the bindings are identical. : : o _
Looking ahead, iM\CFA, if we find that some abstract interval The@ 12.5 (Atomic deepening) I  [t1, 1] ] = (|, thenfy, =
has changéx|, then all of the concrete intervals it represents have Bea | B(7)-
changee. This implies that the abstract times defining the interval The next theorem extends the previous theorem across an arbi-
in question actually represent the same concrete tibiseerning trary number of continuations.
when abstract equality implies concrete equality is in fact the key
oal of any environment analysis.
’ The ne);t few theorems p):esent sufficient (but not necessary) If L[to, tn]) = G1--- Gl thenfeg = Be,, [B()-
conditions to demonstrate environment equality in specific (yetsur-  So far, we've been restricted to reasoning about strings that
prisingly common) cases. It's natural to question why we even need are either empty or push-monotonic and continuation-pure, which
such conditions when we just stated a sufficeamd necessary con- seems constricting. Fortunately, we can use group theoip-to
dition. The answer has to do with the imprecise nature of decidable fer continuation-purity for some past intervals using frame strings
program analyses: the abstract analogs (developed later) to thesevhich have no restrictions on their content. The following corol-
new conditions are satisfied more easily than the abstract analog oflary relates the equivalence of two environments from the past,
the fundamental theorem. In fact, we believe that there are more which are inferred to be separated by a continuation-pure and push-
conditions than we give here, that is, conditions covering special monotonic net stack change.
cases whose abstract analogs are more tolerant of imprecision.

Theorem 12.6 (Push-monotonic deepening)

Corollary 12.7 (Push-monotonic ancestry)
If Hto,tz] + [th t2]7lj = 011 e <"y” |1 thenﬁto = B ‘B(A/)-

in

6 An environmeni3 is an ancestor of’ if 3/ = B[v; — t;] for someuv;
not in the domain of3. That is, using only the frame-string lag, from time ¢2, we

7 As a common special case, note that proving an intervairiptyproves were able to infer the equivalence of environments from past times
that it is pop-monotonic. to andt;.



Not surprisingly, there are pop-monotonic analogs and pop/push-Define inverse transformatioReplacer*((x',4’), pr) = S™1,

1

bitonic generalizations for each of these theorems. Skipping the where

pop-monotonic versions, we have:

Theorem 12.8. If [[to,t1]] = [71)---[7")( |-~ (7|, then
ﬂt1|B(7,) = ﬁto|B(7)'

and the inferred variant:
Theorem 12.9. If [[to, ta]+[t1, t2] 1] = [7*) - 3:)(311 ...G;': ,

thengy, |B(v") = Bio|B().

13. Generalized super-g inlining
Here, we describe the generalized Sufeinlining condition,
Inlinable:
Inlinable((x', "), pr) <=
V([ C(f e ¢, B, ve, d,t) € V(pr) :
if K =& and(Ly-(v'), B, tp) = ABvet f then
Y =1
{ﬁb|f7’€e(Lm‘(¢/)) = ﬁ‘free(Lp'r(¢/))-

If Inlinable((x',%"), pr) holds, then it is legal to inline thi term
labelledy’ at the call site labelled’. Inlinable checks that (1) all
closures invoked at the call site are from the sauterm, and (2)

the environment at the call site is equivalent, up to the free variables

of the \ term, to the environment within the closure.
To show the correctness of this condition, we must formally

define an inlining operation and the meaning of a program. We must

S lv=w
STH Ay (0 call)] = [y (0*) S™ call)]
[¢S™Yf S™'ar...)]
[[(fl )]
whereL,, (k') = [(f" ... )]
Ycall, B, ve,d,t) = (S~ call, B, S~ ve, 6, t)
Yproc,d, c, ve, §,t) =

(S~ 'proc, S7'd, S7tc, S we, 6, t)

K # K
o

ST a™] =

K=K
S-
S-

S™Hdy,...,dn) = (S dy,...
S~'halt = halt
S~ (lam, B,t) = (S7* lam, B, 1)
S ve = A(v,t).(S7 (ve(v,t)))
We define thenormof a state;, written||s||, with
[|(call, B, ve, d,t)|| Boar = (call, B|free(call), ||ve|,t)
[[(proc, d, ¢, ve, 8, 1) [ appy = (|lprocl], [[dl[p~, [[e|[p=, [[vel, )

.S d,)

H<d17 ,dn>HD* = <Hd1||D77||d”HD>
Il = [|d]| Proc
|| clol| proc = ||clo]|cio

[|halt|| proc = halt

[(tam, B, )| cio = (lam, | free(lam))
[[vellvia = Av, £)-llve(v, D]

then show that the meaning of the program is unchanged under the

inlining operation. We define the meaninig of a programpr to
be:

M(pr) = {é : (halt7 <(LP7'(€)7Bb7tb)>7 <>7 ve,d,t) € V(p?”)}.

That is, the meaning of a program is a set containing the label of

the closure passed tault.
We define the inlining transformatioReplacer((x’,v'), pr) =
S such that:

Sv=v
S[Qy (0™) cald)] = [Ny W) ScalD]

w1 JIGSF Sz )] k#K
L= {[[(me’) el K=r

The correctness theorem thus becomes:

Theorem 13.1 (Superg inlining is safe)
If Inlinable((x',"), pr) holds, thenM (pr) = M(S pr).

Sketch of ProofChoose any inline-candidate = ((x', '), pr),
such thatinlinable((x', "), pr). The proof proceeds by bisimula-

Let S = Replacer z andS~! = Replacer ! z. We define a bisi-
mulation relationk? C State x State:

R(s,s5) <= |l]| = [|S™"¢s|| and]|S¢]| = |l<sl-
Diagrammatically,R looks like:

11
S <]l s

Ss

S

s
S|

We must we show that:

1. R(Z(pr),Z(Replacer ((x',¢"), pr) pr)); that is, the original
program and its transform start in sync with respedgto

If R(c,ss) thengs=¢ <= ¢s=cg; that is, either both
states transition, or neither transitions.

If R(s,ss) ands = ¢’ andss = <5, thenR(<’, s5); that is, the
relationshipR is maintained under transition.

2.

3.

The first two obligations follow straightforwardly from the defi-
nitions. Establishing the third conditio(preservation), however,

tion between the execution states of the original program and thoselS What requires the use of the inverse transform and the norm.

of the transformed program. In order to define our bisimulation re-
lation, we first need some auxiliary definitions.
First, we extend the transformation over the semantic domains:

S (call, B, ve,d,t) = (S call, B, S ve, d,t)

S (proc,d,c, ve,d,t) = (S proc,S d, S ¢, S ve,d,t)
S{di,...,dn) ={(Sdi,...,Sdn)

S halt = halt

S (lam, B,t) = (S lam, B,t)

S ve = A(v,t).(S (ve(v,t)))

Again, diagrammatically, the third condition looks like:

R
S —>Gs

;sl |-

! !
S TR Ss

Here, we show why some “intuitive” relations lacking these fea-
tures fail, building up the rationale for our bisimulation relatiBn



Atfirst glance, theR relation as defined probably looks stronger
than necessary. It is tempting at first to 3, ss) < S¢ =

The correctness of these conditions follows from the correct-
ness of the generalized Supgcondition in conjunction with the

¢s instead. To understand why this approach breaks down, considerenvironment theorems.

the case where execution is about to transition from call ssife
the inlined call site. Assume some variahleis invoked in the
original program andam is invoked in the transformed version.
When applyingA to each of these, we gétam, 8y, ) for v and
(lam, B,t) for lam, whereg is the environment from the current
state, and3, is the environment from the closure’s creation. In the

subsequent apply state, these two (superficially) different closures
now occupy the procedure position, and hence, we cannot preserve

the bisimulation. (The additional fact that# ¢, would be a less

significant, easier to handle issue were it the only problem.)
But even thoughs and 8, may not beequal they will be

equalover the free variables ofam, and this is all that really

The third, and most general, condition uses Theorem 12.4 to test
each free variable for equality individually.

General-Inlinable((k', "), pr) <
V([Cf e g™], B, ve,d,t) € V(pr) :
if K = k" and(Ly(v), B, ts) = ABvet f
then {w =¥
Vv € free(Lpr(v)) : [[B(v), ] = [[Bs(v), ]].

This condition is in fact equivalent thlinable.

15. Abstract super-g3 inlining

matters. This notion of equivalence leads us to define the norm AS expected, each concrete Supecondition has a counterpart
of a state. The norm of a state removes useless bindings from its@bstract condition which implies it. We define the abstract Syper-

closures’ environments. With this, we might strengtti&g, s ) to
[ISs|] = Ilss]|- At first glance, this seems to solve the previous
problem, for||(lam, 3,t)|| = ||(lam, Bb, tb)]]-

Unfortunately, when we added the state normalization require-

ment, we lost so much information abauandss that we cannot
adequately describe its next state. By augmenting the rel&timn
lIs]| = IS~ ss|| and||Ss|| = ||ss||, we have locked the internal
structures of andgs into a tight correspondence. Criticallyand

s are forced to step either together (toandcs respectively) or
not at all, and more importantly, we have sufficient information to
reason adequately abatitfrom ¢5 andvice versa O

14. Concrete super-g inlining

Having built a rich environment theory, we now develop three
Superg conditions for the safety of inlining based on the results
of the concrete analysis. Naturally, this is entirely in preparation
for defining another such condition fdxCFA. We define the first
condition, Local-Inlinable as:

Local-Inlinable((k', "), pr) <=

Y([Cf e q)x], B, ve, 6,t) € V(pr) :
if K =& and(Ly-(v), Bv,tp) = ABvet f

then _.{L[tb,t]J e
free(Ly: (")) € B(v).

It is primarily meant to inline closures which are created and

quickly used within the same environment. That is, it covers cases

condition Local-Inlinable to be:
Localflﬁinable((/’c/7 '), pr) <=
Y([(S e gl B, 78,0, 1) € V(pr) :
if & = x" and (L, (¥), 5177?17) = ABEE?JE
Y=1"
then{ {6@) =7 I

free(Lpr (¥")) € B(7).

Likewise, forEscapimlinable:

Escapin/g-l\nlinable((m', '), pr)

—
V(IS e gl B, 78,5, T) € V(pr) -

if & = ' and(Ly. (1), B, &) = ABTet f
=1
ten 3 v  free(Lp (1)) : 3y - {i(é(ﬁ% § 5(t)

Similarly, we can abstract th€@eneral-Inlinable condition:

Geneminable((m',d/),pr) >

V(I € )], B, 56,6, D) € V(pr)
if & = r" and(Lyr (v), By, b) = ABvet f
=1
then PPN o~
{VU € free(Lyr (1)) : 6(8(v)) = 6(Bb(v)).
Correctness of these conditions follows from Corollary 11.1 and

their concrete counterparts.
It may appear redundant to define three different inlining condi-

where no user-level closure is made over the variable betweentionS when, for example, thBscaping- Inlinable test is more gen-

binding and use.
We define a second conditioRscaping-Inlinable as:

Escaping-Inlinable((x',4"), pr) <
Y([(f € g")], B, ve,6,t) € V(pr) :
if K =x"and(Ly-(v), B, tp) = ABvet f
Y =1
]

v B(y).

This second condition is meant to inline a closure that escapes its
creation environment, but flows back into and becomes invoked

within its creation environment, which now could be inside another

closure that also escaped. It covers the special case where at most
one user-level closure is created over the free variables between
binding and use. It turns out that the local condition is a special

case of the escaping condition; that iscal-Inlinable implies
Escaping-Inlinable.

eral than Local-Inlinable. However, what matters pragmatically
are the abstract conditions. They are what we/a_lc\tually compute,
and they areotrelated so neatILIi practicépcal-Inlinable fre-
quently spots cases thétscaping-Inlinable misses, so our “re-
dundant” condition actually pays for itself.

The following diagram summarizes the logical relationships
between the various conditions:

Escaping <—— Emg

~

Inlinable

PN

General Local <———= L/oc\al

—
General



16. Stategradients
Until now, our concern has been correctness. We now turn to im-

grov="T

proving precision and speed. In our experience, we have found that 979 [Qe (u* k) call)] = gr(9[k — |e]] & (Av.|(‘]])) call

improvements to precision paradoxically tend to improve speed as
well. Examination of the results reveals that when the precision of
the analysis is enhanced, less time is spent in “impossible” regions

of the abstract state space, that is, regions not corresponding to pos-

sible concrete states.

The first enhancement that we explore we s#dlte gradients
The gradient of a concrete stafewritten Vg, is the simply the
change to the global frame string caused by moving through that
state. Looking back at the definition ef, we find V¢ given as
sub-definition. P

An abstract state gradient is a functibhe State — F which
bounds the potential frame string change during a given transition.
That is,V is a valid state gradient if:

K| C¢ = |V()| C V(.

When this condition holds, we may safely integr‘@tewith ACFA

as follows: when making a transition frod) computeAp’ as
Aﬁﬂ@(?), and then use\p’ in place of Ap.2 While there are
many valid abstract state gradients, the aforementioned validity
constraint induces an optimal (most precise) state grad?‘em,

Vo@ =[] Vsl

[sIEs

As expected, computing ., is, in general, undecidable. In prac-
tice, however, wean compute the optimal (or near-optimal) state
gradient for a broad class of programs.

The state gradient’s utility lies in the fact that duridgCFA, a
finite set of times forces abstract values to merge. Consequently,
WhenyWst computes a youngest abstract age, impossible con-
tinuations mix into the result, which degrades the precision of a

gro[Qy (W) calD] = gr(d® (M.|(7]])) call

|
gro[Q¢ W' k1) cal)] = gr T call
grd[Che” k)] = T (8(k) ]
M (ngei)

m gr(a ® (Av.(@(k))_l)) h
gro[(he” ¢ )] = Tl — Ap]

1 gr T 67;)

MM (gr (0@ (A\v.Ap)) qi)

M gr(0® (Av.Ap)) h
3g: € LAM
otherwise

le]

whereAp = T

gro(qge),] = Tly— Ap]

n ﬂi(ngei)

M gr(0® (A\v.Ap)) q
el

g)~!

q€ LAM

whereAp = .
p otherwise

Figure 12. A class-1 state gradient generator

from call-site labels to potential frame-string changes when calling
at that call site. Withyr, we define a class-1 gradiewt; as:

ﬁl([[(f e q],...)=(gr T pr)s.

We define a class-2 gradient to be one which utilizes control-
flow knowledge in formulating its bounds. Clearly, such a gradient
is going to be more expensive with respect to both run time and

frame-string analysis. Hence, the gradient can be viewed as a sievgmplementation cost, but it may yield even tighter bounds.

which discards impossible state space.

We distinguish three classes of abstract state gradient with re-
gard to the complexity of its computation. A class-0 gradient may
utilize only the information contained in the state which it is ana-
lyzing. A simple yet effective class-0 gradieMy, is:

le|  Fi:q € CLAM

Vo([Che g™, ...) :{

Tp otherwise
Vo([(geD,],...) = {Tl~ otherwise
F

Low on both implementation complexity and run-time cost, this
simple gradient still covers many call forms in CPS.

We define a class-1 state gradient as one which has access t
a pass over the syntax tree. A very simple class-1 gradient can

check to see if any continuation variables can escape through a

user closure, such as wheall/cc has been used. If no such
case is found, all continuation behaviour is pop-monotonic. How-
ever, if even one continuation could escape, then¥Whe must

be used. With mildly more effort, we can degrade gracefully in
the presence otall/cc-like behavior while producing tighter
bounds. Figure 12 defines the functign which walks over the
syntax tree to help build a class-1 gradiept. accepts a “static
log” 0 € VAR — F, and a piece of syntax; it returns a mapping

8 Implicitly, we have been using the most conservative standaigmﬁT =

AT g

9|mpossiblemeans that the abstract continuation does not represent any
concrete continuation.

17. Abstract garbage collection

Hudak’s abstract garbage collection via reference counting [4] can
be adapted to and extended within our framework, and it offers
noticeable improvements to the precision of environment analysis.
Like state gradients, the mechanism we describe here is optional,
as it is not required for thAA CFA to be correct.

Our analysis has a finite resource from which it must make

allocations:Time. In the concrete semantic&jme is infinite, and
hence, no time stamp is ever reallocated. However, a finite analysis
such asACFA may at some point have to reallocate a time stamp;
in the case of the variable environment, this merges (thraugh
the nlffw binding®¥ with the bindings previously allocated to that
ime.

In some cases, this merging is simply an unavoidable conse-
quence of the fact that a single abstract state may have to represent
multiple concrete states. It may, however, be the case that during
the act of merging, an old value which had become deadun-
reachable, suddenly becomes reachable again when the time stamp
to which it was bound is reallocated. A valuedisadin some state
if that value would never again be encountered if all subsequent
time stamps allocated were fresh time stamps. Dead values in the

10Recall that indingis an entry in the global variable environment, and
has the formVAR x Time.

11 A common example of this in Shivers’ OCFA is the merging of return
points for a function. For instance, OCFA spuriously reptinat any call to
foo can return to any other call ttoo, rather than to just the function that
called it.



While we have focussed on the essenhalore of the semantics,

£(proc,d, e, ve, 8, 1) = £(proc, ve) U £(d, ve) U £(e, ve) all the extras that make a real language can be added to the analysis
E(E,EE) _ U S(E,EE) and pushed through the correctness proofs with no trouble. For a
7ea fuller treatment of these additions, refer to our longer report [6].
£(d,ve) = |J £(proc, ve) 19. Implementation
proc€d We have an implementation adkCFA in Haskell, with a front-
2((lam7 B,'t), @) — U g(gg(m ﬁ(v))ﬂg) on_d supporting a simple, direct-s_tyle Schem_o. The impl_ementation
we free(lam) is identical to our work here, with the addition of basic values,
U {B(U)} U {(Uﬁ(v))} U {g} letrec, primops, conditionals and a store. We support Bath
e ~ andV; for state gradients, as well as abstract garbage collection.
£(halt, ve) = {tO} The user may also select either the Steele stack model or one which
is not properly tail recursive (that is, tail calls don't pre-pop the
Figure 13. Live binding and time finderg caller's frame; they are handled like any other call). We utilize a

set of abstract times equivalent to Shivers’ 1CFA contour set. Af-
ter the analysis has run, the implementation additionally performs
abstract correspond to values that would be garbage collected in theuseless-variable eliminatiofi/n-reduction, dead-code elimination,
concrete. A dead value becomesambiewhen the reallocation of ~ constant folding/propagation and Sugeinlining. As our policy
the time stamp to which it was bound causes it to merge with live dictating the order of optimizations and heuristics for inlining ma-
values. tures, we have been experiencing success in automatically fusing
Hudak’s work utilizes abstract reference counting to allow the increasingly complicated loops and co-routines. Below, we discuss
compiler to insert destructive update code for an object when its a few illustrative examples run throughCFA.
abstract reference count is one. In much the same fashion, we can Conservative-reduction fails to inline(\ (x) x) at the
apply garbage collection in the abstract to times and to bindings. bracketed call site in the following direct-style example:
We may optlo_nal_ly also keep an abstract count of how many times (O () [ £) o) O\ ) 2)
a particular binding has been allocated, resetting its coufit|to
whenever it gets garbage collected. This approach offers two ad-or, its CPS equivalent:

vantages: (1) _it kills zombies, an_d (2) if two abstract bindings are O Gk E£ O (@ [gok)H)
equal and their allocation count is exactly one, ttiey represent _
. A (Nd (x k) (k %)) halt)
the same concrete time or bindingote that (2) now offers a sec- o ) ) ) _ _
ond mechanism for testing environmental equivalencel! Inlining fails becausef appearing twice risks code explosion.
We define a function® € o — Time U (VAR X Time) ACFA, however, can inline the functiomithout causing the code

in Figure 13 which recursively finds all of the live (reachable) explosion. Of course, this example is tri_vial du_e to the_lack of free
bindings and times from a given state or value. With this, we define variables, and hencé-CFA also recognizes this as inlinable. By

a collecting abstract transition relation fAICFA, S~ T simply adding free variable, howevet;CFA fails, while ACFA
~ 3 N » still reports inlinability:
proc,d, ¢, ve|£(3), 6| L£(3), t
(proc, d,& 5el £, 91£@), 1) ~ & O (@ (O @ (If £1 0))
(proc,d, ¢, ve,8,t) ~c < CWECIMONMCII-IDDD)

Note that we need to define the transition only for apply states, as The bracketed call in the following CPS snippet is not inlinable by
there is no risk of creating a zombie in an eval state. We have left even the most aggressigereduction-based inliner:
out the abstract allocation counter from this transition relation; the Oy (2)
associated machinery and its inclusion is straightforward. Z(l t (1 On (£ )

WheneverACFA deems a collection appropriate, it may per- etrec oop "Ef ?A (£s) (1 £ £
form a transition with~ <. Note thatACFA does not have to make (Toop (o (x k) (k Sz) ) fso)))s oop s
every transition with~ ¢ collection only has an effect when cre- p Ao
ation of a zombie value is imminent. For the examples we have k-CFA fails here as well, due to the presence of the free varigble
tested, such as the doubly nested loop at the start of the paper, thiget ACFA still reports inlinability. As a bonushCFA garbage col-
collect-as-necessary policy results in a collection for roughly a fifth lects the halt continuation in the prior example, implicitly proving
of all states visited. that it never halts.

18. 1letrec,etal. 20. Related work

Our work draws from three main sources: previous work with
analyses based on procedure strings, previous work on CPS-based
drogram representations, and the general body of work on program
analysis based on thecalculus.

Using procedure strings to capture or constrain flow informa-
tion has been treated extensively. Sharir and Pnueli [9] provide a
good introduction to the call-string paradigm, using call strings to
provide the polyvariance needed to specialise function context in
interprocedural data-flow analysis. Sestoft [8] has used definition-
use path strings to globalize function parameters. Much of our work
draws on Harrison's dissertation [3], which used call-down/return-
up procedure strings for detecting read-write dependencies in a par-
allelising compiler. In particular, we have taken three key items
from Harrison’s work. First, we extended Harrison’s procedure

Given the tight correspondence between our work and Shikers’
CFA [10], features such asetrec, primops, conditionals, basic
values and a store can be handled in exactly the same way, onc
we account for frame-string change. Briefly, a primop labelled
causeg!|¥) motion—net empty—and no netick. Conditionals

are handled as multi-continuation primopetrec’s frame-string
effectis identical to that of a “let continuation.” (Note that we don't
actually needLetrec for loops and recursion: applications of the
Y combinator can be written in our core representation easily.)
Basic values, such as integers, strirgs, have no effect on frame
strings. Adding Shivers’ store abstraction requires the addition of
a store object to every state; primops handle interactions with it.
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strings to the “frame strings” we employ. Second, our basic string Cousots’ “non-standard abstract semantics” framework of progra
abstraction (functions mapping code points to regular expressionsanalysis [1, 2].

over stack actions) is Harrison’s. Third, the extremely clever “rel-

ative” view of program operations is also Harrison’s insight. We

have generalised Harrison’s procedure strings by adding contours,21.  Acknowledgements

which enriches its structure from a monoid to a group; we exploit pavid Eger collaborated with us on the very early design of the
this extra structure to more prem_sely _model enwronmentgl_char_\ge, CPS procedure-string model in the Spring of 2003 before graduat-
particularly with respect to continuations. (Readers familiar with jng from Georgia Tech and departing for graduate work at Carnegie
the details of Harrison’s work may note this shows up in our defi- Mellon. We developed the core of our frame-string model while
nition of the functioncat.) i o visiting the University ofArhus in the Fall of 2004. We are grate-

~ Another distinction in our work is our exploitation of CPS. Pre- | to our hosts, Olivier Danvy and Mogens Nielsen, for providing
vious work based on procedure strings has treated procedures ags sych a pleasant and productive environment. The university’s
“large grain” blocks of program structure, with alternate mecha- computer Science institute, BRICS, has a long history of invited
nisms employed to handle “intra-procedural” control flow, such as ¢ojjlaboration. We are two of many who have profited from BRICS’
sequencing, loops and conditional branches. These othertreatment§utward_|ooking academic culture. In Spring 2005, we wrote a
even need distinct mechanisms for handling calls and returns. As aghort paper on the formal correctness of the supigtining trans-
result, the semantic treatments are much more complex. (True, Wegorm, We very much appreciate the careful and detailed commen-

dodistinguish call and return to the degree that we separate valuesiary e received from an anonymous reviewer on this paper, which
with our user/continuation partition, but this single discrimination greatly improved the account we give here.

is all we need, and much of our analysis is insensitive even to this
distinction.) By moving to CPS, we pick up three advantages. First,
economy of mechanism: we simplify our semantics. Second, uni- References
versality: we gain a universal representation with two constructs,

. - . g 1] CousoT, P., AND CousoT, R. Abstract interpretation: a unified
both of which are\. Third, power: we gain a more precise seman- m P

lattice model for static analysis of programs by constructiorap-

tics. With regard to universality and power, while Harrison's more proximation of fixpoints. InConference Record of the Fourth ACM

complex semantics attempted to handle full continuations, it did not Symposium on Principles of Programming Languages (PQRb$

do so properly. Harrison was aware of CPS, and discusses it briefly Angeles, California, Jan. 1977), pp. 238-252.

in his work as a means of handling:11/cc. Unfortunately, he |51 cousor, P.,anD CousoT, R. Systematic design of program analy-
missed the fact that CPS terms can be partitioned, deciding that, in sis frameworks. IProceedings of the Sixth ACM SIGACT-SIGPLAN
CPS, all stack motion is “downward.” That is, a program execution Symposium on Principles of Programming Languag@an Antonio,

in CPS is all calls, no returns, which destroys the analysis. Our con- Texas, Jan. 1979), pp. 269-282.

Fribution is the shift to Steele’s Stack-managemgnt paradigm with 3] HARRISON, W. L. The interprocedural analysis and automatic par-
its consequent focus on stack-allocation operations as opposed to allelization of Scheme programsisp and Symbolic Computation 2

control operations. This is what liberates the analysis to general 3/4 (Oct. 1989), 179-396.

Con.trOI app_hcab'“ty' To drum on the point, this universality is criti- [4] HubAK, P. A semantic model of reference counting and its abstrac-
cal in functional languages, as opposed to languages such as Pascal’ "~ tion (detailed summary). IRroceedings of the 1986 ACM Conference
or C: function call is a wide-spectrum tool in the hands of a func- on LISP and Functional Programmin@ambridge, Massachusetts,
tional programmer. Aug. 1986), pp. 351-363.

The second body of work we have used is the line of research [5]

B . . . i 5] KRANZ, D., KELSEY, R., REES, J., HUDAK, P., FHILBIN, J.,AND
developing the CPS-as-intermediate-representation thesis. We have "~ ppaus N. ORBIT: An optin?zing compiler for Scheme.  IRro-

already outlined what CPS offers as a medium for analysis by ceedings of the 1986 SIGPLAN Symposium on Compiler Cotistnuc
way of contrast with non-CPS work. The seminal work here is by (June 1986), vol. 21, pp. 219-233.
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work has limits: there are some analyses that cannot be solved for
anyk. The Super3 analysis is one such example. Shivers identified Master's thesis, DIKU, University of Copenhagen. Denmarkt.O
the barrier as the “environment problem,” and presented “reflow 1088 ' ' Y P gen. '
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