
Pruning, Pushdown Exception-Flow Analysis
Shuying Liang

University of Utah
liangsy@cs.utah.edu

Weibin Sun
University of Utah
wbsun@cs.utah.edu

Matthew Might
University of Utah
might@cs.utah.edu

Andy Keep
University of Utah

andy.keep@gmail.com

David Van Horn
University of Maryland
dvanhorn@cs.umd.edu

Abstract—Statically reasoning in the presence of exceptions and about
the effects of exceptions is challenging: exception-flows are mutually
determined by traditional control-flow and points-to analyses. We tackle
the challenge of analyzing exception-flows from two angles. First, from the
angle of pruning control-flows (both normal and exceptional), we derive a
pushdown framework for an object-oriented language with full-featured
exceptions. Unlike traditional analyses, it allows precise matching of
throwers to catchers. Second, from the angle of pruning points-to
information, we generalize abstract garbage collection to object-oriented
programs and enhance it with liveness analysis. We then seamlessly weave
the techniques into enhanced reachability computation, yielding highly
precise exception-flow analysis, without becoming intractable, even for
large applications. We evaluate our pruned, pushdown exception-flow
analysis, comparing it with an established analysis on large scale stan-
dard Java benchmarks. The results show that our analysis significantly
improves analysis precision over traditional analysis within a reasonable
analysis time.

I. INTRODUCTION

Exceptions are not exceptional enough. They pervade the control-
flow structure of modern object-oriented programs. An exception
indicates an error occurred during program execution. Exceptions are
resolved by locating code specified by the programmer for handling
the exception (an exception handler) and executing this code.

This language feature is designed to ensure software robustness and
reliability. Ironically, Android malware is exploiting it to leak private
sensitive information to the Internet through exception handlers [22].
Analyzing the behavior of programs in the presence of exceptions
is important to detect such vulnerabilities. However, exception-flow
analysis is challenging, because it depends upon control-flow analysis
and points-to analysis, which are themselves mutually dependent, as
illustrated in Figure 1.

In Figure 1, edge A denotes the mutual dependence between
exception-flow analysis and traditional control-flow analysis (CFA).
CFA traditionally analyzes which methods can be invoked at each
call-site. Exception-flow analysis refers to the control-flow that is
introduced when throwing exceptions [6]. Intuitively, throwing an
exception behaves like a global goto statement, in that it introduces
additional, complex, inter-procedural control flow into the program.
This makes it difficult to reason about feasible run-time paths using
traditional CFA. Similarly, infeasible call and return flows can cause
spurious paths between throw statements and catch blocks. The
following simple example demonstrates this:

try {
maybeThrow(); // Call 1

} catch (Exception e) { // Handler 1
System.err.println("Got an exception");

}
maybeThrow(); // Call 2

Under a monovariant abstraction like 0-CFA [29], where the distinc-
tion between different invocations of the same procedure are lost, it
will seem as though exceptions thrown from Call 2 can be caught
by Handler 1.

control-flow

analysis

points-to

analysis

exception-flow

analysis

A

B

C

Fig. 1: Relationship among exception-flow analysis, control-flow
analysis and points-to analysis.

Edge B in Figure 1 denotes the relationship between exception-flow
analysis and points-to analysis. Points-to analysis computes which
abstract objects (with respect to allocation sites, calling contexts, etc.)
a program variable or register can point to. Points-to analysis affects
exception-flow analysis, because the type of the exception at a throw
site determines which catch block will be executed. That is to say,
exception-flow analysis requires precise points-to analysis. Similarly,
exceptional flows affect points-to analysis, since the path taken by
the exceptional flow can enable or disable object assignments and
bindings.

The mutually recursive relationship of CFA and points-to analysis,
denoted by edge C, is obvious: abstract objects (points-to analysis)
determine which methods can be resolved in dynamic dispatch (CFA),
while control-flow paths affect object assignments and bindings for
points-to analysis. In fact, exception-flow analysis is an example of
this relationship, which exacerbates the edge C relationship further!

A. Existing approaches

Existing compilers or analysis frameworks provide a conservative
model for exception handling. One approach assigns all exceptions
thrown in a program to a single global variable. This variable is then
read at an exception catch site. This approach is imprecise since it
has no knowledge of which exception propagates to a catch site [13],
[20].

The second approach analyzes exceptional control flow only intra-
procedurally, computing only local catch clauses for a try block, with
no dynamic propagation of exceptions inter-procedurally.

The third approach is co-analysis using both control-flow analysis
and points-to analysis (a.k.a. on-the-fly control-flow construction) to
handle exceptions, which yields reasonable precision, compared to the
aforementioned two approaches, as documented in a past precision
study [6]. Unfortunately, even for the best co-analysis, where boosting
context-sensitivity improves the analysis of exceptions, it does not
improve as much as it does for points-to analysis. It is too easy for
exceptions to cross context boundaries and merge. For the previous
simple example, we could increase to 1-call-site sensitivity. However,
context-sensitivity costs more and is easily confused when calls are
wrapped, as in:

try {
callsMaybeThrow(); // Call 1

} catch (Exception e) { // Handler 1
System.err.println("Got an exception");

}
callsMaybeThrow(); // Call 2
// ...
void callsMaybeThrow() {
maybeThrow();

}

Similarly, values can easily merge with finitized object-sensitivity in
points-to analysis. For example, if object-sensitivity uses k levels of
object allocation sites (or a mix with receiver objects) to distinguish
contexts, objects are merged when the level exceeds k. Even worse,
the limited k-sensitivity does not distinguish live heap objects from
dead (garbage) heap objects, the existence of which harms both the
precision and performance of the analysis. More detailed related work
is described in Section IX.

B. Our approach

Due to the intrinsic relationships illustrated in Figure 1, we propose
a hybrid joint analysis of pushdown exception-flow analysis with ab-
stract garbage collection enhanced with liveness analysis. Specifically,
a pushdown system derived from the concrete semantics of a core
calculus for an object-oriented language extended with exceptions
is used to tackle exceptional control-flow matching between catches
and throws, in addition to call and return matches. Abstract garbage
collection is adapted to an object-oriented program setting, and it
is enhanced with liveness analysis to tackle the points-to aspect of
exception-flow analysis. We evaluate an implementation for Dalvik
bytecode of the joint analysis technique on a standard set of Java
benchmarks. The results show that the pruned, pushdown exception-
flow analysis yields higher precision than traditional exception-flow
analysis by up to 11 times within a reasonable amount of analysis
time.

C. Organization

The rest of the paper is organized as follows: Section II presents
the core calculus of an object-oriented language extended with excep-
tions. Section III formulates the concrete semantics for the language
with the intent of refactoring and abstracting it into a static analyzer.
Section IV derives the abstract semantics from the concrete semantics
by reformulating the structure of continuations into a list of frames
and forms an implicit pushdown system. Section V-A introduces the
adaptation of abstract garbage collection in object-oriented languages.
Section V-B enhances the adapted abstract garbage collection with
liveness analysis for better precision. The reachability algorithm
is described in Section VI. Section VII describes the details of
our implementation. The evaluation and benchmarks are reported
in Section VIII. Section IX reports related work, and Section X
concludes.

II. A FEATHERWEIGHT JAVA WITH EXCEPTIONS

For presentation purpose, we start with a variant of Featherweight
Java [14] in “A-Normal” form [11] with exceptions. A-Normal
Featherweight Java (ANFJ) is identical to ordinary Featherweight
Java, except that arguments to a function call must be atomically
evaluable, as they are in A-Normal Form λ-calculus. For example,
the body return f.foo(b.bar()); becomes the sequence of
statements

B b1 = b.bar();
F f1 = f.foo(b1);
return f1;

ς ∈ Σ = Stmt× FramePointer × Store ×Kont × Time

σ ∈ Store = Addr ⇀ D

d ∈ D = Val

val ∈ Val = Obj

o ∈ Obj = ClassName×ObjectPointer

κ ∈ Kont ::= fun(v, s, fp, κ)

| handle(C, v,~s, fp, κ)

| halt

fp ∈ FramePointer is a set of frame pointers
op ∈ ObjectPointer is a set of object pointers

ptr ∈ Ptr = FramePointer + ObjectPointer

a ∈ Addr = (Var + Method)× Ptr

t ∈ Time is a set of time-stamps.

Fig. 2: Concrete state-space for A-Normal Featherweight Java.

C : ClassName→ (FieldName∗ × Ructor)

K ∈ Ructor =

fields︷ ︸︸ ︷
Addr∗×

arguments︷︸︸︷
D∗ → (

field values︷ ︸︸ ︷
Store ×

record︷ ︸︸ ︷
ObjectPointer)

M : D ×MethodCall⇀ Method

Fig. 3: Helper functions for the concrete semantics.

This does not change the expressive power of the language or the
nature of the analysis to come, but it does simplify the semantics
while preserving the essence of the language.

The following grammar describes A-Normal Featherweight Java
extended with exceptions; like regular Java, ANFJ has statement
forms:

Class ::= class C extends C′ {
−−−−→
C′′ f ; K

−→
M}

K ∈ Konst ::= C (
−−→
C f){super(

−→
f ′) ;

−−−−−−−−−−−→
this.f ′′ = f ′′′;}

M ∈ Method ::= C m (
−−→
C v) {

−−−→
C v ; ~s }

s ∈ Stmt ::= v = e ;`

| return v ;`

| try {~s} catch (C v) {~s′}`

| throw v ;`

e ∈ Exp ::= v | v.f | v.m(−→v) | new C (−→v) | (C)v

f ∈ FieldName = Var

C ∈ ClassName is a set of class names
m ∈ MethodCall is a set of method invocation sites

` ∈ Lab is a set of labels
v ∈ Var is a set of variables

The set Var contains both variable and field names. Every statement
has a label. The function succ : Lab ⇀ Stmt yields the (semanti-
cally) subsequent statement for a statement’s label.

III. MACHINE SEMANTICS FOR FEATHERWEIGHT JAVA

In preparation for synthesizing an abstract interpreter, we first
construct a small-step abstract machine-based semantics for Feath-
erweight Java. Figure 2 contains the concrete state-space for the
small-step Featherweight Java machine. Each machine state has five
components: a statement, a frame pointer, a store, a continuation
and a timestamp. The encoding of objects abstracts over a low-
level implementation: an object is a class plus a base pointer, and
field addresses are “offsets” from this base pointer. Given an object
(C, op), the address of field f would be (f, op). In the semantics,
object allocation creates a single new base object pointer op′.

The concrete semantics use the helper functions described in
Figure 3. The constructor-lookup function C yields the field names
and the constructor associated with a class name. A constructor
K takes a newly allocated address to use for fields and a vector
of arguments; it returns the change to the store plus the record
component of the object that results from running the constructor.
The method-lookup functionM takes a method invocation point and
an object to determine which method is actually being called at that
point. The concrete semantics are encoded as a small-step transition
relation, (⇒) ⊆ Σ × Σ. Each statement and expression type has a
transition rule below.
Variable reference: Variable reference computes the address relative
to the current frame pointer and retrieves the result from the store:

([[v = v′;`]], fp, σ, κ, t)⇒ (succ(`), fp, σ′, κ, t′),

where t′ = tick(`, t), σ′ = σ[(v, fp) 7→ σ(v′, fp)].

Return to call: Returning from a function checks if the top-most
frame pointer is a function continuation (as apposed to an exception-
handler continuation). If it is, then the machine binds the result and
restores the context of the continuation; if not, then the machine skips
to the next continuation. If κ = fun(v′, s, fp′, κ′):

([[return v ;`]], fp, σ, κ, t)⇒ (s, fp′, σ′, κ′, t′), where
t′ = tick(`, t), σ′ = σ[(v′, fp) 7→ d], d = σ(v, fp).

Return over handler: If the topmost continuation is a handler,
then the machine pops the handler off the stack. So, if κ =
handle(C, v,~s, fp′, κ′):

([[return v ;`]], fp, σ, κ, t)⇒ ([[return v ;`]], fp, σ, κ′, t′)

where t′ = tick(`, t).

Field reference: Field reference is similar to variable reference,
except that it must find the base object pointer with which to compute
the appropriate offset:

([[v = v′.f ;`]], fp, σ, κ, t)⇒ (succ(`), fp, σ′, κ, t′),

where t′ = tick(`, t),

(C, op′) = σ(v′, fp), σ′ = σ[(v, fp) 7→ σ(f, op′)].

Method invocation: Method invocation is a multi-step process: it
looks up the object, determines the class of the object and then
identifies the appropriate method. When transitioning to the body
of the resolved method, a new function continuation is instantiated,
which records the caller’s execution context. Finally, the store is
updated with the bindings of formal parameters to evaluated values
of passed arguments.

([[v = v0.m(
−→
v′);`]], fp, σ, κ, t)⇒ (s0, fp

′, σ′, κ′, t′),

where M = [[C m (
−−−→
C v′′) {

−−−−−→
C′ v′′′ ; ~s}]] =M(d0,m)

d0 = σ(v0, fp), di = σ(v′i, fp), t′ = tick(`, t), fp′ = alloc(`, t′),

κ′ = fun(v, succ(`), fp, κ), a′i = (v′′i , fp
′), σ′ = σ[a′i 7→ di].

Object allocation: Object allocation creates a new base object
pointer; it also invokes the constructor helper to initialize the object(
The (+) operation represents right-biased functional union in that
wherever vector ~x is in scope, its components are implicitly in scope:
~x = 〈x0, . . . , xlength(x̃)〉):

([[v = new C (
−→
v′);`]], fp, σ, κ, t)⇒ (succ(`), fp, σ′, κ, t′),

where t′ = tick(`, t), di = σ(v′i, fp), (~f,K) = C(C),

fp′ = alloc(`, t′), ai = (fi, fp
′)(∆σ, op′) = K(~a, ~d),

d′ = (C, op′), σ′ = σ + ∆σ + [(v, fp) 7→ d′].

Casting: A cast references a variable, replacing the class of the
object:

ς̂ ∈ Σ̂ = Stmt× ̂FramePointer × Ŝtore × K̂ont × T̂ime

σ̂ ∈ Ŝtore = Âddr ⇀ D̂

d̂ ∈ D̂ = P
(
V̂al
)

v̂al ∈ V̂al = Ôbj

ô ∈ Ôbj = ClassName× ̂ObjectPointer

κ̂ ∈ K̂ont = F̂rame∗

φ̂ ∈ F̂rame = ̂CallFrame + ̂HandlerFrame

χ̂ ∈ ̂CallFrame ::= fun(v, s, f̂p)

η̂ ∈ ̂HandlerFrame ::= handle(C, v,~s, f̂p)

f̂p ∈ ̂FramePointer is a set of frame pointers

ôp ∈ ̂ObjectPointer is a set of object pointers

p̂tr ∈ P̂tr = ̂FramePointer + ̂ObjectPointer

â ∈ Âddr = (Var + Method)× P̂tr

t̂ ∈ T̂ime is a set of time-stamps.

Fig. 4: Abstract state-space for pushdown analysis of A-Normal
Featherweight Java.

([[v = (C′) v′]], fp, σ, κ, t)⇒ (succ(`), fp, σ′, κ, t′),

where t′ = tick(`, t), σ′ = σ[(v, fp) 7→ σ(v′, fp)].

Try: A try statement creates a new handler continuation and then
proceeds to the body of the try statement.

([[try {~s} catch (C v) {~s′}`]], fp, σ, κ, t)
⇒ (succ(`), fp, σ, κ′, t′)

where t′ = tick(`, t), κ′ = handle(C, v′, s′1, fp, κ).

Throw to matching handler: When the machine encounters a throw
statement, it must check if the topmost continuation is both a handler
and a matching handler; if so, then it returns to the context within
the continuation: If κ = handle(C′, v′, s, fp′′, κ′) and σ(v, fp) =
(C, op′) and C is a C′:

([[throw v ;`]], fp, σ, κ, t)⇒ (s, fp′′, σ′, κ′, t′)

where t′ = tick(`, t), σ′ = σ[(v′, fp′′) 7→ (C, op′)].

Throw past non-matching handler: When throwing, if the topmost
handler is not a match, the machine looks deeper in the stack for a
matching handler. If κ = handle(C′, v′, s, fp′′, κ′) and σ(v, fp) =
(C, op′) but C is not a C′:

([[throw v ;`]], fp, σ, κ, t)⇒ ([[throw v ;`]], fp, σ, κ′, t′)

where t′ = tick(`, t).

Throw past return point: If throwing an exception and the topmost
handler is a function return point, then it jumps over this continuation.
If κ = fun(v′, s, fp′, κ′):

([[throw v ;`]], fp, σ, κ, t)⇒ ([[throw v ;`]], fp, σ, κ′, t′)

where t′ = tick(`, t).

Popping handlers: When control passes out of a try block, the
topmost handler must be popped from the stack. To handle this, the
“successor” of the last statement in a try block is actually a special
pophandler statement, and the “successor” of that statement is the
statement directly following the try block.

([[pophandler ;`]], fp, σ, κ, t)⇒ (succ(`), fp, σ, κ′, t′)

where t′ = tick(`, t), κ = handle(. . . , κ′).

IV. A PUSHDOWN SEMANTICS OF EXCEPTIONS

With the concrete semantics for A-Normal Featherweight Java with
exceptions in place, we are ready to derive the abstract semantics for

static analysis. “Abstracting abstract machines” (AAM) has proposed
a systematic approach to derive such kind of abstraction, which
is equivalent to most of the conservative static analyses [32]. The
idea is to make the analysis finite and terminate by finitize every
component in the state, so that there is no source of infinity. However,
when we apply this technique, the precision is not satisfiable in
the client security analysis [21], because the over-approximation of
the continuation component causes spurious control-flow and return-
flows.

Therefore, in this work, we choose to abstract less than what
AAM approach does: we leave the stack (represented as continuation)
unbounded in height. In fact, the central idea behind this abstraction
is the generalization of two kinds of frames on stack: the function
frames and the exception-handler frames. In this way, we form the
abstract pushdown semantics. Then, the pushdown abstract semantics
will further be computed as control-state reachability in pushdown
systems, which is evolved from the work of [26], [9], [10]. However,
unlike them, we improve the algorithm to handle new behaviors
introduced by exceptions. The algorithm is detailed in Section VI.
The rest of the section focuses how we formulate the pushdown
semantics.

Abstract semantics are defined on an abstract state-space. To
formulate the pushdown abstract state-space, we first reformulate
continuations as a list of frames in the concrete semantics:

Kont ∼= Frame∗

Frame = CallFrame + HandlerFrame

CallFrame ::= fun(v, s, fp)

HandlerFrame ::= handle(C, v,~s, fp).

We have two kinds of frames: function frames as well as handler
frames. As with continuations, they may grow without bound (The
enhanced reachability algorithm handles this in Section VI).

Figure 4 contains the abstract state-space for the pushdown version
of the small-step Featherweight Java machine. At this point, we can
extract the high-level structure of the pushdown system from the
state-space. A configuration in a pushdown system is a control state
(from a finite set) paired with a stack (with a finite number of frames
that are defined in Figure 4). This can be observed as follows:

Σ̂ = Stmt× ̂FramePointer × Ŝtore × K̂ont × T̂ime

∼= Stmt× ̂FramePointer × Ŝtore × T̂ime × K̂ont

=
(
Stmt× ̂FramePointer × Ŝtore × T̂ime

)
× K̂ont

=
(
Stmt× ̂FramePointer × Ŝtore × T̂ime

)
︸ ︷︷ ︸

control states

× F̂rame
∗︸ ︷︷ ︸

stack

Now let us show the detailed abstract transition relations. Thanks to
the way we do the abstraction so far (That is, structural abstraction of
concrete states except for the stack component), the abstract transition
relations resemble a lot as their concrete counterparts. The biggest
difference in abstract semantics is that it does weak updates using
the operator t. For example, for variable reference (weak updates
are underlined.):

([[v = v′;`]], f̂p, σ̂, κ̂, t̂) ; (succ(`), f̂p, σ̂′, κ̂, t̂′),

where t̂′ = t̂ick(`, t̂) and σ̂′ = σ̂ t [(v, f̂p) 7→ σ(v′, f̂p)]

The other difference is, whenever evaluating expressions, the results
are abstract entities that represents one or more concrete entities. For
example, field reference:

([[v = v′.f ;`]], f̂p, σ̂, κ̂, t̂) ; (succ(`), f̂p, σ̂′, κ̂, t̂′)

where t̂′ = t̂ick(`, t̂), (C, ôp′) ∈ σ̂(v′, f̂p), σ̂′ = σ̂ t [(v, f̂p) 7→ σ̂(f, ôp′)]

The underlined operation shows that there could be more than one
abstract objects are evaluated. The two differences apply to all the

[Try]:
([[try {~s} catch (C v) {~s′}`]], f̂p, σ̂, κ̂, t̂)

; (succ(`), f̂p, σ̂, κ̂′, t̂′),

where t̂′ = t̂ick(`, t̂) and κ̂′ = handle(C, v′, s′1, f̂p) :: κ̂.
[Throw to matching handler]:

([[throw v ;`]], f̂p, σ̂, κ̂, t̂) ; (s, f̂p
′′
, σ̂′, κ̂′, t̂′),

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(v′, f̂p
′′

) 7→ (C, ôp′)],

κ̂ = handle(C′, v′, s, f̂p
′′

) :: κ̂′, (C, ôp′) ∈ σ̂(v, f̂p),C is a C′.
[Throw past non-matching handler]:
([[throw v ;`]], f̂p, σ̂, κ̂, t̂) ; ([[throw v ;`]], f̂p, σ̂, κ̂′, t̂′),

where t̂′ = t̂ick(`, t̂), κ̂ = handle(C′, v′, s, f̂p
′′

) :: κ̂′,

(C, ôp′) ∈ σ̂(v, f̂p) and C is not a C′.
[Throw past return point]:
([[throw v ;`]], f̂p, σ̂, κ̂, t̂) ; ([[throw v ;`]], f̂p, σ̂, κ̂′, t̂′),

where t̂′ = t̂ick(`, t̂), and κ̂ = fun(v′, s, f̂p
′
)::κ̂′.

[Return over handler]:
([[return v ;`]], f̂p, σ̂, κ̂, t̂) ; ([[return v ;`]], f̂p, σ̂, κ̂′, t̂′),

where t̂′ = t̂ick(`, t̂) and κ̂ = handle(C, v,~s, f̂p
′
) :: κ̂′.

[Popping handlers]:
([[pophandler ;`]], f̂p, σ̂, κ̂, t̂) ; (succ(`), f̂p, σ̂, κ̂′, t̂′),

where t̂′ = t̂ick(`, t̂) and κ̂ = handle(. . .) :: κ̂′.

Fig. 5: Abstract transition relations (exception)

other rules. To save space, we demonstrate the abstract rules that
involve exceptions. Fig 5 shows how we handle the exception-flow
and its mix with normal control-flow. The idea is the “multi-pop” be-
havior introduced when a function call returns or an exception throws
(as the concrete semantics). The effect of this approach substantially
simplifies the control-reachability algorithm during summarization,
as we shall show in Section VI.

V. ENHANCED ABSTRACT GARBAGE COLLECTION

The previous section formulates a pushdown system to handle
complicated control-flows (both normal and exceptional). This section
describes how we prune the analysis for exceptions from the angle of
points-to analysis with enhanced garbage collection generalized for
object-oriented programs.

A. Abstract garbage collection in an object-oriented setting

The idea of abstract garbage collection was first proposed in the
work of Might and Shivers [24] for higher-order programs. As an
analog to the concrete garbage collection, abstract garbage collection
reallocates unreachable abstract resources. Order-of-magnitude im-
provements in precision have been reported, even as it drops run-times
by cutting away false positives. It is natural to think that this technique
can benefit exception-flow analysis for object-oriented languages. In
fact, in an object-oriented setting, abstract garbage collection can
free the analysis from the context-sensitivity and object-sensitivity
limitation, since the “garbage” discarded is ignorant of any form of
sensitivity! For example, in the following simple code snippet,

A a1 = idA(new A());
A a2 = idA(new A()):
B b1 = idB(a1.makeB());
B b2 = idB(a2.makeB());

idA and idB are identity functions. Traditionally, with one level of
object-sensitivity and one level of context sensitivity, we are able to
distinguish the arguments passed in all of the four lines. However, it

is easy to exceed the k-sensitivity (call site, allocation sites, receiver
objects, etc.) in modern software constructs. Abstract garbage collec-
tion can play a role in the way that it discards conservative values
and enables fresh bindings for reused variables (formal parameters).
This does not need knowledge about any sensitivity! Thus, it can
avoid “merging” of abstract object values (and so indirectly eliminate
potentially spurious function calls). For exceptions specifically, ab-
stract garbage collection can help avoid conflating exception objects
at various throw sites.

To gain the promised analysis precision and performance, we must
conduct a careful and subtle redesign of the abstract garbage collec-
tion machinery for object-oriented languages. Specifically, we need
to make it work with the abstract semantics defined in Section IV. In
addition, the reachability algorithm should also be able to work with
abstract garbage collection. Fortunately, the challenge of how to adapt
abstract garbage collection into pushdown systems has been resolved
in the work of Earl et al. [10]. Here we focus on the enhanced
machinery for object-oriented languages.

First, we describe how we adapt abstract garbage collection to
analyze object-oriented languages. Abstract garbage collection dis-
cards unreachable elements from the store, it modifies the transition
relation to conduct a “stop-and-copy” garbage collection before
each transition. To do so, we define a garbage collection function
Ĝ : Σ̂→ Σ̂ on configurations:

Ĝ(

ς̂︷ ︸︸ ︷
~s, f̂p, σ̂, κ̂, t̂) = (~s, f̂p, σ̂|Reachable(ς̂), κ̂),

where the pipe operation f |S yields the function f , but with inputs
not in the set S mapped to bottom—the empty set. The reachability
function Reachable : Σ̂→ P(Âddr) first computes the root set and
then the transitive closure of an address-to-address adjacency relation:

Reachable(

ς̂︷ ︸︸ ︷
~s, f̂p, σ̂, κ̂, t̂) =

{
â : â0 ∈ Root(ς̂) and â0

∗
_
σ̂
â

}
,

where the function Root : Σ̂→ P(Âddr) finds the root addresses:
Root(~s, f̂p, σ̂, κ̂, t̂) = {(v, f̂p) : (v, f̂p) ∈ dom(σ̂)} ∪ StackRoot(κ̂)

The StackRoot : K̂ont → P(Âddr) function finds roots on the
stack. However, only ̂CallFrame has the component to construct
addresses, so we define a helper function F̂ : K̂ont → ̂CallFrame

∗

to extract only ̂CallFrame out from the stack and skip over all the
handle frames. Now StackRoot is defined as

StackRoot(κ̂) = {(v, f̂pi) : (v, f̂pi) ∈ dom(σ̂) and f̂pi ∈ F̂(κ̂)},

and the relation:(_) ⊆ Âddr × Ŝtore × Âddr connects adjacent
addresses: â _σ̂ â′ iff there exists (C, ôp) ∈ σ̂(â) such that
â′ ∈ {(f, ôp) : (f, ôp) ∈ dom(σ̂)}. The formulated abstract garbage
collection semantics constructs the subroutine eagc that is called in
Alg. 4, which is the interface to enable abstract garbage collection
in the reachability algorithm.

B. Abstract garbage collection enhanced with liveness analysis

Abstract garbage collection can avoid conflating abstract objects
for reused variables or formal parameters, but it can not discover
“garbage” or “dead” abstract objects in the local scope. The following
example illustrates this:

bool foo(A a) {
B b = B.read(a);
C p = C.doSomething(b);
return bar(C.not(p));

}

Obviously, in the function body foo, b is actually “dead” after
the second line. However, näive abstract garbage collection has no

knowledge of this. In fact, this is a problem for näive concrete
garbage collection [1]. In the realm of static analysis, the garbage
value pointed to by b can pollute the exploration of the entire state
space.

In addition, in the register-based byte code that our implementa-
tion analyzes, there are obvious cases where the same register is
reassigned multiple times at different sites within a method. The
direct adaptation of abstract garbage collection to an object-oriented
setting in Section V-A cannot collect these registers between uses.
In other words, for object-oriented programs, we also want to collect
“dead” registers, even though they are reachable under description in
Section V-A. This can be easily achieve by using liveness analysis.
Of course, we could also solve it by transforming the byte code into
Static Single Assignment (SSA) form. However, as mentioned above,
liveness analysis has additional benefits, so we chose to enhance the
abstract garbage collection with live variable analysis (LVA).

LVA computes the set of variables that are alive at each statement
within a method. The garbage collector can then more precisely
collect each frame.

Since LVA is well-defined in the literature [2], we skip the
formalization here, but the Root is now modified to collect only
live variables of the current statement Lives(s0):

Root(~s, f̂p, σ̂, κ̂) = {(v′, f̂p)} ∪ StackRoot(κ̂),

where (v′, f̂p) ∈ dom(σ̂) and v′ ∈ Lives(s0).

The liveness property is embedded in the overall eagc subroutine
in Alg. 4.

VI. EXTENDING PUSHDOWN REACHABILITY ANALYSIS FOR

EXCEPTIONS

Given the formalisms in the previous sections, it is not immediately
clear how to convert these rules into a static analyzer, or more
importantly, how to handle the unbounded stack without it always
visiting new machine configurations. Thus, we need a way to compute
a finite summary of the reachable machine configurations.

In abstract interpretation frameworks, the Dyck State Graph syn-
thesis algorithm [9], which is a purely functional version of the
Saturation algorithm [26], provides a method for computing reachable
pushdown control states. We build our algorithms on the work
of Earl et al. [10]. As it turns out, it is not hard to extend the
summarization idea to deal with an unbounded stack with exceptions.
In the following sections, we present the complete algorithm in a top-
down fashion, which aims to easily turn into actual working code.
The algorithm code uses previous definitions specified in Section IV.

A. Analysis setup

Algorithm 1: ANALYZE

Input: s: a list of program statements (with an initial entry point s0).
Output: Dyck State Graph DSG : a triple of a set of control states

a set of edges, and a initial state.
1 σ̂0 ←− empty store
2 fp0 ←− initial empty stack frame pointer
3 t̂0 ←− empty list of contexts
4 q̂0 ←− (s0, fp0, σ̂0, t̂0)
5 The initial working set W0 ←− {q̂0}
6 IECG0 ←− (∅, ∅, ∅, ∅, ∅, ∅)
7 DSG0 ←− ({q̂0}, ∅, q̂0)
8 (DSG, IECG, σ̂,W)←−EVAL(DSG0, IECG0, σ̂0,W0)
9 return DSG

The analysis for a program starts from the ANALYZE function, as
shown in Alg. 1. It accepts a program expression (an entry point
to a program), and gives out a Dyck State Graph (DSG). Formally
speaking, a DSG of a pushdown system is the subset of a pushdown
system reachable over legal paths. (A path is legal if it never tries

to pop a when a frame other than a is on top of the stack.) Note
that the T̂ime component is designed for accommodating traditional
analysis, depending on actual implementation. For example, the last k
call sites or object-allocation labels, or the mix of them. The analysis
produces DSG from the subroutine EVAL, which is the fix-point
synthesis algorithm.

In Alg. 1, IECG is a composed data structure used in the ε
summarization algorithm. It is derived from the idea of an ε closure
graph (ECG) in the work of Earl et al. [9], but supports efficient
caching of ε closures along with transitive push frames on the
stack. Specifically, IECG = (

←−
G,
−→
G,
−→
TF ,
−−→
PSF ,

←−−
PFP ,

←−−−
NEP). The six

components can be considered maps:
• ε predecessors

←−
G : Σ̂→ {Σ̂}, maps a target node to the source

node(s) of an ε edge(s)
• ε successors

−→
G : Σ̂ → {Σ̂}, maps a source node to the target

node(s) of an ε edge(s)
• top frames

−→
TF : Σ̂ → {F̂rame}, records the shallow pushed

stack frame(s) for a state node.
• possible stack frames

−−→
PSF : Σ̂ → {F̂rame}, compute all

possible pushed stack frame of a state. It is used for abstract
garbage collection.

• predecessors for push action
←−−
PFP : (Σ̂, F̂rame)→ {Σ̂}, records

source state node(s) for a pushed frame and the net-changed

state. For example in the legal path: q̂0
g+−−→ q̂1 −→ ...

g−−−→ q̂2,
the entry (q̂1, g

+) −→ {q̂0} is in
←−−
PFP .

• non-ε predecessors (
←−−−
NEP : Σ̂ → {Σ̂}), maps a state node to

non-ε predecessors.
These data structures (and IECG) have the same definition in the
following algorithms.

1) Fix-point algorithm of the pushdown exception framework:
Alg. 2 describes the fix-point computation for the reachability algo-
rithm. It iteratively constructs the reachable portion of the pushdown
transition relation (Ln. 5-12) by inserting ε-summary edges whenever
it finds empty-stack (Ln. 13-20) (e.g., push a, push b, pop b, pop a)
paths between control states. Ln. 22-25 decides when to terminate
the analysis: no new frontier edges and the new store component
σ̂′′ is subsumed by the old store σ̂′. The second condition uses the
technique presented by Shivers [29]. Otherwise, it recurs to EVAL.

Now we explain Ln. 5-12 in more detail by examining the
subroutines that are called. As is shown in Ln. 7, the raw new states
and edges are obtained from calling STEP (shown in Alg. 3). The
algorithm enables the widening strategy in the pushdown reachability
algorithm by instrumenting the σ̂ component (it is widened during
iteration in EVAL (Ln. 7 and Ln. 12)).

The other important part of the algorithm is STEPIPDS, Alg. 4
shows the details. STEPIPDS does three things: (1) It incorporates the
enhanced abstract garbage collection into the pushdown framework
by calling eagc (Ln. 3). The actual algorithm can be derived from
the semantics presented in the Section V; (2) It calls the pushdown
abstract transition relation function of next based on the cleaned
state after garbage collection. The semantics presented in Section IV
reflect the structure of next; (3) It summarizes the stack actions
from the newly explored nodes, and so to construct possible edges for
DSG . This is done in the algorithm DECIDESTACKACTION, which
compares the continuation before the transition and the continuation
after, then decides which of the three stack actions: epsilon, push and
pop to take. Also note that we add only state nodes (e.g. q̂) into the
working set if they are not appeared in the following sets: state nodes
of the current DSG , predecessors of q̂ and successors of q̂, for the
purpose of avoiding non-necessary re-computation.

Algorithm 2: EVAL

Input: DSG, IECG(definition referred to Section VI-A), σ̂,working set W
Output: DSG′, IECG′, σ̂′′,W ′

1 ∆S,∆E, σ̂′′,W ′ ← ∅
2 (E,S, q̂0)← DSG

3 (
←−
G,
−→
G,
−→
TF ,
−−→
PSF , ,)← IECG

4 IECG′ ← (∅, ∅, ∅, ∅, ∅, ∅)
5 for s ∈ W do
6 for κ̂ ∈

−→
TF (s) do

7 for (g, s1, σ̂′) ∈ STEP(s, κ̂,
−−→
PSF (s), σ̂) do

8 if s /∈ (
−→
G(s) ∪ S ∪

←−
G(s)) then

9 insert s1 in ∆S
10 insert E(s, g, s1) in ∆E
11 insert s1 in W ′
12 σ̂′′ = σ̂′ t σ̂

13 for E ∈ ∆E do
14 switch E do
15 case (s′, ε, s′′)
16 IECG′ ← PROPAGATE(E, IECG)

17 case (s′, g+, s′′)
18 IECG′ ← PROCESSPUSH(E, IECG)

19 case (s′, g−, s′′)
20 IECG′ ← PROCESSPOP(E, IECG)

21 DSG′ ← (E ∪∆E,S ∪∆S)
22 if σ̂′′ v σ̂ ∧∆E == ∅ then
23 return (DSG′, IECG′, σ̂′′,W ′)
24 else
25 EVAL(DSG′, IECG′, σ̂′′,W ′)

Algorithm 3: STEP

Input: control state q̂, continuation κ̂, a list of frames ~̂φ
Output: a set of records (stack action g, q̂′, σ̂)

1 result ←− ∅
2 for (g, q̂′) ∈ STEPIPDS(q̂, κ̂, ~̂φ) do
3 insert (g, q̂′, σ̂) in result

4 return result

Returning to EVAL in Alg. 2, Ln. 13-20 summarizes and propagates
the new knowledge of the stack, given ∆E, by calling the Alg. 6,
Alg. 8, or Alg 9 based on the stack action. These algorithms are
detailed in Section VI-B, along with the mechanism to deal with
exceptions.

B. Synthesizing a Dyck State Graph with exceptional flow

For pushdown analysis without exception handling, only two kinds
of transitions can cause a change to the set of ε-predecessors
(
←−
G): an intra-procedural empty-stack transition and a frame-popping

procedure return. With the addition of handle frames to the stack,
there are several new cases to consider for popping frames (and hence
adding ε-edges).

In the following text, we first highlight how to handle the ex-
ceptional flows during DSG synthesis, particularly as it relates to
maintaining ε-summary edges. Then we present the generalized
algorithms for these cases. The figures in this section use a graphical
scheme for describing the cases for ε-edge insertion. Existing edges
are solid lines, while the ε-summary edges to be added are dotted
lines. The superscripts of + and − on exception handler frame η,
call frame χ and general frame φ mean push or pop actions of the
correspondent frames.
Intraprocedural push/pop of handle frames: The simplest
case is entering a try block and leaving a try block entirely
intraprocedurally—without throwing an exception. Figure 6a shows
such a case: if there is a handler push followed by a handler pop, the
synthesized (dotted) edge must be added.

Algorithm 4: STEPIPDS

Input: a source state q̂, continuation κ̂, list of frames ~̂φ, Options:
global analysis options

Output: a set of tuples (φ̂′, q̂′)
1 result ←− ∅
2 q̂′ ←− q̂
3 if Options.doGC then q̂′ ←− eagc(q̂, φ̂)
4 confs ←− next(q̂′, κ̂)
5 for (q̂′′, κ̂′) ∈ confs do
6 g ←− DECIDESTACKACTION(κ̂, κ̂′)
7 insert (g, q̂′′) in result

8 return result

Algorithm 5: DECIDESTACKACTION

Input: continuation before transition κ̂, new continuation κ̂′
Output: stack action g

1 if κ̂ = κ̂′ then return ε
2 (g1 :: κ̂1) ←− κ̂
3 (g2 :: κ̂′2) ←− κ̂′
4 if κ̂1 == κ̂′ then
5 return g−1
6 else if κ̂ == κ̂′2 then
7 return g+2

Locally caught exceptions: Figure 6c presents a case where a local
handler catches an exception, popping it off the stack and continuing.
Exception propagation along the stack: Figure 6b illustrates a case
where an exception is not handled locally, and must pop off a call
frame to reach the next handler on the stack. In this case, a popping
self-edge from control state q′ to q′ lets the control state q′ see frames
beneath the top. Using popping self-edges, a single state can pop off
as many frames as necessary to reach the handle—one at a time.
Control transfers mixed in try/catch: Figure 6d illustrates the
situation where a procedure tries to return while a handle frame is
on the top of the stack. It uses popping self-edges as well to find the
top-most call frame.
Uncaught exceptions: The case in Figure 6e shows popping all
frames back to the bottom of the stack—indicating an uncaught
exception.

C. The generalized algorithms: PROPAGATE, PROCESSPOP,
PROCESSPUSH

Section VI-B graphically illustrates the new cases for handling
exceptions (Figure 6). The following text presents the working algo-
rithms to achieve the synthesis process. Alg. 6 handles the cases when

(1) q0

⌘+ //

✏

✓✓
q0

⌘� // q1

Fig. 8

(2) q0

�+ // q
⌘+ //

✏

q0

✏ // q00
⌘� // q1

✏ //

(3) q0

⌘+ //⌘+ //

✏

q

�+ //

✏

✓✓
q0

⌘� //

��

XX q1

(4) q0

�+ //

✏

q

⌘+ //

✏

✓✓
q0

⌘�

XX
�� // q1

(5) q0

�+ // q

�+
�

YY

(a) Intra-procedural handler
push/pop

(1) q0

⌘+ //

✏

✓✓
q0

⌘� // q1

Fig. 8

(2) q0

�+ // q
⌘+ //

✏

q0

✏ // q00
⌘� // q1

✏ //

(3) q0

⌘+ //⌘+ //

✏

q

�+ //

✏

✓✓
q0

⌘� //

��

XX q1

(4) q0

�+ //

✏

q

⌘+ //

✏

✓✓
q0

⌘�

XX
�� // q1

(5) q0

�+ // q

�+
�

YY

(b) Exception propagation

(1) q0

⌘+ //

✏

✓✓
q0

⌘� // q1

Fig. 8

(2) q0

�+ // q
⌘+ //

✏

q0

✏ // q00
⌘� // q1

✏ //

(3) q0

⌘+ //⌘+ //

✏

q

�+ //

✏

✓✓
q0

⌘� //

��

XX q1

(4) q0

�+ //

✏

q

⌘+ //

✏

✓✓
q0

⌘�

XX
�� // q1

(5) q0

�+ // q

�+
�

YY

(c) Locally caught exceptions

(1) q0

⌘+ //

✏

✓✓
q0

⌘� // q1

Fig. 8

(2) q0

�+ // q
⌘+ //

✏

q0

✏ // q00
⌘� // q1

✏ //

(3) q0

⌘+ //⌘+ //

✏

q

�+ //

✏

✓✓
q0

⌘� //

��

XX q1

(4) q0

�+ //

✏

q

⌘+ //

✏

✓✓
q0

⌘�

XX
�� // q1

(5) q0

�+ // q

�+
�

YY

(d) Control transfers mixed in
try/catch

(1) q0

⌘+ //

✏

✓✓
q0

⌘� // q1

Fig. 8

(2) q0

�+ // q
⌘+ //

✏

q0

✏ // q00
⌘� // q1

✏ //

(3) q0

⌘+ //⌘+ //

✏

q

�+ //

✏

✓✓
q0

⌘� //

��

XX q1

(4) q0

�+ //

✏

q

⌘+ //

✏

✓✓
q0

⌘�

XX
�� // q1

(5) q0

�+ // q

�+
�

YY

(e) Uncaught exceptions

Fig. 6: Synthesizing a DSG with exceptional flow

an ε edge is added. These cases are: intra-procedural empty-stack
transition, a frame-popping procedure return, or a frame-popping
intra-procedural or inter-procedural exception catch, as presented in
Figure 6.

Algorithm 6: PROPAGATE

Input: An edgeE, an IECG (refer to Section VI-A)
Output: IECG′

1 (
←−
G,
−→
G,
−→
TF ,
−−→
PSF ,

←−−−
PFP ,

←−−−
NEP)← IECG

2 topFramesToAdd ← ∅
3
←−
G ′,
−→
G ′,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP ← ∅

4 (s1, ε, s2)← E

5 preds ←
←−
G(s1) ∪ {s1}

6 nexts ←
−→
G(s2) ∪ {s2}

7 for s ∈ preds do
8

−→
G ′ ←

−→
G t [s 7→

−→
G(s) ∪ nexts]

9 insert
−→
TF (s) in topFramesToAdd

10 for s ∈ nexts do
11

←−
G ′ ←

←−
G t [s 7→

←−
G(s) ∪ preds]

12
−→
TF ′ ←

−→
TF t [s 7→

−→
TF (s) ∪ topFramesToAdd]

13 for f ∈
−→
TF ′(s1) do

14
←−−−
PFP ′ ←

←−−−
PFP t [(s, f) 7→

←−−−
PFP(s, f)]

15
−−→
PSF ′ ←UPDATEPSF(s,

−→
TF ′,

−−→
PSF ,

←−−−
NEP ,

←−
G ′)

16 IECG′ ← (
←−
G ′,
−→
G ′,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP)

17 return IECG′

The algorithm works as follows: It accepts an ε edge E and the
current record of IECG (introduced in Section VI-A) and produces
a new IECG IECG ′. It propagates the ε successors for each control
state in

←−
G(s1) ∪ s1 (Ln. 8) and prepares the accumulated top

frames for propagation for each successor state node in
−→
G (Ln. 12).

Similarly, it propagates the ε predecessors for each control state in−→
G(s2)∪ s2. The predecessor nodes of pushed frames for the current
target note state s will also be propagated with the new propagated top
frames (Ln. 13-14). Finally, it propagates the possible stack frames−−→
PSF (for abstract garbage collection) in Ln. 15, for each control
state in the original non-ε predecessors and new ε predecessors

←−
G ,

as shown in Alg. 7 Ln. 2-3.

Algorithm 7: UPDATEPSF

Input: s,
−→
TF ′,

−−→
PSF ,

←−−−
NEP ,

←−
G ′

Output:
−−→
PSF ′′

1
−−→
PSF ′ ←

−−→
PSF t [s 7→

−→
TF ′(s)]

2 for spred ∈
←−−−
NEP(s) ∪

←−
G ′(s) do

3
−−→
PSF ′′ ←

−−→
PSF ′ t [s 7→

−−→
PSF ′(spred)]

4 return
−−→
PSF ′′

Alg. 8 handles the case of popping frames, including function call
return popping and exception handling popping. The algorithm is
reduced to Alg. 6 to introduce ε edges, for each tuple in

←−−
PFP .

Algorithm 8: PROCESSPOP

Input: E, IECG
Output: IECG′

1 IECG′ ← ∅ (s1, g−, s2)← E

2 for s ∈
←−−−
PFP(s1, g−) do

3 IECG′ ← IECG t PROPAGATE((s, ε, s2), IECG)

4 return IECG′

Alg. 9 is presented for completeness. It handles pushing stack
frames in function calls and exception handlers in try blocks. Since
the pushing action introduces a new top frame, it maintains extensions
(propagation) for the data structure top frames

−→
TF , predecessors

for push frames
←−−
PFP , non-ε predecessors

←−−−
NEP and possible stack

frames
−−→
PSF .

Algorithm 9: PROCESSPUSH

Input: E, IECG
Output: IECG′

1 IECG′ (
←−
G,
−→
G,
−→
TF ,
−−→
PSF ,

←−−−
NEP)← IECG

2
←−
G ′,
−→
G ′,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP ′ ← ∅

3 (s1, g+, s2)← E

4 for s ∈
−→
G(s2) ∪ {s2} do

5
−→
TF ′ ←

−→
TF t [s 7→ {f}]

6
←−−−
PFP ′ ←

←−−−
PFP t [(s, f) 7→ {s1}]

7
←−−−
NEP ′ ←

←−−−
NEP t [s 7→ {s1}]

8
−−→
PSF ′ ←UPDATEPSF(s,

−→
TF ′,

−−→
PSF ,

←−−−
NEP ′,

←−
G)

9 IECG′ ← (
←−
G,
−→
G,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP ′)

10 return IECG′

VII. IMPLEMENTATION

We have implemented the analysis framework1 with pushdown
abstraction and enhanced abstract garbage collection to analyze
Android applications, which are Java programs. The analyzer works
directly on Dalvik bytecode, which is compiled from Java programs
into Dalvik Virtual Machine (DVM). Different from Java bytecode,
Dalvik bytecode is register-based. What’s more important, it closely
resembles the high-level Java source code. We choose to work on
bytecode in implementation for two reasons: (1) The semantics of
Dalvik bytecode is almost identical to that of high-level Java while
bringing more advantage in analyzing finally. (2) It enables us to
analyze off-the-shelf Android applications.

The finally blocks: In previous sections, we described the
semantics and algorithms for try/catch. To analyze full-featured
exceptions, we have to deal with the finally blocks. It is known
to be non-trivial to handle finally in static analysis [8]. However,
this is not a problem in our analysis. The reason is that the
analyzer directly works on object-oriented byte code, where the
finally is compiled away by compiler in this level. Specifically,
the blocks of code for finally are copied into try and catch
blocks before any possible exit points, which include normal return
statements or throw statements. This eases the static analysis
substantially. In addition, finally blocks are translated as one
kind of catch handler, which is the catchall handler, with the
exception type java/lang/Exception. During the pushdown
analysis, catchall is placed below any other normal catch
handlers on the stack, it is matched last and executed for any possible
throw exceptions.

VIII. EVALUATION

To evaluate the effectiveness of our analysis technique, we compare
our analysis with one of the well-known finite-state based static
analysis frameworks—WALA.2 In fact, there are two representative
traditional static analysis frameworks for object-oriented programs,
Doop [7] and WALA. They are both finite-state static analysis but
orthogonal work. For this reason, there are no comparison results
reported in the literature for the two analysis frameworks. However,
we still experimented with Doop [7] virtual image provided by
the Doop authors. However, the results were incomplete due to
significantly slower running times on several of the DaCapo [4]
benchmarks. As a result, we do not feel a fair comparison can be
made.

As it turns out, WALA is based on the work of Reps et al. [26],
which was later formalized into pushdown reachability. In this sense,

1https://github.com/shuyingliang/pushdownoo
2http://sourceforge.net/projects/wala/

WALA is more similar to our approach with respect to pushdown
reachability. Therefore, we compare our analysis with WALA. In
specific, WALA mainly adopts co-analysis of control-flow and data-
flow analyses, performing call-graph construction and pointer analysis
together, by propagating pointer information on the constructed CFG.
The framework provides several context-sensitivities [31], including
0-CFA, 0-1-CFA (0-CFA with 1-object sensitivity), and analysis with
additional disambiguation of container elements 0-container and 0-1-
container. 3 In particular, the 0-1-CFA enables several optimizations
for string and thrown objects. The 0-1-container policy extends the 0-
1-CFA with unlimited object-sensitivity for collection objects, which
is the most precise default option. Our evaluation uses the 0-1-
container as the baseline.

To make the comparison more compelling, we conduct experiments
on the DaCapo [4] benchmarks. It has much larger scale code bases
to analyze than ordinary Java applications presented in the Google
market. This allows a more realistic workload to stress-test the
analysis. Due to some conflicts in Java GUI classes, eclipse can
not be ported in DVM. Other 10 programs out of 11 Java applications
in the DaCapo benchmark suffice for our purpose.

A. Metrics for precision

Our basis for comparison in precision is the average cardinality
of a points-to set [12], [6], [15] and exception-catcher links (E-C
links) [12].

The average cardinality of a points-to set computes the average
number of abstract (exception) objects for pointers that are collected
into a single representative in the abstraction. In our evaluation, it has
two forms: VarPointsTo and Throws. VarPointsTo refers to
the average cardinality of the points-to set for non-exception abstract
objects, and Throws refers to exception objects specifically. (In
Table I, we normalized the two metrics computed in WALA, relative
to that in our analysis.). We adopt this metric because it reflects
analysis precision by recognizing that the more objects are conflated
for a variable, the less precise the analysis. When this metric is a large
value, it indicates a negative impact on normal control-flow analysis
because it means that virtual method resolution needs to dynamically
dispatch to more than one function causing spurious control-flow
paths. This same reasoning applies for exception-flow analysis. (The
more subtle relationships have been illustrated in Section I). More
rationals of using this metric to measure precision for object-oriented
programs are illustrated in the literature [12], [6], [15]. Following
WALA’s heap model, we compute the same metric in our pushdown
framework.

The E-C links, proposed by Fu et al. [12] is to reflect the precision
of handling exceptional flows. It is also used in the work of [6].
We compute the metric in our analysis framework, which is within
the range of 1-3 across the DaCapo benchmarks. Because WALA
directly computes the catchers intra-procedurally, we do not compute
the comparison ratio as we do for VarPointsTo and Throws.

In addition, we also evaluated the precision of our pruned, push-
down analysis with respect to the client security analysis. We refer
readers to the related work [22].

B. Results

Table I shows that the pushdown exception-flow analysis with
enhanced abstract garbage pdxfa+eagc outperforms finite-state
context-sensitive analysis (represented by WALA) with a precision
of 4.5-11 times for Throws and up to 7 times for general points-to

3http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis

Benchmark LOC Opts Nodes Edges Methods VarPointsTo∗ Throws∗
antlr 35,000 pdxfa+1obj 4.1x 1.3x 1.2x 1.5x 2.8x

pdxfa + eagc 3.9x 1x 1x 3x 4.6x
bloat 70,344 pdxfa+1obj 1.9x 1.4x 2.4x 3.3x 2.4x

pdxfa + eagc 1.2x 1.3x 1.1x 6.3x 6x
chart 217,788 pdxfa+1obj 2.3x 1.3x 1.1x 2x 2.3x

pdxfa + eagc 2.1x 1.1x 1.2x 6x 4.5x
fop 184,386 pdxfa+1obj 2.1x 1.4x 1.1x 4.2x 5.5x

pdxfa + eagc 1.9x 1.3x 1.5x 7.3x 11x
hsqldb 155,591 pdxfa+1obj 8.9x 4.4x 3.4x 1x 2.3x

pdxfa + eagc 5.3x 2.7x 3.3x 3x 4.5x
luindex 38,221 pdxfa+1obj 1.9x 1.9x 1.8x 1x 1.6x

pdxfa + eagc 3.5x 1.7x 1.2x 1.5x 4x
lusearch 87,000 pdxfa+1obj 1.5x 1.6x 1.6x 1.6x 2.3x

pdxfa + eagc 1x 1.5x 1.4x 2.5x 4.5x
pmd 55,000 pdxfa+1obj 1.8x 1.3x 1.5x 2.2x 5.2x

pdxfa + eagc 1.5x 1.1 x 1x 3.7x 7.7x
xalan 159,026 pdxfa+1obj 1.9x 1.3x 1.7x 2.8x 6.2x

pdxfa + eagc 1.4x 1.2x 1.3x 3.7x 10.3x

TABLE I: Precision comparison. Values in columns Nodes, Edges and Methods are ratios of the number of nodes, edges and methods reached
in our analysis, relative to the ones in WALA respectively. Values in columns VarPointsTo∗ and Throws∗ are ratios of average cardinality of
general point-to set and exception points-to set in WALA, relative to the ones in our analysis receptively. Note that we did not list the results for
the benchmark jython because it runs out of memory after one hour. The table shows that the pushdown exception-flow analysis with enhanced
abstract garbage collection pdxfa+eagc outperforms finite-state analysis in WALA in precision by 4.5X-11X for Throws and up to 7X for general
points-to information VarPointsTo.

information VarPointsTo. Nodes and Edges are control-flow
graph information. Methods denotes the analyzed methods. The
values in these columns in Table I are normalized relative to those
reported by WALA 0-1-contain analysis. As is shown in Table I,
our pruned, pushdown analysis technique (pdxfa+eagc) generally
explores more edges and nodes, and explores up to 3.4 times more
methods.

To evaluate the contribution of each aspect (pushdown exception-
flow analysis and enhanced abstract garbage collection) to precision
improvement, when comparing with WALA, we also conduct an ad-
ditional experiment with only the pushdown exception-flow analysis
with 1-object sensitivity (as WALA 0-1-container does), denoted as
the option pdxfa+1obj. The result shows that the pdxfa improves
the precision more than enhanced abstract garbage collection does.

C. Analysis time

For completeness, we also report an analysis time comparison.
Table II is the ratio of our analysis time to that of WALA.

WALA reports less analysis time than our analysis. This is not sur-
prising. First, our analysis is derived from the polynomial complexity
algorithm in [26], [10]. Even with enhanced garbage collection, it
only reduces the complexity by a constant factor. Second, WALA
has been significantly optimized by the IBM research lab, particularly
with underlying Java (collection) libraries rewritten specifically for
its framework. Our implementation is based on Scala’s default data
structures and our specialized Gödel hashing data structure [23]. Last
but not least, the analysis time is reasonably acceptable, given the
high precision that our analysis technique can provide. For example,
for the largest benchmark chart, the unoptimized analyzer takes
roughly 13 minutes.

IX. RELATED WORK

Exception Analysis The bulk of the earlier literature for analyzing
Java programs has generally focused on finite-state abstractions, i.e.,
k-CFA and its variants. Specifically, for the work that acknowledges
exceptional flows, the analysis is based on either context-insensitivity
or a limited form of context-sensitivity. Analyzers that use only
syntactic, type-based analysis of exceptional flow are extremely
imprecise [19], [28]. Propagating exceptions via the imprecise call

graphs cause the analysis result in: (1) inclusion of many spurious
paths between exception throw sites and handlers that are not truly
realizable at run time; (2) unable to tell and differentiate where an
exception comes from. Fu et al. [12] approached the problem by
employing points-to information to refine control-flow reachability.
Later, Bravenboer and Smaragdakis exploited this mutual recursion
by co-analyzing data- and exception-flow [6]. It reports precision
improvement in both pointer-to analysis and exception analysis.

Points-to Analysis Precise and scalable context-sensitive points-to
analysis has been an open problem for decades. We describe a portion
of the representative work in the literature. Much work in pointer
analysis exploits methods to improve performance by strategically
reducing precision. Lattner et al. show that an analysis with a context-
sensitive heap abstraction can be efficient by sacrificing precision
under unification constraints [18]. In full-context-sensitive pointer
analysis, Milanova et al. found that an object-sensitive analysis [25] is
an effective context abstraction for object-oriented programs. BDDs
have been used to compactly represent the large amount of redundant
data in context-sensitive pointer analysis efficiently [3], [34], [35].
Such advancements could be applied to our pushdown framework,
as they are orthogonal to its central thesis. Recently, Khedker et
al. [16] exploits liveness analyses to improve points-to analysis. Our
work also uses liveness analyses but extends it to work with abstract
garbage collection. In fact, to the best of our knowledge, we are
the first work that explores abstract garbage collection in analyzing
object-oriented programs and enhances it with liveness analysis to
explicitly prune points-to precision.

Pushdown analysis for the λ-calculus Vardoulakis and Shivers’s
CFA2 [33] is the precursor to the pushdown control-flow analysis [9].
Our work directly draws on the work of pushdown analysis for
higher-order programs [9] and introspective pushdown system (IPDS)
for higher-order programs [10]. We extend the earlier work in three
dimensions: (1) We generalize the framework to an object-oriented
language; (2) We adapt the Dyck state graph synthesis algorithm to
handle the new stack change behavior introduced by exceptions; (3)
We reveal necessary details to design and implement a static analyzer
even in the exceptions.

CFL- and pushdown-reachability techniques Earl et al. [10]
develop a pushdown reachability algorithm suitable for the push-

Benchmark antlr bloat chart fop hsqldb luindex lusearch pmd xalan
Ratio 8.5x 5.6x 9.7x 7.9x 5.2x 3.1x 8.7x 9x 4.7x

TABLE II: Analysis time

down systems that we generate. It essentially draws on CFL- and
pushdown-reachability analysis [5], [17], [26], [27]. For instance,
epsilon closure graphs, or equivalent variants thereof, appear in
many context-free-language and pushdown reachability algorithms.
Dyck state graph synthesis is an attractive perspective on pushdown
reachability because it allows targeted modifications to the algorithm.

Pushdown exception-flow analysis There is few work on push-
down analysis for object-oriented languages as a whole. Sridharan
and Bodik proposed demand-driven analysis for Java that matches
reads with writes to object fields selectively, by using refinement [30].
They employ a refinement-based CFL-reachability technique that
refines calls and returns to valid matching pairs, but approximates for
recursive calls. They do not consider specific applications of CFL-
reachability to exception-flow.

X. CONCLUSION

Exception-flows are mutually determined by traditional control-
flow analysis and points-to analysis. In order to model excep-
tional control-flow precisely, we abandoned traditional finite-state
approaches (e.g. k-CFA and its variants). In its place, we generalized
pushdown control-flow analysis from the λ-calculus [10] to object-
oriented programs, and made it capable of handling exceptions in
the process. Pushdown control-flow analysis models the program
stack (precisely) with the pushdown stack, for the purpose of prun-
ing control-flows. To prune the precision with respect to points-
to information, we adapted abstract garbage collection to object-
oriented program analysis and enhanced it with live variable analysis.
Computing the reachable control states of the pushdown system
(the enhanced Dyck state graph) yields combined data-flow analysis
and control-flow analysis of a program. Comparing this approach
to the established traditional analysis framework shows substantially
improved precision, within a reasonable analysis time.

XI. ACKNOWLEDGMENTS

This material is based on research sponsored by DARPA under
agreement number FA8750-12-2-0106. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

REFERENCES

[1] O. Agesen, D. Detlefs, and J. E. Moss. Garbage collection and
local variable type-precision and liveness in java virtual machines. In
PLDI’98. ACM, 1998.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1988.

[3] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to
analysis using BDDs. In PLDI’03. ACM, 2003.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA ’06. ACM, 2006.

[5] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: application to model-checking. In Proceedings of
the 8th International Conference on Concurrency Theory, pages 135–
150. Springer-Verlag, 1997.

[6] M. Bravenboer and Y. Smaragdakis. Exception analysis and points-to
analysis: Better together. In Proceedings of the International Symposium
on Software Testing and Analysis, ISSTA’09, pages 1–12. ACM, 2009.

[7] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In OOPSLA ’09, pages 243–262. ACM,
2009.

[8] R. Chatterjee, B. G. Ryder, and W. A. Landi. Complexity of points-to
analysis of java in the presence of exceptions. IEEE Trans. Softw. Eng.,
2001.

[9] C. Earl, M. Might, and D. Van Horn. Pushdown control-flow analysis of
higher-order programs. In Proceedings of the 2010 Workshop on Scheme
and Functional Programming, Aug. 2010.

[10] C. Earl, I. Sergey, M. Might, and D. Van Horn. Introspective pushdown
analysis of higher-order programs. In ICFP’12. ACM, 2012.

[11] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In PLDI ’93. ACM, 1993.

[12] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott. Robustness
testing of Java server applications. IEEE Trans. Softw. Eng., 31(4):292–
311, Apr. 2005.

[13] L. Hendren. Scaling Java points-to analysis using Spark. In 12th
International Conference on Compiler Construction. Springer, 2003.

[14] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3),
May 2001.

[15] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for points-to
analysis. In PLDI ’13. ACM, 2013.

[16] U. P. Khedker, A. Mycroft, and P. S. Rawat. Liveness-based pointer
analysis. In SAS’12, pages 265–282. Springer-Verlag, 2012.

[17] J. Kodumal and A. Aiken. The set constraint/CFL reachability connec-
tion in practice. In PLDI’04. ACM, 2004.

[18] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-
to analysis with heap cloning practical for the real world. In PLDI’07.
ACM, 2007.

[19] X. Leroy and F. Pessaux. Type-based analysis of uncaught exceptions.
ACM Trans. Program. Lang. Syst., 22(2):340–377, Mar. 2000.

[20] O. Lhoták. Program analysis using binary decision diagrams. PhD
thesis, McGill University, 1987.

[21] S. Liang, M. Might, and D. Van Horn. Anadroid: Malware analysis of
android with user-supplied predicates. CoRR, abs/1311.4198, 2013.

[22] S. Liang, M. Might, D. Van Horn, S. Lyde, T. Gilray, and P. Aldous.
Sound and precise malware analysis for android via pushdown reacha-
bility and entry-point saturation. In SPSM. ACM, 2013.

[23] S. Liang, W. Sun, and M. Might. Fast flow analysis with gödel hashes.
In SCAM, 2014.

[24] M. Might and O. Shivers. Improving flow analyses via Gamma-CFA:
Abstract garbage collection and counting. In ICFP ’06, pages 13–25.
ACM, 2006.

[25] A. Milanova and B. G. Ryder. Parameterized object sensitivity for points-
to analysis for Java. ACM Trans. Softw. Eng. Methodol, 2005.

[26] T. Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11-12):701–726, Dec. 1998.

[27] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Science of
Computer Programming, 58(1-2):206–263, Oct. 2005.

[28] M. P. Robillard and G. C. Murphy. Static analysis to support the
evolution of exception structure in object-oriented systems. ACM Trans.
Softw. Eng. Methodol., 12(2):191–221, Apr. 2003.

[29] O. G. Shivers. Control-flow analysis of higher-order languages. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1991.

[30] M. Sridharan and R. Bodı́k. Refinement-based context-sensitive points-
to analysis for Java. In PLDI’06, pages 387–400. ACM, 2006.

[31] M. Sridharan, S. Chandra, J. Dolby, S. Fink, and E. Yahav. Alias
analysis for object-oriented programs. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, volume 7850, pages
196–232. Springer, 2013.

[32] D. Van Horn and M. Might. Abstracting abstract machines. In ICFP’10,
pages 51–62. ACM, 2010.

[33] D. Vardoulakis. CFA2: Pushdown flow analysis for higher-order lan-
guages. PhD thesis, Northeastern University, 2012.

[34] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In PLDI’04. ACM, 2004.

[35] G. Xu and A. Rountev. Merging equivalent contexts for scalable heap-
cloning-based context-sensitive points-to analysis. In ISSTA’08, pages
225–236. ACM, 2008.

