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Abstract. We generalize EigenCFA, a linear formulation of 0-CFA, to
features needed for real-world intermediate languages and apply our ap-
proach to an analysis of Scheme. EigenCFA lacks the full precision of
0-CFA and is restricted to programs in the subset of pure λ-calculus con-
forming to binary continuation-passing-style. This constraint is borne of
the need to encode a monolithic transfer function as a GPU kernel free of
thread-divergence. We show the soundness and precision of partitioning
this transfer function to obtain an encoding with both the fine-grained
parallelism of matrix operations as well as coarse-grained parallelism be-
tween transfer functions. Our approach supports real-world languages
with a diverse array of forms and has the full precision of a traditional
0-CFA. An implementation effort is in progress and preliminary results
are promising. Both CPU and GPU versions of our encoding have been
tested for correctness against a standard worklist implementation.

1 Introduction

The aim of static analysis is to make guarantees about the behavior of a program
before runtime. For example, if we wanted to know the possible types for a
variable in a dynamic language (type-recovery), or if we wanted to know where
sensitive data might exit a program (taint-propagation), we are asking for a data-
flow analysis. If we wanted to remove code which can never be run (dead-code
elimination) or determine which code is likely to be run most frequently (static
profiling), we are asking for a control-flow analysis of our program. The goal of
these analyses is to give a computable approximation of the propagation of data
or control through a program which is precise enough to answer useful questions
for the purposes of compiler optimization, bug-finding, or security, among other
applications.

A flow-analysis allows us to answer a question like: “What are the possible
return values of the following Scheme snippet?”

(let ([add5 (lambda (a) (+ a 5))])

(add5 10))

In this particular case, the code is guaranteed to halt with a specific answer,
and so it may simply be executed. In the general case however, static analysis
brings us up against the halting problem and fundamental limitations on com-
putability. Rice’s theorem shows that proving any non-trivial program property



is incomputable in the general case. The challenge of designing a static analysis
is therefore the unavoidable trade off between precision and scalability. Effec-
tively reformulating a flow-analysis so that parallelism may be easily exploited
allows solutions to be found using throughput-oriented hardware and benefits
the scalability of an analysis at no cost to precision.

EigenCFA is a preliminary attempt at doing just that [13]. It derives a rather
clever encoding of 0-CFA (a specific control-flow analysis) as linear-algebraic op-
erations which are efficient to compute on SIMD architectures like the GPU.
Unfortunately, it is restricted by its need to encode the entire analysis as a sin-
gle GPU kernel. This restriction has made it impossible to encode an analysis of
simple language features like primitive operations and conditions. The + opera-
tion in our code snippet places even such a simple example outside the ability of
EigenCFA to handle efficiently. Our approach solves this problem with a tech-
nique we call transfer function partitioning, allowing the essential encoding to be
extended to real-world analyses. As 0-CFA is nearly cubic in complexity and im-
practical to compute for large programs, such parallelism is of vital importance
in bringing sophisticated program-analysis to bear on everyday problems.

In addition, EigenCFA is less precise than it should be as it uses the trivially
sound approximation for control-flow behavior. Consider the following sample
taken from a larger program where f, g, and h are unreachable functions.

(define (f x) (h x 0))

(define (g) (h 0 0))

Proving that these are in-fact unreachable requires a precise control-flow
analysis. EigenCFA models only data-flow and assumes the reachability of all
expressions in a program. Because of this, the callsites (h 0 0) and (h x 0)

will be examined and their data-flows propagated. As x is unbound, even af-
ter handling propagations for (h x 0), the corresponding formal parameter for
h will remain unbound. An unbound variable is an implicit indication that a
function (in this case h) is in-fact unreachable. In this case, an approximation of
data-flow has resulted in a bound on control-flow, but this cannot be relied on to
give the same precision as a traditional 0-CFA which models control explicitly.
Because the callsite in g applies h on two constant values, once the analysis is
complete, it will appear that h may be reachable as possible values will have
been found for both its parameters. Our linear encoding solves this problem by
explicitly modeling both the control-flow and data-flow aspects of a program.

In the following sections, we will give the necessary background on static
analysis by abstract interpretation, introduce a concrete and abstract seman-
tics for a Scheme intermediate-representation, and derive a linear encoding for
0-CFA. Our encoding has been implemented both as a single-threaded CPU ver-
sion and as single-stream and multi-stream GPU versions. All these have been
tested for correctness against a standard worklist implementation and produce
identical results for a suite of Scheme benchmarks. While the optimization effort
is ongoing, preliminary results are promising, showing potential speedups of 20x
or better over a single-threaded version of the encoding.



2 Background

Abstract interpretation is a very general framework for static analysis which al-
lows us to perform an approximate evaluation of a program [2] [3]. The result is
a single, time-bounded execution which represents the set of all possible exact
executions. The approximation used, formally known as a Galois-connection, is
a precisely defined relationship between a concrete semantics and an abstract
semantics. In the code snippet on the front page for example, approximating con-
crete integers as INT could instantiate the framework to perform a type-recovery
and we would determine the result to be at least some integer. If instead they
were approximated as one of POS, ZERO, or NEG, we could perform a sign-analysis
and discover that the result can only be a positive integer more specifically.

While there are a number of common formulations, our presentation uses a
small-step operational semantics defined over the configurations of an abstract-
machine. Such a semantics is determined by a series of inference rules which
define, given a machine configuration, what configurations may immediately
succeed it. A static analysis in this style proceeds by evaluation of an abstract
abstract-machine starting with an initial configuration and exploring all ab-
stract states reachable by the semantic rules. The simulation may be called
sound if the defined Galois-connection strictly bounds the concrete executions
represented by an abstract execution (for example, over-approximation or under-
approximation). This property is proved inductively by showing that soundness
before state-transition implies soundness after state-transition in all cases [10].

In Shivers’ seminal work on control-flow analysis (CFA) of higher-order lan-
guages, he introduced a hierarchy of increasingly precise analyses for Scheme
known as k-CFA [14]. The most basic of these, 0-CFA, has been extended and
improved in a variety of ways since then and may be considered the foundational
analysis of functional languages by abstract interpretation. For k > 0 the analy-
sis is known to be EXPTIME-complete [5] and therefore intractable, but 0-CFA
and many of its related algorithms are merely of a large polynomial complexity.

Specifically, 0-CFA is in O( n3

log(n) ), but remains stubbornly difficult to compute
in practice.

2.1 GPU programming

GPUs have become increasingly popular in recent years for solving computation-
ally intense problems outside of graphics processing [11]. The FLOP throughput
on GPUs has continued to increase exponentially, significantly outpacing CPUs.
Many high performance computers now rely on the GPU as a work-horse for
the computationally demanding linear-algebra which is often needed in large-
scale scientific and engineering applications. GPUs achieve this performance due
to the use of a streaming SIMD (single-instruction/multiple-data) architecture.
This allows a group of small lightweight cores to perform the same operation
on a vector of data and is ideal for certain tasks such as graphics and linear-
algebra. With the addition of soldered memory, GPUs are also able to attain a
significantly higher memory bandwidth than that of traditional CPUs.



Modern GPUs have thousands of cores and can achieve parallelism on multi-
ple levels. The first is fine-grained SIMD parallelism which relies on many threads
operating in lock-step. The second is parallelism from concurrent program exe-
cution. Thread-divergence occurs when a branch instruction separates a group
of threads into different control-flow paths. This causes threads on one path to
continue while others wait to run sequentially and is disastrous for performance.

2.2 EigenCFA

EigenCFA is a linear encoding of 0-CFA [13] and the primary inspiration for our
approach. This formulation of 0-CFA allows the flow-analysis to be computed on
a GPU; however, it is constrained to a very simple language without support for
fundamental and important features like mutation and conditions. This extreme
simplicity is required so the entire analysis can be implemented as a single GPU
kernel free of thread-divergence. Prior to analysis, programs must be reduced
to a subset of the pure λ-calculus conforming to binary continuation-passing-
style (binary CPS). This restricts programs to values ranging over closures that
accept precisely two arguments and never return. CPS itself is a very practi-
cal intermediate-representation but currying all functions may not be desirable,
and church-encoding basic values is problematic as it obfuscates the data under
analysis. To make matters worse, this encoding requires a variety of standard
language forms like letrec, set!, and if, to be desugared into direct lambda
application in such a way that the program’s behavior according to 0-CFA is
unaffected, even if its concrete execution is no longer sound. This technique,
termed abstract church encoding, is another highly destructive transformation
which makes it difficult to map the results of an analysis back onto the original
program. A final shortcoming is a lack of precision in modeling control-flow be-
havior. 0-CFA necessarily models both control-flow and data-flow as the nature
of higher-order programming languages entangles these two concerns. EigenCFA
however, seems ironically named as it assumes the reachability of all callsites in
the program, giving the trivially sound result for its control-flow approximation.

2.3 Points-to analysis

The other recent attempt to bring flow-analysis to the GPU implements an
inclusion-based points-to analysis [9]. This formulation operates on the adja-
cency matrix of a points-to graph and is manageable for some real-world lan-
guage features, but lacks generality. Like EigenCFA, the strategy is constrained
to monovariance and supports a restricted language. Unlike EigenCFA, this ap-
proach is not readily extensible to analysis of higher-order functions and their
environments, or to more general program analyses with richer abstract domains.

3 Concrete Semantics for CPS Scheme

The target language for our analysis is a desugared Scheme in continuation-
passing-style. CPS constrains function calls never to return; instead, a caller



must explicitly pass a continuation forward to be invoked on the result [12].
CPS is an excellent and widely used language for compiler optimization and
program analysis [1]. If the transformation to CPS makes note of which lambdas
correspond to continuations, the simplified program may again, along with any
optimizations and analysis results, be precisely reconstituted in its direct-style
form. This means the advantages of CPS can be utilized without compromise or
loss of information [8].

The grammar for this language structurally distinguishes between atomic-
expressions ae and complex-expressions e.

e ∈ E ::= (ae ae . . . )l

| (set! x ae ae)l

| (prim op ae . . . )l

| (if ae e e)l

| (halt)l

ae ∈ AE ::= c | x | lam
lam ∈ Lam ::= (λ (x . . . ) e)

c ∈ Const ::= #t | #f | 〈number〉 | . . .
x ∈ Var ::= 〈set of program variables〉
op ∈ OP ::= 〈set of primitive operations〉
l ∈ Label ::= 〈set of unique labels〉

To specify the behavior of this language, we define a small-step operational
semantics for an abstract-machine. A transition relation (⇒) is needed which
defines at most one successor for any valid machine state ς. We use a CES-
style machine with control-expression e, binding-environment ρ, value-store σ,
and timestamp t (execution context) components [4]. The binding-environment
ρ maps variables in scope to an address. The value-store σ maps addresses a
to values v. Timestamps are unbounded lists of labels representing a complete
history of program execution.

ς ∈ Σ = E× Env × Store× Time
ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

t ∈ Time = Label∗

a ∈ Addr = Var × Time
v ∈ V alue = Lam× Env + Const

For evaluating atomic-expressions we define an auxiliary function A which maps
a syntactic ae in the context of a current state to a semantic program value. In
the case of a variable, A uses ρ and σ to lookup the variable’s current binding



in the store. In the case of a lambda, a value is produced by closure-conversion:
pairing the lambda with its current environment.

A : AE×Σ ⇀ V alue

A(x, (e, ρ, σ, t)) = σ(ρ(x))

A(lam, (e, ρ, σ, t)) = (lam, ρ)

A(c, ς) = c

In addition, we need a primitive-operation evaluator δ which maps an operation
op and list of values v to a result.

δ : OP× V alue∗ ⇀ V alue

We may now define the small-step transition relation (⇒) by pattern-matching
against the four complex-expressions that need to be handled: conditionals, mu-
tation, primitive operations, and callsites. The (halt) expression does not need
to be handled as it has no successors.

An inference rule like the one below asserts that the conclusion below the line
is true whenever the premise above is true. When a callsite is reached, control
moves inside the body e of the invoked closure.

((λ (x1 . . . xj) e), ρλ) = A(aef , ς)

((aef ae1 . . . aej)
l, ρ, σ, t)︸ ︷︷ ︸

ς

⇒ (e, ρ′, σ′, t′)

where ρ′ = ρλ[xi 7→ (xi, t
′)]

σ′ = σ[(xi, t
′) 7→ A(aei, ς)]

t′ = l : t

A new environment ρ′ is produced from the closure’s ρλ augmented with bindings
for each formal parameter xi. An updated store is produced by mapping these
addresses for each xi to the value indicated by atomic-evaluation of aei. As the
timestamp t′ is always a complete and unique history of program execution, all
transitions use a fresh set of addresses.

Mutation is handled similarly as it implies the invocation of a continuation.
The continuation indicated for aek receives VOID, the return value of a set!

expression in Scheme. In addition, we update the current address in scope for x
to be the current value for aev.

((λ (xk) e), ρλ) = A(aek, ς)

((set! x aev aek)
l, ρ, σ, t)︸ ︷︷ ︸

ς

⇒ (e, ρ′, σ′, t′)

where ρ′ = ρλ[xk 7→ (xk, t
′)]

σ′ = σ[(xk, t
′) 7→ VOID]

[ρ(x) 7→ A(aev, ς)]

t′ = l : t



Primitive operations use δ to obtain a return value and propagate this vk to the
prim-op’s continuation.

((λ (xk) e), ρλ) = A(aek, ς)

((prim op ae1 . . . aej aek)
l, ρ, σ, t)︸ ︷︷ ︸

ς

⇒ (e, ρ′, σ′, t′)

where ρ′ = ρλ[xk 7→ (xk, t
′)]

σ′ = σ[(xk, t
′) 7→ vk]

vk = δ(op, (A(ae1, ς) . . . A(aej , ς)))

t′ = l : t

Conditionals are probably the simplest case, with control moving inside the true
branch or false branch as appropriate.

A(ae, ς) = FALSE

((if ae et ef), ρ, σ, t)︸ ︷︷ ︸
ς

⇒ (et, ρ, σ, t)

A(ae, ς) 6= FALSE

((if ae et ef), ρ, σ, t)︸ ︷︷ ︸
ς

⇒ (ef , ρ, σ, t)

3.1 Evaluating a program

To evaluate a program e with these concrete semantics we produce a starting
configuration ς0 = I(e) using a concrete state-space injection function I : E→ Σ:

I(e) = (e, ⊥, ⊥, ())

We can then compute the transitive closure of (⇒) starting from ς0. As our
state-space is unbounded, and the interpretation may continue to produce new
states indefinitely, concrete executions are incomputable in the general case.

4 Abstract Semantics for 0-CFA

We perform a structural abstraction bounding the machine’s address-space to
obtain a computable approximation of our concrete semantics [6][7]. Notice that
our abstract semantics contains several fundamental changes from its concrete
counterpart. 0-CFA bounds the address-space to include exactly one address
for each variable (monovariance). All values bound to a variable x in any con-
text therefore must be represented by a single address. This introduces merging
between values in our store and non-determinism in the transition relation.

To define an abstract operational semantics, we again need an abstract ma-
chine and a transition relation (≈>) which matches up successors and predeces-
sors within the machine’s configuration-space. As we are effectively re-using an



empty timestamp for every allocation, expressions will uniquely identify an en-
vironment mapping free-variables to themselves and the store may directly map
variables x̂ to sets of abstract values v̂. Such a flow-set may indicate a range of
possible concrete values for an address. Closures are now just lambdas.

ς̂ ∈ Σ̂ = E× Ŝtore

σ̂ ∈ Ŝtore = V̂ ar → V̂ alues

v̂ ∈ V̂ alues = P(V̂ alue)

d̂ ∈ V̂ alue = Lam + B̂asic

B̂asic = {TRUE, FALSE, VOID, INT, . . .}

Program constants map to their corresponding basic values. When perform-
ing a concrete interpretation, these values are precise. When performing our
abstract interpretation, there should only be a finite number of abstract basic
values so they can be enumerated in our forthcoming encoding. For constant
propagation, a set of program locations may be used. We use the notation α
below to informally indicate the abstraction function a fully defined Galois-
connection would employ to map a concrete machine component to its most
precise abstract representative. For example, α(−3) could yield NEG.

The abstract atomic-expression evaluator returns flow-sets v̂.

Â : AE× Σ̂ ⇀ V̂ alues

Â(x, (e, σ̂)) = σ̂(x)

Â(lam, (e, σ̂)) = {lam}
Â(c, ς̂) = {α(c)}

We also need an abstract prim-op evaluator δ̂ which maps a primitive operation
op and list of flow-sets to a sound result. For example, δ̂(+, ({POS}, {POS})) =
{POS}.

δ̂ : OP× V̂ alues
∗
⇀ V̂ alues

A callsite has one successor for each closure that accepts a matching number
of arguments indicated by the flow-set for aef (the atomic-expression in call
position).

(λ (x1 . . . xj) e) ∈ Â(aef , ς̂)

((aef ae1 . . . aej), σ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′)

where σ̂′ = σ̂ t [xi 7→ Â(aei, ς̂)]

Control moves inside the body of all invoked closures e. The updated store is
now conservatively approximated by finding the least-upper-bound of the cur-
rent store and each new binding. Stores are ordered point-wise by inclusion, i.e.
(σ̂1 t σ̂2)(â) = σ̂1(â) ∪ σ̂2(â).



Mutation is succeeded by a state for each possible continuation.

(λ (xk) e) ∈ Â(aek, ς̂)

((set! x aev aek), σ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′)

where σ̂′ = σ̂ t [xk 7→ {VOID}]
t [x 7→ Â(aev, ς̂)]

In addition, to conservatively simulate mutation of the variable x, all flows in-
dicated for aev are included along with all previous values.

(λ (xk) e) ∈ Â(aek, ς̂)

((prim op ae1 . . . aej aek), σ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′)

where σ̂′ = σ̂ t [xk 7→ v̂k]

v̂k = δ(op, (Â(ae1, ς̂) . . . Â(aej , ς̂)))

Primitive operations use δ̂ to obtain an approximation of the return value and
propagate this flow-set v̂k to each continuation indicated for aek.

v̂ ∈ Â(ae, ς̂) v̂ 6= FALSE

((if ae et ef), σ̂)︸ ︷︷ ︸
ς̂

≈> (et, σ̂)

v̂ ∈ Â(ae, ς̂) v̂ = FALSE

((if ae et ef), σ̂)︸ ︷︷ ︸
ς̂

≈> (ef , σ̂)

When a conditional is reached, both branches may be taken.

4.1 Näıvely computing the analysis

We first define an injection function Î which, given a program e, determines an
initial state ς̂0 = Î(e).

Î : E→ Σ̂

Î(e) = (e, ⊥)

To compute our analysis, we can simply visit all states reachable from ς̂0. We
define a transfer function for the system-space of our program f̂ : P(Σ̂)→ P(Σ̂):

f̂(Ŝ) = {ς̂ ′ : ς̂ ∈ Ŝ and ς̂ ≈> ς̂ ′} ∪ {ς̂0}

Unfortunately, this approach is impracticable as the total number of stores is
exponential in the size of the program, even for this context-insensitive analysis.



4.2 Efficiently computing the analysis

A more efficient method uses a single store to replace the multitude of individual
stores. This global store is maintained as the least-upper-bound of all stores
seen so far. Global-store-widening is a sound, and in practice quite reasonable,
approximation of the näıve calculation [10] [14]. With this form of widening

applied, 0-CFA is in O( n3

log(n) ). We factor the store out of our state-space while

retaining a set of reachable expressions denoted r̂ as an explicit model of control-
flow. EigenCFA compromises on precision by modeling only the store.

r̂ ∈ R̂each = P(E)

ξ̂ ∈ Ξ̂ = R̂each× Ŝtore

Over factored system-spaces Ξ̂, the transfer function becomes:

f̂ : Ξ̂ → Ξ̂

f̂(r̂, σ̂) = (r̂ ∪ r̂′, σ̂′)
where Ŝ = {ς̂ ′ : e ∈ r̂ and (e, σ̂) ≈> ς̂ ′}

r̂′ = {e : (e, ) ∈ Ŝ}

σ̂′ =
⊔
{σ̂′′ : ( , σ̂′′) ∈ Ŝ}

The notation matches any value without binding it to a variable.
The store grows monotonically across transition, i.e. ( , σ̂) ≈> ( , σ̂′) implies

σ̂ v σ̂′, so f̂ grows monotonically over Ξ̂. Because Ξ̂ is finite and f̂ is continuous,
we know that the least-fix-point of f̂ is f̂n(⊥,⊥) for some finite n.

5 Partitioning the transfer function

A central insight to our work is that we can partition a transfer function by reach-
able state under evaluation. By grouping these individual transfer functions into
GPU kernels according to like control-flow we can minimize thread-divergence
in a SIMD implementation. An individual transfer function f̂e handles only the
propagation of flows caused directly by e:

f̂e : Ξ̂ → Ξ̂

f̂e(r̂, σ̂) = (r̂ ∪ r̂′e, σ̂′e)
where Ŝe = {ς̂ ′ : e ∈ r̂ and (e, σ̂) ≈> ς̂ ′}

r̂′e = {e′′ : (e′′, ) ∈ Ŝe}

σ̂′e =
⊔
{σ̂′′ : ( , σ̂′′) ∈ Ŝe}

To determine the correctness and precision of this technique, we show its equiv-
alence to an unpartitioned transfer function so we may exploit the corollary that
a solution ξ̂ which is simultaneously a fix-point for all f̂e is guaranteed to be a
fix-point for f̂ .



Theorem 1 (Transfer Partitioning).

f̂(r̂, σ̂) =
⊔
e∈r̂

f̂e(r̂, σ̂)

Proof. (Sketch) Follows from the observation that Ŝe for all e ∈ r̂ is a collection
of covering subsets for Ŝ.

Ŝ =
⋃
e∈r̂

Ŝe

Therefore r̂′ is also the least-join of all r̂′e as is σ̂′ of all σ̂′e.

6 Linear Encoding for 0-CFA

Now that we may arbitrarily partition a transfer function to minimize thread-
divergence, a linear encoding for handling a callsite can be defined separately
from a linear encoding that handles a conditional, a primitive operation, or
another form. The goal now is to produce an implementation for each fe defined
exclusively in terms of matrix multiplication (×), outer product (⊗), element-
wise boolean-or (+), and dot product (·).

For any finite domain, we can assign a canonical order to its contents and
represent elements of its set or power-set as boolean vectors. Where vectors
contain a single entry, they represent a single element in the set they encode, and
where they contain more than one entry, the representation naturally extends to
encoding more than one element at once. For example, as defined below, a value
v ∈ V is a vector representing a flow-set of abstract values. In the case of S, we
use r in all cases to denote a set of states and s to denote a particular state (i.e.
a vector with a single entry).

r, s ∈ S = {0, 1}|E|

a ∈ A = {0, 1}|V̂ ar|+|V̂ alue|

v ∈ V = {0, 1}|V̂ alue|

Vectors a represent atomic-expressions, either variables or values. This is a design
choice taken directly from EigenCFA which allows the various cases required for
Â to be implemented as a single multiplication.

A function g over these vectors can be encoded as multiplication with a
matrix, and may handle inputs which encode a set so long as the property
g(x ∪ y) = g(x) ∪ g(y) holds for all x and y. The store is such a function, one
which maps variables to a flow-set of values, and values to themselves:

σ : A→ V

If values are ordered after variables in A, the bottom of the store will always
be an identity matrix. Below is an example of a lookup showing how the store is
used to map a variable to its flow-set via matrix multiplication. We use a CPS
version of our original snippet of Scheme code for clarity.



((lambda (add5x0)

(add5x0 10d̂3 (lambda (resultx3) (halt)l3)d̂2)l1)d̂0

(lambda (ax1 add5kx2)

(prim + ax1 5d̂3 add5kx2)l2)d̂1)l0

Annotations show an assignment of labels to expressions, variables to vectors in
A, and abstract values to vectors in V . The abstract value d̂3 represents INT.

Example 1. 〈〈a〉〉 × σ = 〈〈{INT}〉〉

[ x0 x1 x2 x3 d̂0 d̂1 d̂2 d̂3

0 1 0 0 0 0 0 0
]
×



d̂0 d̂1 d̂2 d̂3

x0 0 1 0 0
x1 0 0 0 1
x2 0 0 1 0
x3 0 0 0 1

d̂0 1 0 0 0
d̂1 0 1 0 0
d̂2 0 0 1 0
d̂3 0 0 0 1


=
[ d̂0 d̂1 d̂2 d̂3

0 0 0 1
]

The notation 〈〈·〉〉 is used informally to denote the matrix representation of
a given entity. Including an identity matrix in the store composes two map-
pings as one matrix so that all cases in Â may be handled together as a single
multiplication.

A program’s syntax tree can also be encoded as a series of matrices. For
example, a matrix Body maps lambdas in V to their body expression in S.
The same can be done for the true and false branches of a conditional form.

Body : V → S

CondTrue : S → S

CondFalse : S → S

Fun : S → A

Argi : S → A

Vari : V → A

Fun maps callsites to the atomic-expression in call-position. If this is a variable,
a value in the top portion of A will result, if it’s a lambda or constant value,
an entry in the lower portion of A results. Argi represents a similar encoding
for argument i of a callsite. Vari encodes formal parameter i of a lambda. For
example, we can expect 〈〈(λ (a add5k) . . . )〉〉×Var2 to yield a value 〈〈add5k〉〉.

For a callsite s, the value of its second argument can be computed as v2 =
s ×Arg2 × σ and the value of the applied lambda as vf = s × Fun × σ. The
second formal parameter for vf may then be computed as a2 = vf × Var2
and with these two values, the store can be updated with a binding to v2 for
a2. This is accomplished by using the outer product a2 ⊗ v2 as this will give a
store-update matrix with an entry at index (m,n) whenever a2 has an entry at
position m and v2 has one at n. An update is applied to the current store using
element-wise boolean-or. The example below shows the store update produced
for add5k.



Example 2. 〈〈add5k〉〉 ⊗ 〈〈(lambda (result) (halt))〉〉
0000000000000000000000000 = 〈〈[add5k 7→ (lambda (result) (halt))]〉〉

[ x0 x1 x2 x3 d̂0 d̂1 d̂2 d̂3

0 0 1 0 0 0 0 0
]
⊗
[ d̂0 d̂1 d̂2 d̂3

0 0 1 0
]

=



d̂0 d̂1 d̂2 d̂3

x0 0 0 0 0
x1 0 0 0 0
x2 0 0 1 0
x3 0 0 0 0

d̂0 0 0 0 0
d̂1 0 0 0 0
d̂2 0 0 0 0
d̂3 0 0 0 0


An operation vf × Body finds the body for vf , and boolean-or is used to

extend the vector of reachable expressions r. A full encoding for fe where e is a
callsite of length j can now be defined in full using these operations:

fscallj
(r, σ) = (r ′, σ′)

where vf = scallj × Fun× σ
vi = scallj ×Argi × σ
ai = vf ×Vari

σ′ = σ + (a1 ⊗ v1) + . . .+ (aj ⊗ vj)
r ′ = r + (vf ×Body)

To handle set! forms, we may reuse the matrix Fun for encoding the con-
tinuation, Arg1 for encoding the variable being set, and Arg2 for encoding
the atomic-expression it’s being assigned to. The continuation receives a value

〈〈VOID〉〉 we’ll denote as
−−→
void:

fsset!
(r, σ) = (r ′, σ′)

where vf = sset! × Fun× σ
avar = vf ×Var1

aset = sset! ×Arg1

vset = sset! ×Arg2 × σ

σ′ = σ + (avar ⊗
−−→
void) + (aset ⊗ vset)

r ′ = r + (vf ×Body)

Conditionals make no changes to the store, but extend reachability to the

subexpression for the true or false branches as appropriate.
−−−→
false is used to

denote 〈〈FALSE〉〉 and
−−−−−−→
notfalse to denote its inverse – which is notably not the

same as 〈〈TRUE〉〉. A dot product is used to obtain a boolean value which is false



exactly when the intersection of two sets is empty:

fsif
(r, σ) = (r ′, σ)

where vcond = sif ×Arg1 × σ

tb = vcond ·
−−−−−−→
notfalse

fb = vcond ·
−−−→
false

r ′ = r + tb(sif ×CondTrue) + fb(sif ×CondFalse)

6.1 A final algorithm

To find a solution, we can iterate to a fix-point (r, σ) over all fs where s is
drawn from the entries of r. In practice, we may exploit both the fine-grain par-
allelism of matrix operations and the coarse-grain parallelism of running each fs
concurrently. As each individual fs is monotonic and continuous, our reasoning
on termination and precision from section 4.2 remains applicable.

while σ or r changes do
foreach s in r do

(r,σ) = fs(r,σ)
end

end

7 Conclusion

This analysis represents a faithful formulation of 0-CFA for Scheme and goes
beyond the capabilities of EigenCFA in two key regards. First, including a range
of reachable expressions allows the encoding to represent a more precise approx-
imation of control-flow behavior corresponding to a traditional worklist imple-
mentation of 0-CFA. By only updating a global store, EigenCFA uses a fully
imprecise control-flow approximation unnecessarily. Second, a sound and precise
partitioning of the transfer function has allowed a variety of very different infer-
ence rules to be used without the need to entangle their implementation within
a single GPU kernel (introducing thread-divergence). This permits extending
the essential approach beyond trivial analyses of trivial languages. The work of
applying our technique to 0-CFA can be further expanded to parallelize more
sophisticated analyses of languages with an even greater variety of forms.
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