
AnaDroid: Malware Analysis of Android with

User-supplied Predicates

Shuying Liang,1,2 Matthew Might1

School of Computing, University of Utah
Salt Lake City, Utah, USA

David Van Horn1

College of Computer and Information Sciences
Northeastern University

Boston, Massachusetts, USA

Abstract

Today’s mobile platforms provide only coarse-grained permissions to users with regard to how third-
party applications use sensitive private data. Unfortunately, it is easy to disguise malware within
the boundaries of legitimately-granted permissions. For instance, granting access to “contacts”
and “internet” may be necessary for a text-messaging application to function, even though the
user does not want contacts transmitted over the internet. To understand fine-grained application
use of permissions, we need to statically analyze their behavior. Even then, malware detection
faces three hurdles: (1) analyses may be prohibitively expensive, (2) automated analyses can only
find behaviors that they are designed to find, and (3) the maliciousness of any given behavior
is application-dependent and subject to human judgment. To remedy these issues, we propose
semantic-based program analysis, with a human in the loop as an alternative approach to malware
detection. In particular, our analysis allows analyst-crafted semantic predicates to search and filter
analysis results. Human-oriented semantic-based program analysis can systematically, quickly and
concisely characterize the behaviors of mobile applications. We describe a tool that provides
analysts with a library of the semantic predicates and the ability to dynamically trade speed and
precision. It also provides analysts the ability to statically inspect details of every suspicious state of
(abstract) execution in order to make a ruling as to whether or not the behavior is truly malicious
with respect to the intent of the application. In addition, permission and profiling reports are
generated to aid analysts in identifying common malicious behaviors.

Keywords: static analysis, human analysis, malware detection

1 Supported by the DARPA Automated Program Analysis for Cybersecurity Program.
2 An extended report is available: http://matt.might.net/a/2013/05/25/anadroid/

c©2013 Published by Elsevier Science B. V.

http://matt.might.net/a/2013/05/25/anadroid/

Liang, Might, and Van Horn

1 Introduction

Google’s Android is the most popular mobile platform, with a share of 52.5%
of all smartphones [10]. Due to Android’s open application development com-
munity, more than 400,000 apps are available with 10 billion cumulative down-
loads by the end of 2011 [9].

While most of those third-party applications have legitimate reasons to
access private data, the grantable permissions are too coarse: malware can
hide in the cracks. For instance, an app that should only be able to read
information from a specific site and have access to GPS information must
necessarily be granted full read/write access to the entire internet, thereby
allowing a possible location leak over the net. Or, a note-taking application
can wipe out SD card files when a hidden trigger condition is met. Meanwhile,
a task manager that requests every possible permission can be legitimately
benign.

To understand fine-grained use of security-critical resources, we need to
statically analyze the application with respect to what data is accessed, where
the sensitive data flows, and what operations have been performed on the data
(i.e., determine whether the data is tampered with). Even then, automated
malware detection faces three hurdles: (1) analyses may be prohibitively ex-
pensive, (2) automated analyses can only find behaviors that they are de-
signed to find, and (3) the maliciousness of any given behavior is application-
dependent and subject to human judgment.

In this work, we propose semantics-based program analysis with a human
in the loop as an alternative approach to malware detection. Specifically,
we derive an analytic engine, an abstract CESK* machine based on the de-
sign methodology of Abstracting Abstract Machines (AAM) [20] to analyze
object-oriented bytecode. Then we extend the foundational analysis to an-
alyze specific features: multiple entry points of Android apps and reflection
APIs. Finally, we describe a tool that provides analysts with a library of se-
mantic predicates that can be used to search and filter analysis results, and
the ability to dynamically trade speed and precision. The tool also provides
analysts the ability to statically inspect details of every suspicious state of (ab-
stract) execution in order to make a ruling as to whether or not the behavior is
truly malicious with respect to the intent of the application. Human-oriented,
semantics-based program analysis can systematically characterize the behav-
iors of mobile applications.

Overview

The remainder of the paper is organized as follows: Section 2 presents
the syntax of an object-oriented byte code, and illustrates a finite-state-space-
based abstract interpretation of the byte code. Section 3 discusses analysis

2

Liang, Might, and Van Horn

program ::= class-def . . .

class-def ∈ ClassDef ::= (attribute . . . class class-name extends class-name

(field -def . . .) (method -def . . .))

field -def ::= (field attribute . . . field -name type)

method -def ∈ MethodDef ::= (method attribute . . . method -name (type . . .) type

(throws class-name . . .) (limit n) s . . .)

s ∈ Stmt ::= (label label) | (nop) | (line int) | (goto label)

| (if æ (goto label)) | (assign name [æ | ce]) | (return æ)

| (field-put æo field -name æv) | (field-get name æo field -name)

æ ∈ AExp ::= this | true | false | null | void | name | int

| (atomic-op æ . . .æ) | instance-of(æ, class-name)

ce ::= (new class-name)

| (invoke-kind method -name (æ . . .æ) (type0 . . . typen))

invoke-kind ::= invoke-static | invoke-direct | invoke-virtual

| invoke-interafce | invoke-super

type ::= class-name | int | byte | char | boolean

attribute ::= public | private | protected | final | abstract.

Fig. 1. An object-oriented bytecode adapted from the Android specification [18].

techniques to analyze Android-specific issues: multiple entry points and re-
flection APIs. Section 4 presents the tool implementation with user-supplied
predicates. Section 5 discusses related work, and Section 6 concludes.

2 Semantic-based program analysis

Android apps are written in Java, and compiled into Dalvik virtual machine
byte code (essentially a register-based version of Java byte code). In this sec-
tion, we present how to derive an analysis for a core object-oriented (OO) byte
code language based on Dalvik. After presenting this foundational analysis,
we shall illustrate Android-specific analysis techniques in subsequent sections.

The first step is to define a syntax. Figure 1 presents the syntax of an
OO byte code language that is closely modeled on the Dalvik virtual machine.
Statements encode individual actions; atomic expressions encode atomically
computable values; and complex expressions encode expressions with possible
non-termination or side effects. There are four kinds of names: Reg for regis-
ters, ClassName for class names, FieldName for field names and MethodName
for method names. The special register name ret holds the return value of the
last function called. With respect to a given program, we assume a syntac-
tic meta function S : Label → Stmt∗, which maps a label to the sequence of
statements that start with that label.

Ordinarily, the next step toward an analyzer would be to derive a concrete

3

Liang, Might, and Van Horn

machine to interpret the language just defined. The meaning of a program
will be defined as the set of machine states reachable from an initial state.
The purpose of static analysis is to derive a computable approximation of
the concrete machine’s behavior—of these states. We’ll construct an abstract
semantics to do that. Since the concrete and the abstract semantics are so
close in structure, we will present only the abstract semantics of the byte code,
while highlighting places that are different from its concrete counterpart to
save space.

2.1 Abstract semantics

We define our abstract interpretation as a direct, structural abstraction of a
machine model for the OO bytecode [20]. Because the structural abstraction
creates an abstract machine nearly identical to the machine model itself (with
exceptions that we explain), we don’t provide the concrete machine model.
The analysis of a program is defined as the set of abstract machine states
reachable by an abstract transition relation (;)—the core of the abstract
semantics. That is, abstract evaluation is defined by the set of states reached
by the reflexive, transitive closure of the (;) relation.

Figure 2 details the abstract state-space. We assume the natural element-
wise, point-wise and member-wise lifting of a partial order (v) across this
state-space. States of this machine consist of a tuples of of statements, frame
pointers, heaps, and stack pointers. To synthesize the abstract state-space,
we force frame pointers and object pointers (and thus addresses) to be a finite
set. When we compact the set of addresses into a finite set during a structural
abstraction, the machine may (and likely will) run out of addresses to allocate,
and when it does, the pigeon-hole principle will force multiple abstract values
to reside at the same (now abstract) address. As a result, we have no choice

but to force the range of the Ŝtore to become a power set in the abstract
state-space: now each abstract address can hold multiple values.

2.1.1 Abstract transition relation

In this section, we provide major cases for the abstract transition relation.
The abstract transition relation delegates to helper functions for injecting
programs into states, and for evaluating atomic expressions and looking up
field values:

• Î : Stmt∗ → Ŝtate injects an sequence of instructions into an initial state:
ĉ0 = Î(s) = (s, f̂p0, [âκ0 7→ halt], âκ0)

• Â : AExp × ̂FramePointer × Ŝtore ⇀ V̂al evaluates atomic expressions
(specifically for variable look-up): Â(name, f̂p, σ̂) = σ(f̂p, name)

4

Liang, Might, and Van Horn

ĉ ∈ Ŝtate = Stmt∗ × ̂FramePointer × Ŝtore × ̂KontAddr [states]

σ̂ ∈ Ŝtore = Âddr ⇀ V̂al [stores]

â ∈ Âddr = ̂RegAddr + ̂FieldAddr + ̂KontAddr [addresses]

âκ ∈ ̂KontAddr is a finite set of continuation addresses

r̂a ∈ ̂RegAddr = ̂FramePointer × Reg

f̂a ∈ ̂FieldAddr = ̂ObjectPointer × FieldName

κ̂ ∈ K̂ont = fun(f̂p, s, âκ) + halt [continuations]

d̂ ∈ V̂al = P
(

̂ObjectValue + Ŝtring + Ẑ + K̂ont
)

[abstract values]

ôv ∈ ̂ObjectValue = ̂ObjectPointer × ClassName

f̂p ∈ ̂FramePointer is a finite set of frame pointers [frame pointers]

ôp ∈ ̂ObjectPointer is a finite set of object pointers [object pointers].

Fig. 2. The abstract state-space.

• ÂF : AExp× ̂FramePointer × Ŝtore × FieldName ⇀ V̂al looks up fields:

ÂF(æo, f̂p, σ̂,field -name) =
⊔
σ̂(ôp,field -name) , where

(ôp, class-name) ∈ Â(æo, f̂p, σ̂).

The rules for the abstract transition relation (;) ⊆ Ŝtate× Ŝtate describe
how components of state evolve in light of each kind of statement. In subse-
quent paragraphs, we will illustrate the important rules that involve objects
and function calls, omitting less important ones to save space:

• New object creation Creating a new object allocates a potentially non-fresh
address and joins the newly initialized object to other values residing at this
store address.

ĉ︷ ︸︸ ︷
([[(assign name (new class-name)) : s]], f̂p, σ̂, âκ)⇒ (s, f̂p, σ̂′′, âκ),where

ôp
′
= ̂allocOP(ĉ), σ̂′ = σ̂ t [(f̂p,name) 7→ (ôp

′
, class-name)],

σ̂′′ = ̂initObject(σ̂′, class-name),

where the helper ̂initObject : Ŝtore × ClassName ⇀ Ŝtore initializes fields.

• Instance field reference/update Referencing a field uses ÂF to lookup the
field values and joins these values with the values at the store location for

5

Liang, Might, and Van Horn

the destination register:

([[(field-get name æo field -name) : s]], f̂p, σ̂, âκ) ; (s, f̂p, σ̂′, âκ), where

σ̂′ = σ̂ t [(f̂p,name) 7→ ÂF(æo, f̂p, σ̂,field -name)].

Updating a field first determines the abstract object values from the store,
extracts the object pointer from all the possible values, then pairs the object
pointers with the field name to get the field address, and finally joins the
new values to those found at this store location:

([[(field-put æo field -name æv) : s]], f̂p, σ̂, âκ) ; (s, f̂p, σ̂′, âκ), where

σ̂′ = σ̂ t [(ôp,field -name) 7→ Â(æv, f̂p, σ̂)], (ôp, class-name) ∈ Â(æo, f̂p, σ̂).

• Method invocation This rule involves all four components of the machine.
The abstract interpretation of non-static method invocation can result in
the method being invoked on a set of possible objects, rather than a sin-
gle object as in the concrete evaluation. Since multiple objects are in-
volved, this can result in different method definitions being resolved for the
different objects. The method is resolved 3 and then applied as follows:

ĉ︷ ︸︸ ︷
([[(invoke-kind method -name (æ0 . . .æn) (type0 . . . typen))]] : s, f̂p, σ̂, âκ)

; ̂applyMethod(m,æ, f̂p, σ̂, âκ)

where the function ̂applyMethod takes a method definition, arguments,
a frame pointer, a store, and a new stack pointer and produces the next
states:

̂applyMethod(m,æ, f̂p, σ̂, âκ) = (s, f̂p
′
, σ̂′′, âκ

′
),where

f̂p
′
= ̂allocFP(ĉ), âκ

′
= âllocK (ĉ),

σ̂′ = σ̂ t [âκ
′ 7→ {fun(f̂p, s, âκ)}], σ̂′′ = σ̂′ t [(f̂p

′
,namei) 7→ Â(æi, f̂p, σ̂)].

• Procedure return Procedure return restores the caller’s context and extends
the return value in the dedicated return register, ret.

([[(return æ) : s]], f̂p, σ̂, âκ) ; (s′, f̂p
′
, σ̂′, âκ

′
), where

fun(fp′, s′, a′κ) ∈ σ(aκ) and σ̂′ = σ̂ t [(f̂p
′
, ret) 7→ Â(æ, f̂p, σ̂)].

3 Since the language supports inheritance, method resolution requires a traversal of the
class hierarchy. This traversal follows the expected method and is omitted here so we can
focus on the abstract rules.

6

Liang, Might, and Van Horn

3 Analysis of reflection and multiple entry points in
abstract CESK* machine

While the crux of the analysis for Android apps has been presented in the
previous section, our abstract CESK* machine has to be extended to analyze
multiple entry points in Android apps and some intricate APIs like reflection.

3.1 Fixed-point computation for multiple entry points

A typical static analysis only deals with one entry point of traditional pro-
grams (the main method). However, any Android application has more than
one entry point, due to the event-driven nature of the Android platform. Intu-
itively, to explore the reachable states for all the entry points seems to require
the exploration for all the permutation of entry points. But this can easily
lead to state-space explosion. Related works like [13] prune paths for specific
Android apps (but not soundly). We solve the problem in a sound but inex-
pensive way. Specifically, we iterate over all entry points that have been found.
For each entry point, we compute its reachable states via the abstract CESK*
machine. Then we compute a single widened store from those states using the
widening techniques similar to the ones presented in [15]. The store then forms
part of next state to continue the next entry point fixed-point computation.
Obviously, the store is monotonic, which ensures a sound approximation of the
effects introduced from all entry points. This diminishes precision slightly, but
the gains in speed are considerable. The effects of similar technique are also
noted in [15][19].

3.2 Reflection

This section presents how to extend the abstract CESK* machine to analyze
one of the most commonly used dynamic features in Android—reflection.

Reflection enables programs to access class information to create objects
and invoke methods at runtime. Type information involved is dynamically
retrieved from strings. The strings can come from user input, files, network
or hard-coded, literal strings. Literal strings are not infrequent in reflection.
The following code snippet demonstrates a common case of reflection in Java:

1 Class<?> aeco = Class.forName("android.os.Environment");
2 Method externalDir = aeco.getMethod("getExternalStorageDirectory", (Class[])null);
3 (File)externalDir.invoke(null);

A class object is created in Ln.1 and the method object for getExternalStor-
ageDirectory 4 is created in Ln.2. Finally, the method is invoked in Ln.3

4 Since the method is a static method, so no instantiated object is needed, which is null.

7

Liang, Might, and Van Horn

via the method object externalDir. Since it is a static method with no ar-
guments, the receiver object being invoked is null. Otherwise, the argument
aeco.newInstance() needs to be supplied in Ln.3.

To analyze such reflection, we can integrate string analysis into abstract
interpretation of Java API calls. In the abstract CESK*, we need five addi-
tional transition rules, mainly for simple string analysis and the APIs involving
creation of class object, method object, class instantiation and method invo-
cation:

• String: Strings are objects in Java, and so string instantiation is a special
case for the new rule (see Section 2.1) 5 :

ĉ︷ ︸︸ ︷
([[(const-string name str) : s]], f̂p, σ̂, âκ) ; (s, f̂p, σ̂′′, âκ),where ôp = ̂allocOP(ĉ).

σ̂′ = σ̂ t [(f̂p,name) 7→ {(ôp, java/lang/String)}], σ̂′′ = σ̂′ t [(ôp, value) 7→
α(str)], Unlike the usual case for new rule, there is a field value paired with
the string object pointer as field offset to store abstract string values. α is
the abstraction function for string values. The simplest form is to construct
a flat lattice for strings. Other string analysis such as Costantini et al. [4],
Christensen et al. [3], etc. can be directly incorporated.

• Class objects: In byte code, the creation of a class object using Class.forName
is an invoke-static statement, with the first argument referencing to string
values. The rule will allocate a new class object on the heap, with the field
offset class-name points to the string reference looked up by the address
(f̂p,æ). In addition, the class object reference is stored into the ret address:

ĉ︷ ︸︸ ︷
([[(invoke-static java/lang/Class/forName æ java/lang/String) : s]], f̂p, σ̂, âκ)

; (s, f̂p, σ̂′′, âκ),where ôpCls = ̂allocOP(ĉ),

σ̂′ = σ̂ t [(ôpCls, class-name) 7→ σ̂(f̂p,æ)],

σ̂′′ = σ̂′ t [(f̂p, ret) 7→ (ôpCls, java/lang/Class)]

• Method objects: Method objects are represented as method headers, includ-
ing function name, arguments and their types, return values and exceptions
that the method can throw. 6 A method object is resolved from a class
object, whose class name can be obtained from the first argument æ0. The
second argument will be resolved as the method name. Arrays of argument
types of the method object are stored in the third register æ3.

7

ĉ︷ ︸︸ ︷
([[(invoke-virtual java/lang/Class/getMethod (æ0 æ1 æ2) typesargs) : s]], f̂p, σ̂, âκ)

; newMethodObject(ôpMethod,m, s, f̂p, σ̂′, âκ), where

5 java/lang/StringBuilder is interpreted in similar way.
6 Exceptions handling is omitted in the semantics.
7 We don’t interpret the arrays of the types explicitly.

8

Liang, Might, and Van Horn

(ôpCls, java/lang/Class) ∈ σ̂(f̂p,æ0), (ôp0, java/lang/String) ∈ σ̂(ôpCls, class-name),

class-name ∈ σ̂(ôp0, value), (ôp1, java/lang/String) ∈ σ̂(f̂p,æ1)

method -name ∈ σ̂(ôp1, value), ôpMethod = ̂allocOP(ĉ)

σ̂′ = σ̂ t [(f̂p, ret) 7→ (ôpMethod, java/lang/Reflect/Method)].

Similarly like the transition rule for function call, the method resolu-
tion process is omitted here. The resolution process needs the information
class-name and method-name. Also note that the resolution result is a set of
public methods m, rather than one. The helper function newMethodObject
takes the newly allocated method object pointer, the set of method defini-
tions in the domain MethodDef, the rest statements, the frame pointer,
store, and the stack pointer and returns the successor states. Again, the
method object value will be stored into the ret address.

• Class instantiation: The API call java/lang/Class/newInstance is used to
instantiate a new object of a concrete class type (not an abstract class nor
interface). The class type name can be resolved from the first argument æ
of the instruction. Unlike the normal new statement, the class instantiation
requires the invocation of default class constructor. Therefore, we first
resolve class definitions by using a helper function C : P (ClassName) →
P (ClassDef), and then use getDefaultConstructor : ClassDef → MethodDef
to get the a constructor method. After that, the control is transferred to
the constructor invocation via invoke-direct statement, which is inserted in
front of the rest states s.

ĉ︷ ︸︸ ︷
([[(invoke-virtual java/lang/Class/newInstance æ java/lang/Class) : s]], f̂p, σ̂, âκ)

; (s′ : s, f̂p, σ̂′′, âκ),where

(ôpCls, java/lang/Class) ∈ σ̂(f̂p,æ), (ôp, java/lang/String) ∈ σ̂(ôpCls, class-name),

class-def ∈ C(σ̂(ôp, value)), ôpCls = ̂allocOP(ĉ),

m = getDefaultConstructor(class-def),

s′ = (invoke-direct, m.method -name (æ0 . . .æn) (type0 . . . typen)),

σ̂′ = σ̂ t [(f̂p,æ0) 7→ (ôpCls, java/lang/Class)],

σ̂′′ = σ̂′ t [(f̂p, ret) 7→ (ôpCls, java/lang/Class)].

• Method invocation: Reflection method invocation in byte code is achieved
by invoking the API java/lang/reflect/Method/invoke via invoke-virtual on a
method object, which can be obtained from the first argument. The second
argument is the receiver object that the method will be invoked on. 8 The

8 It will be null if the method to be invoked is a static method. Its transition rule can be
easily adapted from the rule presented.

9

Liang, Might, and Van Horn

third argument is an array of arguments.
ĉ︷ ︸︸ ︷

([[(invoke-virtual java/lang/reflect/Method/invoke (æ0 æ1 æ2) typesargs) : s]], f̂p, σ̂, âκ)

; ̂applyMethod(m,æ, f̂p, σ̂, âκ).

Like the general rule for function call, we have to resolve the method m,

and then by using ̂applyMethod we can get successor states.

4 The tool with user-supplied predicates

In this section, we first briefly presents the implemented analyzer, since the
core of the analysis has been specified in Section 2 an 3. Then we illustrate
the tool usage, particularly with respect to user-supplied predicates.

The analysis engine is a faithful rendering of the formal specification in Sec-
tion 2 and 3. In addition, it incorporates previous techniques that boost pre-
cision and performance, including the abstract garbage collection [17], store-
widening [16], and simple abstract domains to analyze strings [4]. Other
constructs of the tool are:

• Entry points finder: This component discovers all the entry points of an
Android application. Then the engine will explore reachable states based
on the algorithm presented in Section 3.

• Permission violation report: It reports whether an application asks for
more permissions than it actually uses or vice versa.

• State graph: This presents all reachable states with states-of-interest high-
lighted according to default predicates or those supplied by analysts.

• API dumps: This presents all the reachable API calls.

• Heat map: This reports analyzer intensity on per-statement basis.

The work flow of our human-in-the-loop analyzer—AnaDroid—is as fol-
lows: (1) an analyst configures analysis options and malware predicates; (2)
AnaDroid presents a permission-usage report, an API call dump, a state
graph and a heat map. The major parameters of the analyzer include call-
site context-sensitivity—k, widening, abstract garbage collection, cutoffs, and
predicates. An analyst can make the trade-off between runtime and preci-
sion of the analyzer with these parameters. In addition, the predicates enable
analysts to inspect states of interests to detect malware.

4.1 Semantic predicates

To assist analysts, we provide a library of predicates for common patterns.
The two major kinds of predicates in AnaDroid are: “State color predicate”
renders matching states in a customized color; “State truncate predicate”
optimizes the analysis exploration by allowing analysts to manually prune

10

Liang, Might, and Van Horn

paths beginning at matching states.

Examples of usage of the predicates are listed as follows:

uses-API?: It is used to specify what color to render the state that
uses the specified API call. The color is a string representing a SVG color
scheme [11], i.e.“red, colorscheme=set312”:

(lambda (state)
(if (uses-API? state "org/apache/http/client/HttpClient/execute" st-attr)

"red,colorscheme=set312"
#f))

Note that st-attr is a specialized keyword used by our analyzer. state is
the parameter of the predicate.

uses-name?: It is a variant of uses-API?, used to identify a state with
the specific method name in code:

(lambda (state)
(if (uses-name? state "org/ucomb/android/testinterface/RectanglePlus/getArea")

"red,colorscheme=set312"
#f))

An analyst can also use cond to specify multiple colors:

(lambda (state)
(cond
[(uses-API? state "org/apache/http/client/HttpClient/execute" st-attr)

"red,colorscheme=set312"]
[(uses-name? state "org/ucomb/android/testinterface /RectanglePlus/getArea")

"8,colorscheme=set312"]
[else #f]))

truncate?:

(lambda (state)
(if (truncate? state "org/apache/http/client/HttpClient/execute")

"12,colorscheme=set312"
#f))

5 Related work

Stowaway [7] is a static analysis tool identifying whether an application re-
quests more permissions than it actually uses. PScout [1] aims for a similar
goal, but produces more precise and fine-grained mapping from APIs to per-
missions. Our least permission report uses the Stowaway permission map as
AnaDroid’s database. 9

9 Our new version analyzer is upgraded to PScout data set.

11

Liang, Might, and Van Horn

Jeon et al. [12] proposes enforcing a fine-grained permission system. It
limits access to resources that could be accessed by Android’s default permis-
sions. Specifically, the security policy uses a white list to determine which
resources an app can use and a black list to deny access to resources. In addi-
tion, strings potentially containing URLs are identified by pattern matching
and constant propagation is used to infer more specific Internet permissions.

Dynamic taint analysis has been applied to identify security vulnerabili-
ties at run time in Android apps. TaintDroid [6] dynamically tracks the flow
of sensitive information and looks for confidentiality violations. QUIRE [5],
IPCInspection [8], and XManDroid [2] are designed to prevent privilege esca-
lation, where an application is compromised to provide sensitive capabilities to
other applications. The vulnerabilities introduced by interapp communication
is considered future work. However, these approaches typically ignore implicit
flows raised by control structures in order to reduce run-time overhead.

The other approach to enforce security on mobile devices is delegating the
control to users. iOS and Window User Account Control [14] can prompt a
dialog to request permissions from users when applications try to access re-
sources or make security or privacy-related system level changes. However, we
advocate stopping potential malware from floating in the market beforehand
via strict inspections. Our tool has designed with analysts in mind and can
help them identify malicious behaviors of submitted applications.

6 Conclusion

In this work, we propose a human-oriented semantic-based program analysis
for Android apps. We derive an abstract CESK* machine to analyze object-
oriented bytecode. Then the foundational analysis is extended to analyze
specific features: multiple entry points of Android apps and reflection APIs.
We also describe a tool that provides analysts with a library of semantic pred-
icates that can be used to search and filter analysis results, and the ability to
dynamically trade speed and precision. It also provides analysts the ability
to statically inspect details of every suspicious state of (abstract) execution
in order to make a ruling as to whether or not the behavior is truly malicious
with respect to the intent of the application. In addition, permission and pro-
filing reports are generated to aid analysts in identifying common malicious
behaviors. The technique can systematically, quickly and concisely character-
ize the behaviors of mobile applications, as demonstrated by case studies in
the extended report.

12

Liang, Might, and Van Horn

References

[1] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. Pscout: analyzing the
android permission specification. In Proceedings of the 2012 ACM conference on Computer
and communications security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 217–228.

[2] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., and
Shastry, B. Towards taming privilege-escalation attacks on Android. In Proceedings of
the 19th Annual Network & Distributed System Security Symposium (Feb. 2012).

[3] Christensen, A. S., Møller, A., and Schwartzbach, M. I. Precise analysis of
string expressions. In Proceedings of the 10th international conference on Static analysis
(Berlin, Heidelberg, 2003), SAS’03, Springer-Verlag, pp. 1–18.

[4] Costantini, G., Ferrara, P., and Cortesi, A. Static Analysis of String Values.
In Proceedings of the 13th International Conference on Formal Engineering Methods (ICFEM
2011) (2011), S. Qin, Z. Qiu, S. Qin, and Z. Qiu, Eds., vol. 6991 of Lecture Notes in Computer
Science, Springer, pp. 505–521.

[5] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and Wallach, D. S. Quire:
lightweight provenance for smart phone operating systems. In Proceedings of the 20th USENIX
conference on Security (Berkeley, CA, USA, 2011), SEC’11, USENIX Association, pp. 23–23.

[6] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel,
P., and Sheth, A. N. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation (Berkeley, CA, USA, 2010), OSDI’10, USENIX
Association, pp. 1–6.

[7] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and communications
security (New York, NY, USA, 2011), CCS ’11, ACM, pp. 627–638.

[8] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S., and Chin, E. Permission
Re-Delegation: Attacks and defenses. In Security 2011, 20st USENIX Security Symposium
(Aug. 2011), D. Wagner, Ed., USENIX Association.

[9] Gartner. 10 billion android market downloads and counting. http://googleblog.
blogspot.com/2011/12/10-billion-android-market-downloads-and.html.

[10] Gartner. Gartner says sales of mobile devices grew 5.6 percent in third quarter of 2011;
smartphone sales increased 42 percent. http://www.gartner.com/newsroom/id/1848514.

[11] Graphviz. Brewer color schemes. http://www.graphviz.org/doc/info/colors.html#
brewer.

[12] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N., Foster,
J. S., and Millstein, T. Dr. android and mr. hide: fine-grained permissions in android
applications. In Proceedings of the second ACM workshop on Security and privacy in
smartphones and mobile devices (New York, NY, USA, 2012), SPSM ’12, ACM, pp. 3–14.

[13] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. Chex: statically vetting android apps for
component hijacking vulnerabilities. In Proceedings of the 2012 ACM conference on Computer
and communications security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 229–240.

[14] MicroSoft. What’s user account control? http://windows.microsoft.com/en-us/
windows-vista/what-is-user-account-control.

[15] Might, M. Environment Analysis of Higher-Order Languages. PhD thesis, Georgia Institute
of Technology, June 2007.

[16] Might, M. Environment Analysis of Higher-Order Languages. PhD thesis, Georgia Institute
of Technology, June 2007.

[17] Might, M., and Shivers, O. Improving flow analyses via Gamma-CFA: Abstract garbage
collection and counting. In ICFP ’06: Proceedings of the 11th ACM SIGPLAN International
Conference on Functional Programming (New York, NY, USA, 2006), ACM, pp. 13–25.

13

http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://www.gartner.com/newsroom/id/1848514
http://www.graphviz.org/doc/info/colors.html#brewer
http://www.graphviz.org/doc/info/colors.html#brewer
http://windows.microsoft.com/en-us/windows-vista/what-is-user-account-control
http://windows.microsoft.com/en-us/windows-vista/what-is-user-account-control

Liang, Might, and Van Horn

[18] Project, T. A. O. S. Bytecode for the dalvik vm. http://source.android.com/tech/
dalvik/dalvik-bytecode.html.

[19] Shivers, O. G. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1991.

[20] Van Horn, D., and Might, M. Abstracting abstract machines. In Proceedings of the
15th ACM SIGPLAN international conference on Functional programming (New York, NY,
USA, 2010), ICFP ’10, ACM, pp. 51–62.

14

http://source.android.com/tech/dalvik/dalvik-bytecode.html
http://source.android.com/tech/dalvik/dalvik-bytecode.html

	Introduction
	Semantic-based program analysis
	Abstract semantics

	Analysis of reflection and multiple entry points in abstract CESK* machine
	Fixed-point computation for multiple entry points
	Reflection

	The tool with user-supplied predicates
	Semantic predicates

	Related work
	Conclusion
	References

