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Abstract. Control-flow analyses statically determine the control-flow
of programs. This is a nontrivial problem for higher-order programming
languages. This work attempts to leverage the power of SAT solvers
to answer questions regarding control-flow. A brief overview of a tra-
ditional control-flow analysis is presented. Then an encoding is given
which has the property that any satisfying assignment will give a con-
servative approximation of the true control-flow, along with additional
ideas to improve the precision and efficiency of the encoding. The results
of the encodings are then compared to those of a traditional implementa-
tion on several example programs. This approach is competitive in some
instances with hand-optimized implementations. Finally, the paper con-
cludes with a discussion of the implications of these results and work
that can build upon them.

1 Introduction

A control-flow analysis determines the control-flow of a program. This is a dif-
ficult problem in higher order languages, because data-flow affects control-flow
and control-flow affects data-flow. To address this issue, much work has been
done. The first major effort was k-CFA as created by Shivers [8]. It is a family of
algorithms where the chosen value of k determines the precision of the analysis.
A higher value of k gives greater precision but at the cost of a greater runtime.
When k = 0, the algorithm, more commonly known as 0CFA, has been shown
to be cubic [9]. For k ≥ 1, it has been shown that the algorithm is complete for
EXPTIME [10].

We present an alternative approach to the problem by encoding a control-
flow analysis into SAT. The results are more similar to 0CFA than k-CFA as
SAT is a NP-hard problem, while k-CFA is EXPTIME-hard. Similar work that
took the idea of encoding k-CFA into another problem for performance reasons
was done by Prabhu et al. [7]. They run the analysis on a GPU by encoding the
problem into matrix operations. Another work that will feel similar to the work
presented in this paper is constraint based 0CFA analysis as summarized by
Nielson [6]. They formulate 0CFA using constraints on sets and then provide an
algorithm for solving these constraints. This work differs in that the constraints
are not not encoded using matrices or sets, but propositional logic.

1.1 Motivation

Many problems are readily encoded into SAT and even though satisfiability is
NP-complete, fast implementations are available. Every year there is consider-
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able work being done to create efficient SAT solvers A CFA implementation
based on satisfiability could benefit directly from that work.

1.2 Accomplishments

This work attempts to leverage the power of SAT solvers to answer questions
regarding control-flow. It presents an encoding and compares its results to two
traditional 0CFA implementations.

2 Preliminaries

In order to understand this work, you will need a passing understanding of
continuation-passing style (CPS) lambda calculus and k-CFA. Brief descriptions
of both will be given. The original formulation of k-CFA operates on CPS lambda
calculus and this work operates on the same language.

CPS is similar to the untyped lambda calculus but with additional con-
straints: functions never return, all calls are tail calls; where a function would
normally return, the current continuation is invoked on the return value; and
when calling a function, the caller must supply a continuation procedure. There
are three types of terms: applications, anonymous functions, and variables. The
grammar for CPS lambda calculus follows.

call ∈ Call ::= (f e . . . )

f, e ∈ Exp = Var + Lam

v ∈ Var is a set of identifiers

lam ∈ Lam ::= (λ (v . . . ) call)

The abstract state space and the abstract semantics of k-CFA reformulated as
an operational semantics are easily accessible [3]. The idea is to take an abstract
machine and abstract it by making the number of addresses finite. Successor
states are then generated, starting at the initial state of the program, until
all the states have been visited. Because the number of addresses is finite the
abstract state space is finite and the exploration will terminate.

3 Encodings

This section describes the devised encoding scheme. Here is a simple program
we will work with in describing the encodings. In the following explanation, each
lambda term will be identified by its label.

(( lambda1 (x)

(( lambda2 (y)

(y (lambda3 (z) (x z)))) x))

(lambda4 (a) (a a)))
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For the encoding, we introduce a variable for every variable lambda pair in the
program. The variable will be true if the lambda flows to the variable, and false
if it doesn’t. We will assume that the program has been alphatised, meaning
that each variable is only bound by a single lambda. In the example we have
four variables and four lambda terms, resulting in sixteen variables. Lambdas
use their label as their subscript.

λ1 λ2 λ3 λ4
a a1 a2 a3 a4
x x1 x2 x3 x4
y y1 y2 y3 y4
z z1 z2 z3 z4

To generate the clauses of our encoding we look at each point where bind-
ing occurs in lambda calculus, at application sites. From the grammar of CPS
lambda calculus we can see that there are four cases which need to be considered.
The function and the arguments at an application can either be a lambda term
or a variable.

Case 1: Lambda Lambda The first case to consider is the simplest, when
there is a lambda term in both function and argument position. The top level
application of the sample program is an example of this.

(( lambda1 (x) call ) (lambda4 (a) (a a)))

We know that the lambda in argument position flows to the parameter of the
lambda in function position. For this call site, we would add the clause x4.

Case 2: Lambda Variable The second case to consider is when there is still
a lambda in function position but a variable in argument position. Observe the
following call site from the example.

(( lambda2 (y) call ) x)

If we know a lambda flows to x, then we know that it must flow to y. We must
assume that any lambda can flow to x, so we must create a clause for each
lambda. This results in the following clauses: x1 → y1, x2 → y2, x3 → y3,
x4 → y4.

Case 3: Variable Lambda The third case to consider is having a variable in
function position and a lambda term in argument position. Observe the following
call site from the example.

(y (lambda3 (z) call ))

We must assume that any variable can flow to y. Thus we need to create a
clause for each lambda in the program. We infer that if a lambda term flows to
y, then λ3 will flow to the parameter of that lambda. This results in the following
clauses: y1 → x3, y2 → y3, y3 → z3, y4 → a3.
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Case 4: Variable Variable The most complicated case is when we have a
variable in both function and argument position. Observe the following call site
from the example program.

(x z)

We must assume that any lambda can flow to x and any lambda can flow to z.
If we know that two flows are true for x and z, we can infer a third flow. For
example, if we know λ2 flows to x and λ4 flows to z, we can infer that λ4 flows
to y, the parameter of λ2. Thus we create the clause x2 ∧ z4 → y4. Since there
are four lambda terms, there are 16 total such clauses that need to be generated.

4 Additional Encoding Details

The generated clauses described above are necessary but not sufficient. The
problem is that every variable can be set to true and the formula is still satisfied.
What we really want is the lowest possible number of flows set to true that still
satisfy all the generated clauses. However, the SAT solver is free to give any
satisfying solution. In the end, we have constraints that will never give us false
negatives, but we need constraints that will ideally never give us false positives,
or at least limit them. Note that in an anlysis, having false positives is still
sound; only in having false negatives does the analysis become unsound.

4.1 Additional Encodings

For each case we will show additional clauses that can be added which will limit
the number of false positives.

Case 1: Lambda Lambda Since the program is alphatised we not only know
that the given flow must be true, but we know that all other flows to that variable
must be false. For the above example we add the clauses: ¬x1, ¬x2, ¬x3.

Case 2: Lambda Variable In the description found above, we said you could
infer an additional flow if a given lambda flows to the variable in argument
position. But more can be inferred since the program is alphatised. The clauses
are not just implications, because the call site is the only place where the binding
of the variable can occur. Thus we can change the clauses to equivalences: x1 ↔
y1, x2 ↔ y2, x3 ↔ y3, x4 ↔ y4.

Case 3: Variable Lambda

Unlike the previous case, we cannot turn the inference described in the previous
section for case 3 into an equivalence. The issue is that because the lambda
which flows to the variable in function position can flow to other application
sites where there is a variable in function position, this is not the only place
where a binding can occur. However, we can infer the disjoin of all the call sites
where the binding could occur. An example will be be given below.
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Case 4: Variable Variable

Much like the previous case, we cannot infer equivalences because bindings can
happen at any call site where there is variable in function position. However, like
the above case, additional clauses can still be created; we can infer the disjoin
of all the call sites where the binding could occur. For example, if λ3 flows to z
it would mean that either λ3 flows to y, λ3 flows to a, or that λ3 flows to x and
λ3 flows to z. Thus we would add the following clause: z3 → y3 ∨ a3 ∨ (x3 ∧ z3).

4.2 Enhancements

The encodings presented above give way to some enhancements that can be used
to make the encoding more efficient, by generating less clauses.

– Not all lambdas can flow. Lambdas that appear in function position cannot
be bound to variables, thus we do not need to create a variable for pairs
involving lambdas in function position.

– Not all lambdas are compatible. Although the example shows lambda terms
with only one parameter, the lambda terms can have any number of param-
eters. When there is a variable in function position, only lambdas with the
same number of parameters as there are arguments at the application site
need to be considered.

– Some clauses will be trivially true. While iterating through every lambda,
when faced with a variable at an application site, some of the implications
will involve the same pairs on both sides, thus they are trivially true and
can be omitted.

In the implementation, the first two enhancements were used, but the third
was omitted.

4.3 Complexity

In the described encoding, many clauses can be generated. However, it is bounded
by a polynomial of the size of the program. The worst case to consider is when you
have a variable in both function and argument position. You must consider each
lambda flowing to each variable. If there are n terms in the program, there are
at most n call sites and n lambda terms. Thus the number of generated clauses
will be bound by n3. This seems logical as one of the simplest formulations of
0CFA is “nearly” cubic: O(n3/ log n) [2].

5 Implementation and Evaluation

We implemented the encoding in Scala using the back end of the analyzer written
by Might et al. for parsing and preprocess transformations [5]. We compared
its runtimes to those of that same analyzer, which closely follows the formal
semantics, as well as a fast Racket implementation, which employs abstract
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Church encodings and binary CPS lambda calculus [7]. MiniSat was used for
solving the constructed encodings. All experiments were run on a 2.7 GHz Intel
Core i7 on Ubuntu.

The first experiments were run on synthetic programs, which in a constructive
complexity proof are shown to be the worst case for k-CFA when k ≥ 1 and
difficult for 0CFA [9, 10]. The results can be found in the Table 1. The first
column is the number of terms in the program. The second column is the runtime
of the optimized Racket implementation. The Scala column is the runtime of the
traditional Scala implementation. The SAT column is the time taken to encode
and solve the problem using SAT. This column is broken down into its two
components in the last two columns. The Encode column is the time taken to
create the encoding. The Solve column is the time taken by MiniSat to solve the
encoding.

Table 1. Runtime comparison of a control-flow analysis using a fast Racket implemen-
tation, a Scala implementation and using MiniSAT.

Terms Racket Scala SAT Encode Solve

37 0.008s 1.059s 0.730s 0.725s 0.005s
63 0.016s 1.056s 0.796s 0.792s 0.004s
115 0.046s 1.454s 1.025s 1.017s 0.008s
219 0.222s 2.338s 1.418s 1.387s 0.031s
427 1.374s 5.337s 2.759s 2.642s 0.117s
843 8.396s 44.873s 11.337s 10.481s 0.856s
1675 49.029s 12m34.301s 1m15.984s 1m9.222s 6.762s
3339 4m46.726s >6h 8m50.671s 8m43.103s 7.568s

We also looked into the sensitivity of the encoding to different SAT solvers,
using SAT solvers that were some of the best performers from the 2011 inter-
national SAT competition. See Table 2. We report the time taken to solve the
encoding, the number of flows that agree with the Scala implementation and the
number of flows that disagree. When there is a disagreement, the encoding says
that the flow does occur but the traditional 0CFA reports that it does not.

From the results in Table 1, we see encoding the problem and solving it with
MiniSat takes about the same amount of time as the fast Racket implementation.
However, this is not always the case. Experiments were also run on more tradi-
tional benchmarks. To run these, the language on which the encoding operates
had to be enriched. Additional constructs were added (e.g., if and set!) as well
as support for Scheme primitives. The fast Racket implementation could not be
run on these examples without using Church encodings, as it only supports pure
binary CPS lambda calculus. See Table 3.

The first two benchmarks test common functional patterns; sat is a simple
SAT solver; rsa is a RSA implementation; prime is a Solovay-Strassen primality
tester; scm2java is a Scheme to Java compiler; interp is a Scheme interpreter.
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Table 2. Runtime and precision results from some of the best performers from the
2011 international SAT competitions.

Solver Results n = 37 n = 63 n = 155 n = 219 n = 237 n = 843 n = 1675

minisat

Time 0.005s 0.007s 0.012s 0.039s 0.133s 0.848s 6.714s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

3S

Time 2.548s 2.570s 2.554s 2.777s 5.952s 1m15.335s >2m
Agree 96 280 936 3400 12936 50440 -

Disagree 0 0 0 0 0 0 -

cirminisat

Time 0.004s 0.005s 0.009s 0.031s 0.152s 1.312s 11.299s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

clasp

Time 0.004s 0.005s 0.010s 0.029s 0.152s 1.055s 7.959s
Agree 54 150 486 1734 6534 25350 165378

Disagree 42 130 450 1666 6402 25090 33798

cryptominisat //

Time 0.007s 0.011s 0.026s 0.086s 0.413s 3.598s >2m
Agree 96 280 936 3400 12936 50440 -

Disagree 0 0 0 0 0 0 -

csls //

Time 0.006s 0.006s 0.034s 0.579s 32.656s >2m >2m
Agree 60 216 711 2754 12936 - -

Disagree 36 64 225 646 0 - -

eagleup

Time 0.004s 0.006s 0.017s 0.063s 0.541s 18.500s >2m
Agree 70 192 674 2566 9479 36639 -

Disagree 26 88 262 834 3457 13801 -

glucose

Time 0.011s 0.012s 0.020s 0.050s 0.198s 1.415s 4.805s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

glueminisat

Time 0.004s 0.005s 0.011s 0.036s 0.164s 1.363s 11.640s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

lingeling

Time 0.006s 0.010s 0.024s 0.078s 0.454s 1.980s 10.365s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

march rw

Time 0.007s 0.010s 0.033s 0.466s 18.936s >2m >2m
Agree 54 150 486 1734 6534 - -

Disagree 42 130 450 1666 6402 - -

plingeling

Time 0.009s 0.012s 0.028s 0.096s 0.477s 2.851s 19.695s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

plingeling //

Time 0.010s 0.017s 0.037s 0.083s 0.465s 3.551s 30.653s
Agree 96 280 574 1992 7813 30463 120112

Disagree 0 0 362 1408 5123 19977 79064

ppfolio

Time 0.006s 0.009s 0.010s 0.051s 0.341s 2.453s 14.588s
Agree 78 280 936 3400 12936 50440 165378

Disagree 18 0 0 0 0 0 33798

ppfolio //

Time 0.007s 0.007s 0.012s 0.028s 0.178s 0.989s 7.409s
Agree 92 280 936 3400 12936 50440 165378

Disagree 4 0 0 0 0 0 33798

qutersat

Time 0.035s 0.042s 0.061s 0.134s 0.638s 4.786s 41.886s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

sattime2011

Time 0.005s 0.008s 0.021s 0.093s 0.796s 10.857s 0.020s
Agree 83 230 805 2919 11275 44001 -

Disagree 13 50 131 481 1661 6439 -

sparrow2011

Time 0.013s 0.007s 0.029s 0.100s 3.034s >2m >2m
Agree 72 266 936 3400 10846 - -

Disagree 24 14 0 0 2090 - -
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Table 3. Runtime comparison between a traditional abstract interpreter and deter-
mining the control-flow usining MiniSAT.

Program Terms Scala SAT Encode Solve

eta 79 0.879s 0.805s 0.801s 0.004s
map 182 0.879s 0.805s 0.801s 0.004s
sat 250 1.311s 1.216s 1.198s 0.018s
rsa 609 1.805s 1.427s 1.396s 0.031s

prime 891 2.258s 4.584s 4.269s 0.315s
scm2java 2505 3.845s 1m6.550s 1m0.090s 6.460s

interp 4484 6.314s 5m6.519s 4m26.078s 40.441s

These benchmarks provide a stark contrast to the previous examples in per-
formance. Further investigation is needed to find the source of this large differ-
ence in performance. One possible explanation is that the Scheme primitives are
not well modelled. Also, the traditional small step abstract interpreter is able to
use widening to converge to the minimum fixed point faster. In addition, since
its analysis is directed by the syntax of the program more closely, it can explore
less spurious flows.

For the first set of benchmarks, the results returned by the encoding are ex-
actly the same as those provided by the traditional implementations. However,
running #SAT on the encodings, revealed that there are multiple valid interpre-
tations. Thus the encoding does not exactly encode traditional 0CFA, which has
a unique minimum fixed point.

5.1 Alternative Approach Using BDDs

Another approach attempted was to use a binary decision diagram (BDD) in-
stead of a SAT solver to solve the constraints. The constraints are encoded in
the same way, but the approach has the benefit that the minimum prime im-
plicant is readily available from the structure of the BDD. The minimum prime
implicant provides an equivalent solution as 0CFA. However, in practice, using
a BDD requires large amounts of memory and time for even simple examples.

5.2 Alternative Approach Using MaxSAT

Another approach that could be promising is to use a MaxSAT solver instead of
a traditional SAT solver. The additional clauses from Section 4 could be elided
and only the clauses from Section 3 would be needed. The partial maximum
satisfiability problem has two types of clauses, hard and soft. The hard clauses
must be satisfied, while the soft clauses can be relaxed. The solver finds the
assignment with maximum number of soft clauses satisfied. All the clauses from
Section 3 would be hard clauses and then for each variable, its negation would
be added as a soft clause. A satisfying assignment from this formulation would
be equivalent to 0CFA.
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6 Conclusion

This work has presented an encoding for control-flow analysis of CPS lambda
calculus. It has shown that in some cases, the approach can be as fast as a
highly optimized solution. While the soundness of the encoding was not proven,
empirical results showed it to be accurate.

This work also provides a solid basis for additional work. Many avenues
exist which can build upon it. Better encoding schemes can be developed, which
possibly could be even more precise than 0CFA, given the extra power provided
by SAT solvers being able to solve NP-complete problems. Van Horn and Mairson
give a reduction from SAT to k-CFA, effectively showing how to do SAT solving
with k > 1 CFA, which merits further investigation [9]. Also, while this work
operates on CPS lambda calculus, the encoding could easily be adapted to work
on a more direct style language, such as ANF lambda calculus [1], as analyzed
by Might and Prabhu [4].

This work was supported by the DARPA programs APAC and CRASH.
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