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Abstract
We demonstrate how to map a control-flow analysis for
a higher-order language (dynamic languages are typically
higher-order) into a pointer analysis for a first-order lan-
guage, such as C. This allows us to use existing pointer anal-
ysis tools to perform a control-flow analysis, exploiting their
technical advancements and the engineering effort that went
into developing them. We compare the results of two recent
parallel pointer analysis tools with a parallel control-flow
analysis tool. While it has been known that a control-flow
analysis of higher-order languages and a pointer analysis of
first-order languages are very similar, we demonstrate that
these two analyses are actually more similar than previously
thought. We present the first mapping between a high-order
control-flow analysis and a pointer analysis.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors—Optimization

General Terms Languages, Theory

Keywords program analysis, high-order languages, pointer
analysis

1. Introduction
In dynamic languages, because they are typically higher-
order, it is not always clear from the syntax which functions
are being called at which call sites. Take for example the
simple Racket program that implements Turner’s tautology
checker and invokes it two times [6]. The details of the
example are not important, just the illustration it gives. The
function taut takes a function f that represents a boolean
expression. The function taut then checks if all possible
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assignments of either #t or #f to the parameters of f result
in f evaluating to #t.

(define (taut f n)

(if (= n 0) f

(and (taut (f #t) (- n 1))

(taut (f #f) (- n 1)))))

(define (g x)

(lambda (y)

(or (and x (not y))

(or (not x) y))))

(define (h z) z)

(taut g 2)

(taut h 1)

Because functions are passed around as arguments, it
might not be immediately clear which functions can flow
to f and thus what functions we are invoking when we call
f. There are two call sites which recursively invoke taut,
but the argument is the result of invoking f itself. In order
to answer the question of which functions can flow to f,
we need a control-flow analysis. A higher-order control-flow
analysis conservatively bounds the set of functions for a
higher-order call site.

Imagine we have an analysis or compiler optimization
that needs a control-flow analysis, but we don’t have a
control-flow analysis immediately available to us. Our anal-
ysis might need to know the control flow of the program in
order to prove some security properties or prove the absence
of errors. Our compiler optimization might need to know
the control flow of the program to speed up the program by
inlining functions.

There are a large number of tools that can perform a re-
lated but different analysis: pointer analysis. A pointer anal-
ysis tells us which objects variables point to in a program.
Wouldn’t it be nice if we could just use these tools? We could
spend a significant amount of time developing a new mod-
ern control-flow analysis tool, pulling in the latest features



from these similar but different tools, or we could find ways
to reuse these existing tools to solve the problem we have at
hand. Using existing tools saves us the effort of developing
our own tool and allows us to rely on mature and well tested
tools.

1.1 Overview
Precise control-flow analysis is expensive. For example,
0CFA as described by Palsberg, which is the analysis we
explore in this paper, is cubic [11]. This work was initially
motivated by trying to identify ways we could speed up
control-flow analysis. With the advancement of GPUs being
used for general process computing and more cores being
available on commodity machines, one way to speed up the
analysis is to parallelize it. The only work we know of that
parallelizes control-flow analysis of higher-order languages
is EigenCFA [13]. We also know of two recent tools that
parallelize pointer analysis developed by Méndez-Lojo et
al. [8, 9].

One option we considered to speed up control-flow analy-
sis was to deeply understand these two tools for pointer anal-
ysis and port over any ideas that would improve EigenCFA.
However, we took the option to use those tools directly. But
in order to do this, we needed to map a control-flow analysis
into a pointer analysis. In this paper, we demonstrate how to
do this. To our knowledge, even though the similarities be-
tween these analyses have been known and there has been a
general feeling in the community that they are the same, this
mapping has not been explicitly laid out [10].

With this paper we plan to show that we can successfully
take the state of the art in pointer analysis and improve upon
the state of the art in control-flow analysis in terms of per-
formance. Our goal is to leverage existing tools available to
us from the pointer analysis community. We wish to exploit
the efficiency of these static analysis tools for control-flow
analysis of dynamic languages.

The contributions of this paper are as follows.

• We show that there exists a direct mapping between a
control-flow analysis of higher-order languages and a
pointer analysis for first-order languages. In fact, we
show three different mappings, each serving a slightly
different purpose. The first mapping, in section 3, is to
help us demonstrate the connection between a control-
flow analysis and a pointer analysis. The second map-
ping, in section 5.1, allows us to use the benchmarks that
were used by the control-flow analysis tool EigenCFA.
The final mapping, in 5.4, makes a different trade-off by
containing more inference rules, but results in fewer vari-
ables. Because of this mapping, we end up with one of
the fastest tools for 0CFA.

• We show in section 4 that the constraints generated by
a traditional control-flow analysis are equivalent to the
constraints generated by a pointer analysis after going
through our mapping. This is important because it means

that the answer we get back from a pointer analysis tool
will be the same answer we would get from a control-
flow analysis tool.

• In section 6, we then demonstrate the benefit of this
mapping by comparing two recent parallel pointer analy-
sis tools with a recent parallel control-flow analysis tool
called EigenCFA [13]. We compare a control-flow anal-
ysis tool that runs on the GPU with a pointer analysis
tool that also runs on the GPU [9]. We also compare
these tools to one that runs on a single CPU with multiple
cores [8]. Both of theses pointer analysis tools were writ-
ten by Méndez-Lojo et al. For the benchmarks we used,
this multithreaded implementation performs the best. We
saw that the CPU multicore pointer analysis tool is able
to run up to 35 times faster than the GPU control-flow
analysis tool. With the mapping of this paper, we beat the
fastest known GPU version of CFA with a pointer analy-
sis tool that runs on the CPU.

The implementation details of a static analysis tool
matter. With the wide range of work that has been done
for pointer analysis, applying these techniques directly to
control-flow analysis of dynamic languages is advantageous.
Due to the mapping in this paper, for the chosen benchmarks,
we now have the fastest way we know of to do higher-order
control-flow analysis that has the precision of a 0CFA as
formulated by Palsberg [11].

2. Background
In this section, we give a brief description of a traditional
pointer analysis and a traditional control-flow analysis.
Control-flow analysis of higher-order programs and pointer
analysis share much in common with each other and often
the pointer analysis and control-flow analysis communities
use similar techniques [7]. However, the relationship be-
tween the techniques is often obscured by differing termi-
nology and presentation styles.

The brief overview of the two analyses given here il-
lustrates their differences. But the mapping given in the
next section illustrates their similarities. By showing that
the gap between pointer analysis of first-order languages and
control-flow analysis of higher-order languages is even nar-
rower than once thought, this allows for further applications
of the large amount of research that has gone into pointer
analysis to be applied to control-flow analyses.

2.1 Pointer Analysis
Pointer analysis is one of the most fundamental static anal-
yses with a broad range of applications. Is is used by tra-
ditional optimizing compilers and by applications involved
with program verification, bug finding, refactoring, and se-
curity.

Pointer analyses can change based on the desired pre-
cision. There always exists a trade-off between the speed,
scalability, and precision of any analysis. There also exists



extensions for handling specific language features. In this
paper, we will stick to using a very basic pointer analysis,
though extended to handle very basic pointer arithmetic in
order to handle fields of structures, whose importance will
be demonstrated later.

We give a brief overview of a pointer analysis, describing
the statements that are supported and the constraints that are
generated from those statements.

2.1.1 Pointer Statements
The pointer analysis tools we used were developed to an-
alyze C programs. These tools only consider pointer state-
ments, disregarding the other statements of the program.
There are five pointer statements that are supported: assign-
ing the address of a variable, copying a pointer, dereferenc-
ing a pointer, assigning to dereferenced pointer, and simple
pointer arithmetic.

x, y ∈ Var ::= a finite set of variables

o ∈ Int ::= a finite set of integers

x = &y

x = y

x = ∗y
∗x = y

x = y + o

The basic pointer arithmetic allows us to handle struc-
tures. Some pointer analysis algorithms “collapse” a struc-
ture into a single variable, but this comes at the cost of
too much precision [16]. Other algorithms treat each field
as a separate field based on offset and size. While this is
not portable because the memory layout of structures is im-
plementation dependent, the analysis is still correct as long
as pointer arithmetic is used strictly for accessing fields of
structures, and not used in other parts of the program to
access arbitrary parts of memory. This is sufficient for our
needs since the only pointer arithmetic used in our encoding
is to dereference fields.

2.1.2 Pointer Set Constraints
Now that we know what pointer statements we can handle,
we will answer the basic question of how can we figure out
which pointers point to what. A pointer analysis is usually
formulated as a set-constraint problem. An analysis will
iterate over the statements of the program, generating set
constraints for each statement. These set constraints define
the points-to sets pts(x ) for each variable x in the program.

The following constraints are those generated by Ander-
sen in his style of analysis [1]. In these constraints, loc(v)

represents the memory location denoted by v.

x = &y loc(y) ∈ pts(x )

x = y pts(y) ⊆ pts(x )

x = ∗y ∀v ∈ pts(y) : pts(v) ⊆ pts(x )

∗x = y ∀v ∈ pts(x ) : pts(y) ⊆ pts(v)

x = y + o {v + o : v ∈ pts(y)} ⊆ pts(x )

All the rules are generally straightforward. For a pointer
dereference, we are stating that everything we could possibly
point to is also pointed to by the variable we are assigning.
For assigning to a pointer dereference, we are stating that
everything that we could point to also points to what is
pointed to on the right hand side.

A pointer analysis can be flow-sensitive or flow-insensitive.
A flow-sensitive analysis takes into account the order of
statements in a program. A pointer analysis can also be
context-sensitive or context-insensitive. A context-sensitive
analysis takes into account the calling context (where the
function was called) of the function that contains the state-
ments we are analyzing. In practice, context-sensitivity and
flow-sensitivity are too expensive and as such the tools
we used in our evaluation are context-insensitive and flow-
insensitive.

2.2 Control-Flow Analysis
One way to perform a control-flow analysis is with con-
straints. In describing the constraints, we will operate over
a simple language, the lambda calculus. We will first briefly
describe the lambda calculus. Then we will briefly describe
how to generate the constraints.

2.2.1 Lambda Calculus
The lambda calculus only has three language forms: variable
reference, lambda terms, and function application. This is
the core of many functional programming languages, such
as Racket, and thus also of dynamic languages.

e ∈ Exp ::= v | (λ (v) eb) | (e1 e2)

v ∈ Var is a set of identifiers

2.2.2 Palsberg Constraints for Solving 0CFA
As stated earlier, one way to solve a control-flow analysis
is with constraints. We iterate over the expressions of the
program, generating constraints for each expression. These
constraints describe a set of lambda terms, flows[[e]], for each
subexpression e in our program. These are the constraints
that are generated by Palsberg [11]. For expression e ∈ Exp
under analysis, let E be the set of all expressions in e.

(λ (v) eb) ∈ E

{(λ (v) eb)} ⊆ flows[[(λ (v) eb)]]



(e1 e2) ∈ E (λ (v) eb) ∈ flows[[e1]]

flows[[e2]] ⊆ flows[[v]]

(e1 e2) ∈ E (λ (v) eb) ∈ flows[[e1]]

flows[[eb]] ⊆ flows[[(e1 e2)]]

The first rule states that a lambda term is in its own flow
set. The second rules says that at a function application, for
every lambda term that flows to the function being applied,
the flow set of the formal parameter includes everything that
is in the flow set of the argument. The third rule states that
also at a function application, for every lambda term that
flows to the function being applied, whatever is in the flow
set of the body of the lambda term is also in the flow set of
the function application.

3. Encoding
Looking at the inference rules for pointer analysis and the in-
ference rules for a control-flow analysis, we can already see
the similarities between them. This section further explores
these similarities.

This section describes how we can take a lambda calcu-
lus expression and encode it into pointer statements that can
then be analyzed using a points-to analysis. Taking into ac-
count how we map lambda calculus expressions into pointer
variables, and being able to reverse this mapping, allows us
to use the results of the pointer analysis and convert them
into a result for our control-flow analysis.

3.1 Analysis Compilation
Here we describe how to take a program written in lambda
calculus and encode it into a C program which will compile
and on which you could perform a points-to analysis, but
which does not preserve the meaning of the program. The
results of a points-to analysis run on this program, given
sufficient support for structures, and the results of a control-
flow analysis would be equivalent.

This conversion is more for illustrative purposes in order
to get a better intuition on how the inference rules given
afterwards work.

The ability of the analysis to handle pointer arithmetic,
and thus structures precisely, allows us to create a relation-
ship between variables. This allows the correlation that is
needed between the variable that represents a given lambda
term’s parameter and the variable that represents its body.

Create a struct to enable deconstructing a lambda term.

s t r u c t lambda {
s t r u c t lamdba ∗ v a r ;
s t r u c t lambda ∗body ;

} ;

Create a variable of type struct lambda for every lambda
term that appears in the lambda calculus program, giving
each lambda term a unique variable name.

s t r u c t lambda lam ;

Create a variable of type struct lambda ∗ for every func-
tion application and lambda term that appears in the lambda
calculus program. Each expression needs a unique variable
name.

s t r u c t lambda ∗ exp ;

We do not need to create a pointer for variables because
they will be handled by the var pointer inside the structure
for the lambda term that binds the variable. We will use this
variable whenever we have a variable references that appears
in another expression.

For every lambda term in the program, we need to assign
the pointer for that lambda term to point to the structure for
that same lambda term.

exp = &lam ;

For every call site in the program there are three subex-
pressions and thus three pointer variables in our translated
program: the pointer for the call itself, the pointer for the
function, and the pointer for the argument. We need an as-
signment to state that the variable of the lambda term that
is pointed to is bound to point to the same things as the ar-
gument. We also need an assignment to state that whatever
the body of the lambda term being applied points to is also
pointed to by the pointer representing the call site.

e1−>v a r = e2 ;
exp = e1−>body ;

Example
To make the previous transformations more explicit, we will
convert the following program which is both a valid lambda
calculus expression and valid Racket program.

((λ (x) (x x)) (λ (y) (y y)))

The resulting C code would be the following. The above
example has two lambda terms, so we create lamx and lamy
and pointers lam1 and lam2. We assign these pointers to
point to the structures. There are three call expressions, so
we create pointers call1 , call2 , call3 . We create the six
assignment statements associated with these calls.

s t r u c t lambda lamx ;
s t r u c t lambda lamy ;

s t r u c t lambda ∗ c a l l 1 ;
s t r u c t lambda ∗ c a l l 2 ;
s t r u c t lambda ∗ c a l l 3 ;

s t r u c t lambda ∗ lam1 ;
s t r u c t lambda ∗ lam2 ;

lam1 = &lamx ;



lam2 = &lamy ;

lam1−>v a r = lam2 ;
c a l l 1 = lam1−>body ;

lamx . var−>v a r = lamx . v a r ;
c a l l 2 = lamx . var−>body ;

lamy . var−>v a r = lamy . v a r ;
c a l l 3 = lamy . var−>body ;

These statements can be converted into the simple pointer
statements referenced earlier by using both intermediate
variables and pointer arithmetic to access the fields of struc-
tures.

3.2 Inference Rules
We will now slightly simplify the above conversion by going
directly to the simple pointer statements. The following rules
describe how to encode a lambda calculus expression into
pointer statements. The function L : Exp → Var maps
expressions to a unique variable. The variables need to be
layed out in memory such that for a lambda term (λ (v) e),
where a = L(v) and b = L(e), loc(b) = loc(a) + 1.
For references to the same variable in different parts of the
program L will map it to the same variable.

(λ (v) e) ∈ E x = L((λ (v) e)) y = L(v)

x = &y

(e1 e2) ∈ E x = L(e1) y = L(e2)

∗x = y

(e1 e2) ∈ E x = L((e1 e2)) y = L(e1)

x = ∗y + 1

Some of these forms are not one of the five pointer state-
ments described as being supported by the tools we evalu-
ated. However, it is easy to see how we can construct them
using intermediate variables. For example, we can change
the single statement x = ∗y + 1 into the two statements
yp = ∗y and x = yp + 1.

Going back to our earlier example program. Assume we
have the following mapping from expressions to variable
names.

l1 = L((λ (x) (x x)))

l2 = L((λ (y) (y y)))

x = L(x)
y = L(y)
c1 = L(((λ (x) (x x)) (λ (y) (y y))))

c2 = L((x x))

c3 = L((y y))

We would then generate the following pointer statements.

l1 = &x

l2 = &y

∗l1 = l2

c1 = ∗l1 + 1

∗x = x

c2 = ∗x+ 1

∗y = y

c3 = ∗y + 1

4. Equivalence of Constraints
Recall that we are trying take a lambda calculus expression,
convert it into pointer statements, run a pointer analysis on
these statements, and then use those results as a solution to
a control-flow analysis of our original lambda calculus ex-
pression. We will now go through these steps and demon-
strate that the solution generated is equivalent if we were to
use the original constraint based formulation of Palsberg.

In the Palsberg constraints, there are three inference rules.
We will examine each of these rules. We will take the lambda
calculus expression and convert it into the equivalent pointer
statements. We will then generate the Andersen constraints
from those pointer statements and show how those con-
straints are equivalent to the ones generated by Palsberg.

For the control-flow analysis we generate constraints and
find the least fixed point that satisfies the constraints, build-
ing up the set flows[[e]] for each expression e. For the points-
to analysis, we also generate constraints and find the least
fixed point that satisfies the constraints, building up the set
pts(x ) for each variable x.

We need a way to deconstruct the results of the pointer
analysis and convert them into useful results for our control-
flow analysis. The key to this mapping is the labeling func-
tion L : Exp → Var which we need to maintain certain
properties in its mapping.

The labeling function assigns each expression a unique
variable. In the mapping, given x = L((λ (v) e)), the
result loc(x ) will represent the lambda term (λ (v) e)).
This means that if x is in the set of objects pointed to by a
pointer, the lambda term is in the flow set of the expression
that maps to that pointer.

Theorem 1. Given x = L((λ (v) e)) we have

pts(x ) = pts(L((λ (v) e))) = flows[[(λ (v) e)]]

We also require the property of the labeling function that
if x = L((λ (v) e)) and y = L(e), that the address of x be
one greater than the address of x.

Case (λ (v) e):
Given the labeling x = L((λ (v) e)) and y = L(v) we

generate the pointer statement x = &y. This generates the



constraint loc(y) ∈ pts(x ). The location of y is equal to the
lambda term in our representation. The points-to set of x is
equal to the flow set of the lambda term.

loc(y) ∈ pts(x )

(λ (v) e) ∈ pts(x )

(λ (v) e) ∈ pts(L((λ (v) e)))

(λ (v) e) ∈ flows[[(λ (v) e)]]

This generates the desired constraint.

(λ (v) e) ∈ flows[[(λ (v) e)]]

Case (e1 e2):
Given x = L(e1) and y = L(e2) we would generate the

pointer statement ∗x = y. This generates the constraint ∀v ∈
pts(x ) : pts(y) ⊆ pts(v). Because flows[[e1]] = pts(x ) this
generates the desired constraint.

∀(λ (v) e) ∈ flows[[e1]] : flows[[e2]] ⊆ flows[[v]]

Case (e1 e2):
Given x = L(e1) and y = L(e2) we would generate the

pointer statement x = ∗x+1. Which we would split into the
pointer statements p = ∗y and x = p+1. The first statement
generates the following constraint.

∀v ∈ pts(y) : pts(v) ⊆ pts(p)

This gives us all the lambda terms pointed to by y because
∀v ∈ pts(y). The points-to set of p is going to contain
at least the values pointed to by y by this constraint, but
since this is the only location where p is assigned, pts(v) =
pts(p).

The second statement generates the following constraint.

{v + 1 : v ∈ pts(p) ⊆ pts(x )}

The expression v + 1 gives the body of a lambda term.
Because pts(x ) = pts(L(e1 e2)) = flows[[(e1 e2)]] we
generate the following original constraint

∀(λ (v) eb) ∈ flows[[e1]] : flows[[eb]] ⊆ flows[[(e1 e2)]]

5. EigenCFA: A Point for Comparison
One possible intermediate representation for compilers of
dynamic languages is continuation-passing style [2]. Given a
language in continuation-passing style we will demonstrate
how the encoding changes. We do this because this is the
language form that is accepted by EigenCFA, as used by our
benchmarks in section 6.

5.1 The Lambda Calculus in Continuation Passing
Style

This language differs from the lambda calculus in that
lambda terms now have multiple arguments and the body

of a lambda term is now restricted to be only a call site.

call ∈ Call ::= (f æ1 . . .æn)

f,æ ∈ AExp ::= lam | v
lam ∈ Lam ::= (λ (v1 . . . vn) call)

v ∈ Var is a set of identifiers

5.2 Palsberg Style Inference Rules for CPS
We will now explore how the constraints for a control-flow
analysis of a continuation-passing style language change.
The constraints for continuation-passing style are simpler
because we no longer have to worry about the flow sets of the
body of lambda terms. This is because we never return, but
rather invoke the passed explicit continuation. This causes
us to go from three inference rules to two.

The inference rules are as follows. For expression e ∈
Exp under analysis, let E be the set of all expressions in e.

(λ (v1 . . . vn) call) ∈ E

{(λ (v1 . . . vn) call)} ⊆ flows[[(λ (v1 . . . vn) call)]]

(f æ1 . . .æn) ∈ E (λ (v1 . . . vn) call) ∈ flows[[f ]]

flows[[æ1]] ⊆ flows[[v1]] . . .flows[[æn]] ⊆ flows[[vn]]

5.3 Pointer Statement Encoding of CPS
Encoding a program in continuation-passing style into pointer
statements uses the following inference rules.

e = (λ (v0 . . . vn) call) ∈ E x = L(e) y = L(v0)

x = &y

(f æ0 . . .æn) ∈ E x = L(f) y = L(æi)

∗x+ i = y

We will now demonstrate how this encoding results in
fewer statements and variables. Luckily our example pro-
gram from before is already in continuation passing style.

((λ (x) (x x)) (λ (y) (y y)))

For this program, we generate the following pointer state-
ments:

l1 = &x

l2 = &y

∗l1 + 0 = l2

∗x+ 0 = x

∗y + 0 = y



terms EigenCFA Pointer GPU CPU-1 CPU-12
297 0.4 21 94 90
545 0.7 28 111 94
1,041 1.2 39 135 103
2,033 3 62 180 126
4,017 9 148 256 175
7,985 37 291 350 232
15,921 143 531 580 449
31,793 6367 1,317 784 836
63,537 3,709 4,030 1,578 1,452
127,025 31,228 12,175 3,819 2,557
190,513 142,162 40,881 13,615 4,349

Figure 1. The running time in milliseconds for each each
of the implementations explored. The first column is the
number of terms found in the benchmark. We show the
running times of running the CPU pointer analysis with one
thread (CPU-1) and with 12 threads (CPU-12).

Generating the pointer statements is quite simple, and since
we do not need to worry about the body of lambda terms,
results in fewer statements.

5.4 Alternative Encoding
We can forgo creating a variable for each lambda term if
we deconstruct directly when we we have a lambda term in
function position. A lambda term in function position is a let
form and we know directly which variables we are binding,
so the dereference to the lambda term is unnecessary. This
results in more inference rules but results in fewer variables
in the encoding.

((λ (x0 . . . xn) call) æ0 . . .æn) æi = (λ (y . . . ) cally)

xi = &y

((λ (x0 . . . xn) call) æ0 . . .æn) æi = y

xi = y

(f æ0 . . .æn) æi = (λ (y . . . ) call)

∗f + i = &y

(f æ0 . . .æn) æi = y

∗f + i = y

6. Implementation
In this section, we explore how much we can improve upon
the state of the art of higher-order control-flow analysis with
this mapping. It turns out that a constraint based pointer
analysis tool runs a lot faster than EigenCFA, a state of
art control-flow analysis tool. EigenCFA is a lot faster than

traditional control-flow analysis tools, but even it is outper-
formed by an optimized pointer analysis tool.

We evaluate EigenCFA as well as two recent parallel
pointer analysis tools for C. We compare the following three
tools.

EigenCFA
A GPU implementation that accelerates a control-flow
analysis for higher-order languages, operating on the
simple binary CPS language [13]. It encodes the anal-
ysis as matrix operations on sparse matrices.

GPU Inclusion-based Points-to Analysis
A GPU implementation that accelerates an inclusion-
based points-to analysis [9]. It is based on a graph al-
gorithm that monotonically grows the graph based on the
constraints generated by the pointer statements.

CPU Inclusion-based Points-to Analysis
An inclusion-based points-to analysis that runs in parallel
using multiple threads on the CPU [8]. It uses the same
graph algorithm as the previous tool.

For the GPU tools, we ran them under Ubuntu on a Nvidia
GTX-480 “Fermi” GPU with 1.5 GB of memory and the
latest Nvidia drivers. We ran the parallel CPU tool on an
machine running Mac OS X 10.8 with two Intel Xeon 3.07
Ghz processors, each having 6 cores, and 64 GB of memory.

We ran each tool on the benchmarks from the EigenCFA
paper. To run the pointer analysis tools, we first ran the
programs through our encoding and changed the input to be
compatible with their tools.

The running times of the tools can be found in Figure 1.
For EigenCFA the results are similar to those as from the
original paper, though slightly slower. It is interesting to note
that as the programs get large, the points-to analysis tools
actually scales better than the original analysis.

To demonstrate how well the CPU scales with more
threads we ran a various number of threads. In Figure 2
we see the running times for each of the values. The top row
is the number of terms in the program. The columns are the
run times in milliseconds. As we go down the column the
number of threads increase.

From this we observe that there is actually a large im-
provement in run time for running an analysis on the CPU
rather than on the GPU. This likely means that for the given
benchmarks there is not parallelism that can be effectively
exploited on a GPU. The GPU implementation visits every
call site on every iteration, while the CPU implementation is
able to more intelligently visit constraints. It will only visit
constraints if they will add new values to the points-to sets
of variables.

7. Future Work
There exist several avenues where this work could be ex-
tended.



terms
threads 297 545 1,041 2,033 4,017 7,985 15,921 31,793 63,537 127,025 190,513
1 94 111 135 180 256 350 580 784 1,578 3,819 13,615
2 91 107 129 167 247 322 495 767 1,796 3,812 12,216
4 89 99 115 140 192 280 475 692 1,315 2,501 6,997
8 86 93 107 127 180 230 449 820 927 2,848 5,293
10 85 93 103 129 170 229 467 823 1,176 2,765 4,833
12 90 94 103 126 175 232 449 836 1,452 2,557 4,349

Figure 2. The running time in milliseconds for each of the benchmarks on the multithreaded CPU implementation. This is to
demonstrate how well the running time scales with the number of threads for the given benchmarks.

7.1 Pushdown Analysis
A major recent development in control-flow analysis has
been pushdown analyses [4, 15]. This allows calls and re-
turns to be precisely matched and has shown gains in preci-
sion. We believe it is possible to do a form of these analyses
using our approach.

7.2 Flow and Context Sensitivity
The pointer analysis tools we explored are flow- and context
insensitive. Because of this, we do not preserve any flow or
context information in our transformation. However, if we
had a tool that took advantage of these features, it would be
ideal if our transformation could preserve this information.
It has been shown though that flow sensitivity does not add
much precision for Racket and other Scheme-like languages
because there is not much mutation [3]. However, if this
approach was applied to languages that use mutation more
commonly (such as Javascript) preserving flow sensitivity
would likely be beneficial.

7.3 Language Compilation
In is common to compile languages into other languages.
If tools exists that analyze the target language but not the
source language that we are working in, a flavor of this tech-
nique also applies. We could perform the desired analysis on
the compiled language. Whether this would be useful or not
would be highly dependent on our needs. If we need the anal-
ysis to provide information about our language in its original
form, before we compiled it, we would need to ensure that
the compilation process allows for decompilation and that
the properties we are hoping to discover are not lost in the
compilation process.

7.4 Additional Language Features
We have demonstrated how our technique works for the sim-
ple lambda calculus. However, mapping dynamic languages
to the lambda calculus is nontrivial [5, 12]. In fact, we would
recommend against performing this mapping solely to use
our technique, as it is likely not to produce useful informa-
tion. An alternative interesting approach worth investigating
would be to see how this technique could be adapted in the
presence of additional language features. How the additional

language features are handled would be dependent on the in-
formation we wish our analysis to produce.

8. Related Work
One of the earliest works of a constraint-based formulation
of control-flow analysis is Henglein’s simple closure analy-
sis [6]. It is based on unification and runs in almost linear
time. Subsequent work applied a similar strategy to a points-
to analysis, citing Henglein as an inspiration. This type of
analysis is known as Steensgaard points-to analysis [14].

Control-flow analysis was also later developed in con-
straint form with the development of Palsberg [11]. This
framework is based on subsets, rather than unification, and
as such is more precise but is now cubic. At the same time a
similar formulation was developed for pointer analysis of C
programs by Andersen [1].

9. Conclusion
This paper demonstrates to static analysts, analyzing dy-
namic languages, a way to use existing tools by mapping
their problem to ones that have already been solved with sig-
nificant engineering effort behind them.

In this paper, we have demonstrated that a pointer analy-
sis of a first-order language can be used to solve a control-
flow analysis of a higher-order language, leveraging the sig-
nificant effort that has gone into the state of the art of pointer
analysis. We provided the inference rules to do this and
demonstrated how these result in the same constraints as the
control-flow analysis. We then demonstrated that we can ef-
fectively take advantage of existing pointer analysis tools for
significant speed-ups.
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