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Abstract. Formal methods—and abstract interpretation in particular—
can assist in the development of correct control code. However, current
approaches to deploying formal methods do not always match the way
practicing engineers develop real control code. Engineers tend to think
in code first—not formal models. Standard practice is for engineers to
develop their control code and then build a model like a hybrid automa-
ton from which to verify properties. Since the construction of this model
is manual, it leaves open the possibility of error. Existing formal ap-
proaches, on the other hand, tend to focus on synthesizing control code
from a verified formal model. We propose a method for synthesizing a
hybrid automaton from the control code directly. Specifically, we use ab-
stract interpretation to create an abstract state transition system, and
from this we systematically extract a hybrid automaton. Not only does
this eliminate the introduction of error into the model based on the code,
it fits with common practice in engineering cyberphysical systems. We
test the technique on a couple examples—control code for a thermo-
stat and a nuclear reactor. We then pass the generated automata to the
HyTech model-checker to verify safety and liveness properties.

1 Introduction

Avionics, automobiles and medical equipment depend on complex control soft-
ware. The proscribed approach to developing these systems is “model-first,” with
analysis, simulation, testing, verification and code generation to follow.

However, in practice, engineers often develop code first, and a model second,
if ever. We propose an approach to formal analysis of cyber-physical systems
more in line with practice: we demonstrate that a sound model—a hybrid au-
tomaton [9] in this case—can be inferred from the control code itself. This gives
developers an efficient way to maintain and manipulate the model of a controller
more naturally. To achieve our goal, we use abstract interpretation (a higher-
order control flow analysis, in particular) to analyze control code, and from the
result, we infer hybrid automata. We can then pass these hybrid automata on to
model checkers and formally verify properties of program behavior. Source and
examples for the tool described in this paper are available [15]. For examples
and more details, we refer the reader to the companion technical report [11].

1.1 Contributions

We make the following contributions:



1. We report preliminary work on a method to extract a hybrid automaton from
an abstract transition system, which is in turn synthesized from abstract
interpretation of control code.

2. We claim a core calculus for a subset of MATLAB as a secondary contribu-
tion, developed to facilitate our primary contribution.

2 Language: λM, a core calculus for MATLAB

We compile control code in MATLAB to an A-Normalized core calculus. A-
Normal Form (ANF) [7] forces an order of evaluation and simplifies the transition
rules of both the concrete and abstract semantics.

The grammar for the target language is an unsurprising subset of Scheme,
except for perhaps the inclusion of call/ec, which we use to model exceptions.
Another interesting inclusion is that the conditional expression allows a convex
predicate cp in its test expression. A convex predicate cp is a finite conjunction
of linear inequalities, e.g., x1 ≥ 3 ∧ 3x2 ≤ x3 + 5/2 [8].

pr ∈ Prog = Exp [programs]

v ∈ Var is a set of identifiers [variables]

c ∈ Const = String + Z [literals]

lam ∈ Lam ::= (λ (v1 . . . vn) e) [lambda terms]

f,æ ∈ AExp ::= lam | v | c [atomic expressions]

| (op æ1 . . .æn) [primitive operations]

op ∈ Op ⊇ {+, -, *} [primitives]

e ∈ Exp ::= (let ((v ce)) e) [expressions]

| æ [return]

| ce [tail]

ce ∈ CExp ::= (f æ1 . . .æn) [complex expressions]

| (if cp e1 e2) [physical branching]

| (if ae e1 e2) [cyber branching]

| (set! v æ) [variable mutation]

| (call/ec æ) [first-class control]

Fig. 1. Syntax for λM—a core calculus for MATLAB

To model programs, we inject them into time-stamped CESK-machines [6],
whose state-space has five components—the current expression, the current en-
vironment, the current store, the current continuation and the current time. The
time component does not relate to physical time, but is a way to encode the his-
tory of the machine’s execution to facilitate abstraction. It is a parameter used



when allocating new addresses in the store. In a regular CESK machine there will
be an infinite number of addresses that can be allocated in the store, but we can
structurally abstract this machine by bounding the set of times available [14].
Bounding time forces the set of states Σ̂ to be finite.

Figure 2 describes the concrete and abstract state-spaces for the analyzer.
To save space, we omit the transition relations (⇒) ⊆ Σ ×Σ and (;) ⊆ Σ̂ × Σ̂

ς ∈ Σ = Exp× Env × Store ×Kont × Time

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ D

d ∈ D = Clo + Kont + String + Z
clo ∈ Clo = Lam× Env

κ ∈ Kont ::= letk(v, e, ρ, κ)

| halt

a ∈ Addr ::= bindaddr(v, t)

t ∈ Time is an infinite, ordered set of times

ς̂ ∈ Σ̂ = Exp× Ênv × Ŝtore × K̂ont × T̂ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ D̂

d̂ ∈ D̂ = P
(
Ĉlo + K̂ont + Ŝtring + Ẑ

)
ĉlo ∈ Ĉlo = Lam× Ênv

κ̂ ∈ K̂ont ::= letk(v, e, ρ̂, κ̂)

| halt

â ∈ Addr ::= bindaddr(v, t̂)

t̂ ∈ T̂ime is an finite set of abstract times

Fig. 2. The concrete (left) and abstract (right) state-spaces.

and we also omit the abstraction map α : Σ → Σ̂ that connects them. For
examples of such transitions, we refer the reader to [14]. Computing the control-
flow analysis consists of constructing the “abstract state transition graph” of
reachable states under (;).

Since our ultimate goal is to extract hybrid automata, we make use of an
alternate, labeled formulation of the abstract transition relation:

ς̂
cp
; ς̂ ′ iff ς̂ ; ς̂ ′ and the physical condition cp holds after transition.

Only physical branching expressions—(if cp . . . . . . )—acquire these labels.
The label f indicates that the transition does not depend on a physical condition.

3 Extracting a hybrid automaton

Control-flow analysis leaves us with an abstract state transition graph. We now
briefly describe how to compile this graph into a hybrid automaton.

First, we want to annotate the states with some kind of physical state-change
equations, e.g., ẋ = −3, as well as invariants, e.g. t < 10, found in hybrid au-
tomata. To do so we require “physical” annotations in the source code. The
annotations identify which procedures read physical quantities and which pro-
cedure calls initiate physical changes in the system.



3.1 Algorithm

To extract the hybrid automaton from the results of the abstract interpretation,
we are going to define hybrid automaton locations as sets (really, partitions) of
machine states:

p ∈ HyLocation = P(Σ̂)

We can lift the transition relation from machine states to hybrid locations:

p; p′ iff there exists ς̂ ∈ p, ς̂ ′ ∈ p′ such that ς̂ ; ς̂ ′.

It’s convenient to have a special form of the transition relation as well:

p _ p′ iff p;f p′ and p′′ ;f p′ implies p′′ = p.

Next, we need a function, ∇, to extract governing differential equations:

∇(ς̂) =

{
[ẋ 7→ [[e]]] if ς̂ = ((assertCPS ẋ = e), . . .)

∅ otherwise.

and, for partitions, it combines all equations in a partition:

∇{ς̂0, . . . , ς̂n} = ∇(ς̂0) ∪ · · · ∪ ∇(ς̂n)

The procedure Extract accepts an abstract state transition graph gen-
erated by the abstract interpretation; it returns a hybrid automaton over the
state-space HyLocation whose transition relation is (;cp) and whose governing
differential equations are determined by the function ∇:

procedure Extract(G):
P ← {{ς̂} | ς̂ ∈ G}
do

P ←Merge(P)
P ←Split(P)

until P does not change
return P

The procedure Merge coalesces partitions with compatible equations:

procedure Merge(P ):
do

for each partition p in P :
if p _ p′ and dom(∇(p)) ∩ dom(∇(p′)) = ∅:

merge partitions p and p′ in P
if p′ ;f p and p′′ ;f p and ∇(p) = ∇(p′):

merge partitions p′ and p′′ in P
until P does not change
return P



The procedure Split duplicates nodes that are blocking a merge due to differ-
ential equations:

procedure Split(P ):
for each partition pair p, p′ in P :

if p′ ; p and p′′ ; p and dom(∇(p)) ∩ dom(∇(p′)) 6= ∅:
duplicate p as p∗ in P
replace the edge p; p′′ with p; p∗

return P

4 Preliminary evaluation

All code and examples for our implementation are available [15]. We prototyped
our technique using Octave (a superset of MATLAB) for the control code. We
utilize MATLAB as the input language because in our interactions with prac-
ticing engineers, we have found substantial amounts of control code—some pro-
duction, some prototype—written in MATLAB. We analyzed the control code
for a simple thermostat and for a nuclear reactor with our tool. After producing
hybrid automata, we verified properties of the control code using HyTech [10].

5 Related Work

To generate the abstract state transition graph, we used a small-step formulation
of k-CFA [14], built upon the original formulation of k-CFA by Shivers [12] and
the large body of abstract interpretation first started by the Cousots [4, 5].

Our goal was to transform the abstract state-space into a model from which
safety properties could be proved. For the model we chose hybrid automaton as
formulated by Henzinger [9]. This choice was made not only for their ability to
accurately model cyber-physical systems, but also because tools already exist
that verify safety and liveness properties [10].

The idea of merging abstract interpretation and physical systems in not
unique to our work. Cousot argues that static analysis of control software can
be guided by knowledge of the physical system [3]. Our approach claims that
given additional information of the physical system, in the form of annotations,
abstract interpretation can be used to create a model of the entire system.

Similar work has been done to convert control code to hybrid automata
by Bouissou [2]. He provides a semantics preserving transformation from H-
Simple to a sampled hybrid automata and then from sampled hybrid automata
to a regular hybrid automata. H-Simple is a simple imperative language that
has statements to control sensors and actuators, very similar to the annotations
provided in our framework. While our language is also simple, it provides first
class functions, which allow powerful higher language constructs to be modeled.

Another similar work to ours is in transforming Simulink/Stateflow models
into Hybrid Automata [1, 13]. However, our work differs in that we start from
the control code of the system, not another model of the system.
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